Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274632

RESUMEN

The use of laser cladding technology to prepare coatings of AlCoCrFeNi high-entropy alloy holds enormous potential for application. However, the cladding quality will have a considerable effect on the properties of the coatings. In this study, considering the complex coupling relationship between cladding quality and the process parameters, an orthogonal experimental design was employed, with laser power, scanning speed, and powder feed rate as correlation factor variables, and microhardness, dilution rate, and aspect ratio as characteristic variables. The experimental data underwent gray correlation analysis to determine the effect of various process parameters on the quality of cladding. Then, the NSGA-II algorithm was used to establish a multi-objective optimization model of process parameters. Finally, the ANSYS Workbench simulation model was employed to conduct numerical simulations on a group of optimized process parameters and analyze the change rule of the temperature field. The results demonstrate that the laser cladding coating of AlCoCrFeNi high-entropy alloy with the single pass is of high quality within the determined orthogonal experimental parameters. The powder feed rate exerts the most significant influence on microhardness, while laser power has the greatest impact on dilution rate, and scanning speed predominantly affects aspect ratio. The designed third-order polynomial nonlinear regression model exhibits a high fitting accuracy, and the NSGA-II algorithm can be used for multi-objective optimization to obtain the Pareto front solution set. The numerical simulation results demonstrate that the temperature field of AlCoCrFeNi high-entropy alloy laser cladding exhibits a "comet tail" phenomenon, where the highest temperature of the molten pool is close to 3000 °C. The temperature variations in the molten pool align with the features of laser cladding technology. This study lays the groundwork for the widespread application of laser cladding AlCoCrFeNi high-entropy alloy in surface engineering, additive manufacturing, and remanufacturing. Researchers and engineering practitioners can utilize the findings from this research to judiciously manage processing parameters based on the results of gray correlation analysis. Furthermore, the outcomes of multi-objective optimization can assist in the selection of appropriate process parameters aligned with specific application requirements. Additionally, the methodological approach adopted in this study offers valuable insights applicable to the exploration of various materials and diverse additive manufacturing techniques.

2.
Ultrasonics ; 145: 107456, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39305555

RESUMEN

In order to investigate the influence of ultrasonic vibration (UV) on microstructural evaluation of amorphous coating, the Fe-based amorphous (Fe41.5Co12.2Cr7.4Mo37.3C0.3B0.5Y0.4Al0.4) coatings with and without UV were fabricated by laser cladding technology. The microstructure and corrosion resistance of the coatings were studied in detail to understand the mechanism of the UV on amorphous coatings. It can be found that the cavitation effect generated by UV refines and breaks the columnar crystals at the interface. Compared to the coatings without UV, the average length of columnar crystals of coatings with UV decreases by 57.52 %, reducing from 25.26 ± 5.89 µm to 10.73 ± 3.91 µm. In addition, the sound pressure gradient drives the accelerated flow of the molten pool, resulting in a flow velocity of up to 0.134 m/s. The acoustic streaming effect of UV promotes the uniform distribution of elements and inhibits the segregation of the intermetallic compounds, which increases the amorphous content from 68.5 % to 75.3 %. The acoustic streaming and cavitation effects refine the microstructure and increase the amorphous content by using of UV, which contributes to improve the corrosion resistance.

3.
Materials (Basel) ; 17(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124354

RESUMEN

As a metal additive manufacturing process, laser cladding (LC) is employed as a novel and beneficial repair technology for damaged steel structures. This study employed LC technology with 316 L stainless steel powder to repair locally corroded steel plates. The influences of interface slope and scanning pattern on the mechanical properties of repaired specimens were investigated through tensile tests and finite element analysis. By comparing the tensile properties of the repaired specimens with those of the intact and corroded specimens, the effectiveness of LC repair technology was assessed. An analysis of strain variations in the LC sheet and substrate during the load was carried out to obtain the cooperation mechanism between the LC sheet and substrate. The experimental results showed that the decrease in interface slope slightly improved the mechanical properties of repaired specimens. The repaired specimens have similar yield strength and ultimate strength to the intact specimens and better ductility as compared to the corroded specimen. The stress-strain curve of repaired specimens can be divided into four stages: elastic stage, substrate yield-LC sheet elastic stage, substrate hardening-LC sheet elastic stage, and plastic stage. These findings suggest that the LC technology with 316 L stainless steel powder is effective in repairing damaged steel plates in civil engineering structures and that an interface slope of 1:2.5 with the transverse scanning pattern is suitable for the repair process.

4.
Materials (Basel) ; 17(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39124487

RESUMEN

The development of titanium alloys is limited by issues such as low hardness, poor wear resistance, and sensitivity to adhesive wear. Using laser cladding technology to create high-hardness wear-resistant coatings on the surface of titanium alloys is an economical and efficient method that can enhance their surface hardness and wear resistance. This paper presents the preparation of two types of nickel-based composite coatings, Ni60-Ti-Cu-xB4C and Ni60-Ti-Cu-B4C-xCeO2, on the surface of TC4 titanium alloy using laser cladding. When the B4C addition was 8 wt.%, the hardness of the cladding layer was the highest, with an average microhardness of 1078 HV, which was 3.37 times that of the TC4 substrate. The friction coefficient was reduced by 24.7% compared to the TC4 substrate, and the wear volume was only 2.7% of that of the substrate material. When the CeO2 content was 3 wt.%, the hardness of the cladding layer was the highest, with an average microhardness of 1105 HV, which was 3.45 times that of the TC4 substrate. The friction coefficient was reduced by 33.7% compared to the substrate material, and the wear volume was only 1.8% of that of the substrate material.

5.
Materials (Basel) ; 17(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39124541

RESUMEN

In recent years, laser cladding technology has been widely used in surface modification of titanium alloys. To improve the wear resistance of titanium alloys, ceramic-reinforced nickel-based composite coatings were prepared on a TC4 alloy substrateusing coaxial powder feeding laser cladding technology. Ti (C, N) ceramic was synthesized in situ by laser cladding by adding different contents (10%, 20%, 30%, and 40%) of TiN, pure Ti powder, graphite, and In625 powder. Thisestudy showed that small TiN particles were decomposed and directly formed the Ti (C, N) phase, while large TiN particles were not completely decomposed. The in situ synthetic TiCxN1-x phase was formed around the large TiN particles. With the increase in the proportion of powder addition, the wear volume of the coating shows a decreasing trend, and the wear resistance of the surface coating is improving. The friction coefficient of the sample with 40% TiN, pure Ti powder, and graphite powder is 0.829 times that of the substrate. The wear volume is 0.145 times that of the substrate. The reason for this is that with the increase in TiN, Ti, and graphite in the powder, there are more ceramic phases in the cladding layer, and the hard phases such as TiC, Ti(C, N) and Ti2Ni play the role in the structure of the "backbone", inhibit the damage caused by micro-cutting, and impede the movement of the tearing point of incision, so that the coating has a higher abrasion resistance.

6.
Materials (Basel) ; 17(16)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39203090

RESUMEN

Laser cladding provides advanced surface treatment capabilities for enhancing the properties of components. However, its effectiveness is often challenged by the formation of hot cracks during the cladding process. This study focuses on the formation mechanism and inhibition of hot cracks in a novel cobalt-based alloy (K688) coating applied to 304LN stainless steel via laser cladding. The results indicate that hot crack formation is influenced by liquid film stability, the stress concentration, and precipitation phases. Most hot cracks were found at 25°-45° high-angle grain boundaries (HAGBs) due to the high energy of these grain boundaries, which stabilize the liquid film. A flat-top beam, compared to a Gaussian beam, creates a melt pool with a lower temperature gradient and more mitigatory fluid flow, reducing thermal stresses within the coating and the fraction of crack-sensitive, high-angle grain boundaries (S-HAGBs). Finally, crack formation was significantly inhibited by utilizing a flat-top laser beam to optimize the process parameters. These findings provide a technical foundation for achieving high-quality laser cladding of dissimilar materials, offering insights into optimizing process parameters to prevent hot crack formation.

7.
Materials (Basel) ; 17(14)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39063884

RESUMEN

This study examines the effects of different addition levels of tungsten (W) content on the microstructure, corrosion resistance, wear resistance, microhardness, and phase composition of coatings made from FeCoCrNiAl high-entropy alloy (HEA) using the laser cladding technique. Using a preset powder method, FeCoCrNiAlWx (where x represents the molar fraction of W, x = 0.0, 0.2, 0.4, 0.6, 0.8) HEA coatings were cladded onto the surface of 45 steel. The different cladding materials were tested for dry friction by using a reciprocating friction and wear testing machine. Subsequently, the detailed analysis of the microstructure, phase composition, corrosion resistance, wear traces, and hardness characteristics were carried out using a scanning electron microscope (SEM), X-ray diffractometer (XRD), electrochemical workstation, and microhardness tester. The results reveal that as the W content increases, the macro-morphology of the FeCoCrNiAlWx HEA cladding coating deteriorates; the microstructure of the FeCoCrNiAlWx HEA cladding coating, composed of µ phase and face-centered cubic solid solution, undergoes an evolution process from dendritic crystals to cellular crystals. Notably, with the increase in W content, the average microhardness of the cladding coating shows a significant upward trend, with FeCoCrNiAlW0.8 reaching an average hardness of 756.83 HV0.2, which is 2.97 times higher than the 45 steel substrate. At the same time, the friction coefficient of the cladding coating gradually decreases, indicating enhanced wear resistance. Specifically, the friction coefficients of FeCoCrNiAlW0.6 and FeCoCrNiAlW0.8 are similar, approximately 0.527. The friction and wear mechanisms are mainly adhesive and abrasive wear. In a 3.5 wt.% NaCl solution, the increase in W content results in a positive shift in the corrosion potential of the cladding coating. The FeCoCrNiAlW0.8 exhibits a corrosion potential approximately 403 mV higher than that of FeCoCrNiAl. The corrosion current density significantly decreases from 5.43 × 10-6 A/cm2 to 5.26 × 10-9 A/cm2, which suggests a significant enhancement in the corrosion resistance of the cladding coating.

8.
Micromachines (Basel) ; 15(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39064430

RESUMEN

The morphology size of laser cladding is a crucial parameter that significantly impacts the quality and performance of the cladding layer. This study proposes a predictive model for the cladding morphology size based on the Least Squares Support Vector Regression (LSSVR) and the Crowned Porcupine Optimization (CPO) algorithm. Specifically, the proposed model takes three key parameters as inputs: laser power, scanning speed, and powder feeding rate, with the width and height of the cladding layer as outputs. To further enhance the predictive accuracy of the LSSVR model, a CPO-based optimization strategy is applied to adjust the penalty factor and kernel parameters. Consequently, the CPO-LSSVR model is established and evaluated against the LSSVR model and the Genetic Algorithm-optimized Backpropagation Neural Network (GA-BP) model in terms of relative error metrics. The experimental results demonstrate that the CPO-LSSVR model can achieve a significantly improved relative error of no more than 2.5%, indicating a substantial enhancement in predictive accuracy compared to other methods and showcasing its superior predictive performance. The high accuracy of the CPO-LSSVR model can effectively guide the selection of laser cladding process parameters and thereby enhance the quality and efficiency of the cladding process.

9.
Materials (Basel) ; 17(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38998180

RESUMEN

The article presents research results on the possibility of shaping the structure and properties of Co-Cr-W-C-Ti alloys (type Stellite 6) using laser cladding technology. Cobalt-based alloys are used in several industries because they are characterized by high erosion, abrasion, and corrosion resistance, retaining these properties at high temperatures. To further increase erosion resistance, it seems appropriate to reinforce material by in situ synthesis of hard phases. Among the transition metal carbides (TMCs), titanium carbide is one of the hardest and can have a positive effect on the extension of the lifetime of components made from cobalt-based alloys. In this article, concentration of C, W, and Ti due to the possibility of in situ synthesis of titanium carbides was subjected to detailed analysis. The provided research includes macrostructure and microstructure analysis, X-ray diffraction (XRD), microhardness, and penetrant tests. It was found that the optimal concentrations of Ti and C in the Co-Cr-W-C alloy allow the formation of titanium carbides, which significantly improves erosion resistance for low impact angles. Depending on the concentrations of titanium, carbon, and tungsten in the molten metal pool, it is possible to shape the alloy structure by influencing to morphology and size of the reinforcing phase in the form of the complex carbide (Ti,W)C.

10.
Materials (Basel) ; 17(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998207

RESUMEN

The cross-section of various substrate-deposit metal pairs obtained with a laser-assisted additive manufacturing process has been studied by observing the composition profile with energy-dispersive spectroscopy (EDS). The EDS composition profiles observed with a sufficiently high data acquisition time revealed that the composition profile is asymmetric. By scanning toward the growth direction, a sudden composition variation was observed, which was followed by a slow decay. The character of the composition profile was the same for a number of substrate-deposit pairs, and similar trends were found in various earlier publications as well. A mathematical model for the composition variation is suggested based on the assumption that a spontaneous homogenization process takes place in the intermixing (dilution) zone of the remelted top layer of the substrate. The equation obtained makes it possible to quantitatively describe the composition profile of each component that exhibits a concentration difference between the substrate and the deposit, provided that the mole fraction difference much exceeds the scattering of the data measured. The suggested model has also been applied successfully to composition profiles published in other works, hence exhibiting general relevance. Since the variation in some physical parameters (such as hardness) along the growth direction has been reported to follow the same pattern, it is assumed that the root cause in these cases may also be the composition variation.

11.
Sci Rep ; 14(1): 15911, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987571

RESUMEN

In order to develop a method for the production of crack-free cladding layers, we combined surface texturing technology with laser cladding, establishing a multi-field coupled numerical simulation model. A separate investigation was conducted into the temperature, stress, and fluid fields in laser cladding processes with and without texturing, seeking optimal cladding parameters, and conducted experiments. The results of the numerical simulations indicate that pre-set texturing effectively reduces the temperature gradient during the cladding process, thereby making the thermal cycle curve smoother. The residual stresses in the X, Y, and Z directions are reduced by 34.84%, 3.94%, and 50.22%, respectively. The introduction of texturing reduces the internal flow velocity of the melt pool, preventing the occurrence of a double vortex effect. Experimental results show that the residual stresses in the X, Y, and Z directions of the predefined textured cladding layer are reduced by approximately 41%, 8%, and 47%, respectively, compared to the non-textured cladding layer. This effectively improves the surface roughness and internal grain size of the cladding layer, with no significant defects at the metallurgical bonding positions, providing a reference for future improvements in cladding layer quality.

12.
Sci Rep ; 14(1): 11685, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778176

RESUMEN

The purpose of this study was to investigate the effect of Al content on Fe-Ni-Al coatings. A Fe-Ni-Al coating was prepared using a semiconductor laser, and the influence of the Al content on the microstructure and properties of the coating was examined. The microstructure of the coating was characterized using scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The coefficient of thermal expansion of the coating was measured using a static thermomechanical analyzer. The microhardness and wear performance of the coating were analyzed using a microhardness tester and a wear testing machine. The results were as follows. The addition of Al to the Fe-Ni ferroalloy powder resulted in the in situ formation of an AlNi/Fe-Ni laser cladding layer. When the Al content was low, the coating mainly consisted of γ-[Fe,Ni] austenite. As the Al content increased, the matrix phase structure of the cladding layer transformed into the α phase. Consequently, the Invar effect was gradually compromised, leading to the generation of defects in the coating. When the Al content was 4%, the coating performance improved while maintaining a low coefficient of thermal expansion. At this point, there were relatively few cracks in the cladding layer, and it exhibited the best wear resistance.

13.
Materials (Basel) ; 17(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38730923

RESUMEN

This study investigated how process parameters of laser cladding affect the microstructure and mechanical properties of WC-12Co composite coating for use as a protective layer of continuous caster rolls. WC-Co powders, WC-Ni powders, and Ni-Cr alloy powder with various wear resistance characteristics were evaluated in order to determine their applicability for use as cladding materials for continuous caster roll coating. The cladding process was conducted with various parameters, including laser powers, cladding speeds, and powder feeding rates, then the phases, microstructure, and micro-hardness of the cladding layer were analyzed in each specimen. Results indicate that, to increase the hardness of the cladding layer in WC-Co composite coating, the dilution of the cladding layer by dissolution of Fe from the substrate should be minimized, and the formation of the Fe-Co alloy phase should be prevented. The mechanical properties and wear resistance of each powder with the same process parameters were compared and analyzed. The microstructure and mechanical properties of the laser cladding layer depend not only on the process parameters, but also on the powder characteristics, such as WC particle size and the type of binder material. Additionally, depending on the degree of thermal decomposition of WC particles and evolution of W distribution within the cladding layer, the hardness of each powder can differ significantly, and the wear mechanism can change.

14.
Heliyon ; 10(9): e30176, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38765171

RESUMEN

This investigation aims to study the effect of laser cladding parameters on the microstructure of Stellite 6 on the X19CrMoNbVN11-1 stainless-steel substrate. First, Stellite 6 powder was coated on the X19CrMoNbVN11-1 substrate using the laser cladding method. The effect of laser cladding parameters (i.e., laser power, scanning speed, and powder feed rate) was studied on the microstructure of deposits. The secondary dendritic arm spacing was assessed, and the structural defects were studied (e.g., lack of bonding, porosity, and crack). The results revealed that the microstructure has changed from coating/substrate interface to coating surface, from plate-cellular to columnar and equiaxed dendrites. Also, an increase in the laser power increased the cellular structure in the coating/substrate interface and equiaxed dendrites in the coating surface. The cooling rate (G × R) increased by increasing the scanning and powder injection rates. The microstructure of the Stellite 6 was composed of cobalt solid-solution γFCC.

15.
Materials (Basel) ; 17(3)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38591470

RESUMEN

Laser cladding is one of the emerging additive manufacturing technologies and has been adopted in various industrial fields. In this study, the morphological characteristics of a single clad of Inconel 718 manufactured by coaxial laser cladding with high laser power from 4200 W to 5400 W, powder feeding rate from 25 g/min to 50 g/min, and cladding speed from 20 mm/s to 50 mm/s are studied. The cross-section of the melt pool is analyzed and classified by type into three types: shallow dilution, flat dilution, and fluctuating dilution. Nine parameters are designed to describe the morphological characteristics of the clad, and the corresponding linear regression models are developed to establish a quantitative relationship between the combined process parameters and morphological characteristics. The results indicate that the total area of the cross-section A, the clad area above the substrate Ac, the area of the molten substrate Am, the total height of the cross-section H, the height of the clad above the substrate hc, the penetration depth hm, the clad width W, the dilution ratio D, and the wetting angle θ are determined by complex coupling of energy input and mass accumulation, and they are proportional to PF0.4/V, P0.5F/V, P/F0.2/V0.4, P2F0.6/V, PF0.7/V, P2/F/V0.3, P/V0.8, P/FV0.2, and PF7/V0.8, respectively. The large linear regression coefficients and the analysis residuals indicate the high reliability of the statistical linear regression models. This work aims to provide a comprehensive understanding of the influence of the main processing parameters on the morphological characteristics of the clad, which is of great value in providing a reference and laying a basis for the practical application of laser cladding technology at a high deposition rate.

16.
Materials (Basel) ; 17(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612012

RESUMEN

Ni60-WC coatings with different WC contents on the bucket tooth substrates were pre- pared using laser cladding technology. Their abrasive wear properties were assessed using the dry sand rubber wheel test system. The substrate and the hard-facing layer were tested for comparison. The results showed that the hardness of the Ni60-WC coatings increased with the increase in WC content. The wear resistance of the bucket tooth substrate was greatly improved by hard-facing and laser cladding Ni60-WC coatings. The wear rate of the hard-facing layer was reduced to 1/6 of that of the tooth substrate. The wear rate of the laser cladding coatings with 20-40 wt.% WC was similar to that of the hard-facing layer. It is worth mentioning that the wear rate of the coatings with 60-80 wt.% WC was only 1/4 of that of the hard-facing layer. Micro-cutting with surface plastic deformation was the main wear mechanism of the substrate to form narrow and deep furrows. The wear mechanism of the hard-facing layer was mainly plastic deformation with a wide groove, and the surface cracks promoted the removal of the material. The removal of the binder phase caused by micro-cutting was the main wear mechanism of the laser cladding Ni60-WC coatings. However, the hard phase of WC hinders micro-cutting and plastic deformation, which improves the wear resistance of the coating.

17.
Materials (Basel) ; 17(5)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38473442

RESUMEN

The design of the resonant ultrasonic vibration-assisted laser cladding (R-UVALC) setup involved employing finite element analysis (FEA) to simulate the ultrasonic transducer, horn, and workpiece in a resonance state. The impact of R-UVALC on AlCrFeMnNi high-entropy alloys was assessed using various ultrasonic vibration amplitudes of 0, 5, 10, and 15 µm, with a constant frequency of 20 kHz. Ultrasonic vibrations reduced pores and cracks and increased the clad breadth, melt pool wetting angle, and laser-clad layer consistency. The columnar elongated grains in proximity to the substrate surface underwent a size reduction and transformed into grains with a more equiaxed shape with the utilization of ultrasonic vibrations at an amplitude of 5 µm. Laser cladding performed without ultrasonic vibrations yields two phases: face-centered cubic (FCC) and body-centered cubic (BCC). However, when the coating is exposed to ultrasonic vibrations with an amplitude of 5 µm, it forms a solitary body-centered cubic (BCC) phase. The microhardness tripled compared to the substrate, and the most significant microhardness value was achieved at 5 µm of ultrasonic vibration. The friction coefficient was assessed at an ambient temperature, revealing that an ultrasonic amplitude yields the lowest friction coefficient, demonstrating the excellent wear resistance properties of the coating. The analysis of the 3D surface profile of the wear indicates that the use of ultrasonic aid with a 5 µm amplitude leads to reduced depth of scars, and the primary wear mechanism observed is abrasive and oxidative wear with fewer grooves and debris. In addition, XPS analysis revealed the presence of metal components in an oxidized condition, suggesting that the wear process is oxidative in nature. Integrating the R-UVALC setup into a resonance state can significantly enhance the efficiency of the laser cladding process in the laser cladding field.

18.
Materials (Basel) ; 17(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38473600

RESUMEN

The hardness and wear resistance of the surface of TC4 titanium alloy, which is widely used in aerospace and other fields, need to be improved urgently. Considering the economy, environmental friendliness, and high efficiency, Si-reinforced Ti-based composite coatings were deposited on the TC4 surface by the high-speed wire-powder laser cladding method, which combines the paraxial feeding of TC4 wires with the coaxial feeding of Si powders. The microstructures and wear resistance of the coatings were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), Vickers hardness tester, and friction and wear tester. The results indicate that the primary composition of the coating consisted of α-Ti and Ti5Si3. The microstructure of the coating underwent a notable transformation process from dendritic to petal, bar, and block shapes as the powder feeding speed increased. The hardness of the composite coatings increased with the increasing Si powder feeding rate, and the average hardness of the composite coating was 909HV0.2 when the feeding rate reached 13.53 g/min. The enhancement of the microhardness of the coatings can be attributed primarily to the reinforcing effect of the second phase generated by Ti5Si3 in various forms within the coatings. As the powder feeding speed increased, the wear resistance initially improved before deteriorating. The optimal wear resistance of the coating was achieved at a powder feeding rate of 6.88 g/min (wear loss of 2.55 mg and friction coefficient of 0.12). The main wear mechanism for coatings was abrasive wear.

19.
Materials (Basel) ; 17(6)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38541419

RESUMEN

The initial melting quality of a high-speed laser cladding layer has an important impact on its post-treatment and practical application. In this study, based on the repair of hydraulic support columns of coal mining machines, the influence of high-speed laser cladding process parameters on the quality of Fe-Cr-Ni alloy coatings was investigated to realize the accurate prediction of coating quality. The Taguchi orthogonal method was used to design the L25(56) test. The prediction models of the relationship between the cladding process and the coating quality were established using the Random Forest (RF) and AdaBoost (Adaptive Boosting, AB) algorithms, respectively. Then, the prediction accuracy of the two models was compared, and the process parameter features were screened for importance evaluation. The results show that the AB prediction model is more accurate than the RF prediction model and more sensitive to abnormal data. The importance evaluation based on the AdaBoost model shows that the scanning speed has a great influence on the height and surface roughness of the coating. On the other hand, the overlap rate is the most important factor in controlling the dilution ratio and near-surface grain size of high-speed laser melting coatings. In addition, the micro-hardness of the coating and the thermal effect of the substrate can be effectively enhanced by adjusting the laser power and scanning speed. Finally, it was verified that the AB prediction model could accurately estimate the quality indexes of the coating with a prediction error less than 6%. The results show that it is feasible to predict the quality of high-speed laser cladding with the AB algorithm. It provides a basis for the adjustment of process parameters in the subsequent quality control process of cladding.

20.
Materials (Basel) ; 17(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38399161

RESUMEN

With the rapid development of the advanced manufacturing industry, equipment requirements are becoming increasingly stringent. Since metallic materials often present failure problems resulting from wear due to extreme service conditions, researchers have developed various methods to improve their properties. Laser shock peening (LSP) is a highly efficacious mechanical surface modification technique utilized to enhance the microstructure of the near-surface layer of metallic materials, which improves mechanical properties such as wear resistance and solves failure problems. In this work, we summarize the fundamental principles of LSP and laser-induced plasma shock waves, along with the development of this technique. In addition, exemplary cases of LSP treatment used for wear resistance improvement in metallic materials of various nature, including conventional metallic materials, laser additively manufactured parts, and laser cladding coatings, are outlined in detail. We further discuss the mechanism by which the microhardness enhancement, grain refinement, and beneficial residual stress are imparted to metallic materials by using LSP treatment, resulting in a significant improvement in wear resistance. This work serves as an important reference for researchers to further explore the fundamentals and the metallic material wear resistance enhancement mechanism of LSP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA