Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.045
Filtrar
1.
Heliyon ; 10(16): e36181, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253243

RESUMEN

Ionic Covalent Organic Frameworks are a special subgroup that has risen as promising materials for innovative applications. In parallel, some of the so-called Reticular Innovative Organic compounds (RIOs), which are ionic and non-ionic porous materials have been used with great versatility, for several purposes. In this work, the ionic dye-based RIO-55 was chosen to capture a series of lanthanides (Eu, Gd, Dy, and Tb) from water, observing their affinity with the lattice and the performance of the adsorbent. Thus, the higher adsorbed amount was referred to as Eu3+ (Qmax = 370 mg/g), as well as the best affinity (KL = 5x10-3), following the Langmuir model. The impregnated Eu3+@RIO-55 was used for chemical sensing, capturing dopant molecules (ephedrine and dopamine) from water, showing great performance, even after some reuse cycles. In addition, some initial fluorescence tests were performed using RIO-55 and Eu3+@RIO-55 to observe the spectrum before and after lanthanide impregnation.

2.
Chemistry ; : e202403224, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246101

RESUMEN

Triple-stranded helical lanthanide MOFs with CO2 adsorption properties were investigated. Lanthanide MOFs ([Eu0.1Tb0.9(hfa)3(dpa)]n) are composed of lanthanide luminophores (Eu(III) and/or Tb(III) ions), fluorinated antenna ligands (hfa: hexafluoroacetylacetonate), and polyamide-type linker ligands (dpa: 4-(diphenylphosphoryl)-N-(4-(diphenylphosphoryl)phenyl)benzamide). The cylindrical structure was characterized by single-crystal X-ray analysis, thermogravimetric analysis, and gas adsorption measurements. The inner surfaces of the cylindrical channels were covered with the fluorine atoms of the hfa ligands. The emission intensity ratio (IEu / ITb) in [Eu0.1Tb0.9(hfa)3(dpa)]n is affected by the CO2 gas adsorption behavior. The change in IEu / ITb value was caused by the intermolecular interactions between the CO2 gas molecules and the fluorinated ligands, resulting in an electronic structural change of the lowest triplet excited state in the photosensitized hfa ligands.

3.
Microb Cell Fact ; 23(1): 248, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267051

RESUMEN

BACKGROUND: Rare-earth sulfide nanoparticles (NPs) could harness the optical and magnetic features of rare-earth ions for applications in nanotechnology. However, reports of their synthesis are scarce and typically require high temperatures and long synthesis times. RESULTS: Here we present a biosynthesis of terbium sulfide (TbS) NPs using microorganisms, identifying conditions that allow Escherichia coli to extracellularly produce TbS NPs in aqueous media at 37 °C by controlling cellular sulfur metabolism to produce a high concentration of sulfide ions. Electron microscopy revealed ultrasmall spherical NPs with a mean diameter of 4.1 ± 1.3 nm. Electron diffraction indicated a high degree of crystallinity, while elemental mapping confirmed colocalization of terbium and sulfur. The NPs exhibit characteristic absorbance and luminescence of terbium, with downshifting quantum yield (QY) reaching 28.3% and an emission lifetime of ~ 2 ms. CONCLUSIONS: This high QY and long emission lifetime is unusual in a neat rare-earth compound; it is typically associated with rare-earth ions doped into another crystalline lattice to avoid non-radiative cross relaxation. This suggests a reduced role of nonradiative processes in these terbium-based NPs. This is, to our knowledge, the first report revealing the advantage of biosynthesis over chemical synthesis for Rare Earth Element (REE) based NPs, opening routes to new REE-based nanocrystals.


Asunto(s)
Escherichia coli , Metales de Tierras Raras , Sulfuros , Terbio , Terbio/química , Terbio/metabolismo , Escherichia coli/metabolismo , Sulfuros/metabolismo , Sulfuros/química , Metales de Tierras Raras/metabolismo , Metales de Tierras Raras/química , Nanopartículas/química , Luminiscencia , Tecnología Química Verde/métodos
4.
mSphere ; : e0068524, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291981

RESUMEN

Pseudomonas alloputida KT2440 is a ubiquitous, soil-dwelling bacterium that metabolizes recalcitrant and volatile carbon sources. The latter is utilized by two redundant, Ca- and lanthanide (Ln)-dependent, pyrroloquinoline quinone-dependent alcohol dehydrogenases (PQQ ADH), PedE and PedH, whose expression is regulated by Ln availability. P. alloputida KT2440 is the best-studied non-methylotroph in the context of Ln-utilization. Combined with microfluidic cultivation and single-cell elemental analysis, we studied the impact of light and heavy Ln on transcriptome-wide gene expression when growing P. alloputida KT2440 with 2-phenylethanol as the carbon and energy source. Light Ln (La, Ce, and Nd) and a mixture of light and heavy Ln (La, Ce, Nd, Dy, Ho, Er, and Yb) had a positive effect on growth, whereas supplementation with heavy Ln (Dy, Ho, Er, and Yb) exerted fitness costs. These were likely a consequence of mismetallation and non-utilizable Ln interfering with Ln sensing and signaling. The measured amounts of cell-associated Ln varied between elements. Gene expression analysis suggested that the Ln sensing and signaling machinery, the two-component system PedS2R2 and PedH, responds differently to (non-)utilizable Ln. We expanded our understanding of the lanthanide (Ln) switch in P. alloputida KT2440, demonstrating that it adjusts the levels of pedE and pedH transcripts based on the availability of Ln. We propose that the usability of Ln influences the bacterium's response to different Ln elements.IMPORTANCEThe Ln switch, the inverse regulation of Ca- and Ln-dependent PQQ ADH in response to Ln availability in organisms featuring both, is central to our understanding of Ln utilization. Although the preference of bacteria for light Ln is well known, the effect of different Ln, light and heavy, on growth and gene expression has rarely been studied. We provide evidence for a fine-tuning mechanism of Ca- and Ln-dependent PQQ ADH in P. alloputida KT2440 on the transcriptome level. The response to (non-)utilizable Ln differs depending on the element. Ln commonly co-occur in nature. Our findings underline that Ln-utilizing microbes must be able to discriminate between Ln to use them effectively. Considering the prevalence of Ln-dependent proteins in many microbial taxa, more work addressing Ln sensing and signaling is needed. Ln availability likely necessitates different adaptations regarding Ln utilization.

5.
ACS Sens ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39241167

RESUMEN

The detection and monitoring of Pseudomonas aeruginosa and its virulence factors, such as the LasB protease, are crucial for managing bacterial infections. Traditional fluorescent sensors for this protease face limitations in bacterial cultures due to interference from pigments like pyoverdine secreted by this opportunistic pathogen. We report here a Ln(III)-metallopeptide that combines a DO3A-Ln(III) complex and a sensitizing unit via a short peptide sequence as a simple, tunable, and selective probe for detecting P. aeruginosa's LasB. The probe's luminescence switches off in the presence of P. aeruginosa's secretome due to LasB cleavage but remains stable in other bacterial environments, such as non-LasB-secreting P. aeruginosa strains or E. coli cultures. It also resists degradation by other proteases, like human leukocyte elastase and trypsin, and remains stable in the presence of bioanalytes related to P. aeruginosa infections, such as glutathione, H2O2, and pyocyanin, and in complex media like FBS. Importantly, time-gated experiments completely remove the background fluorescence of P. aeruginosa pigments, thus demonstrating the potential of the developed Ln(III)-metallopeptide for real-time monitoring of LasB activity in bacterial cultures.

6.
Chemistry ; : e202402363, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105655

RESUMEN

In this work, nine new rare-earth metal-organic frameworks (RE-MOFs, where RE = Lu(III), Yb(III), Tm(III), Er(III), Ho(III), Dy(III), Tb(III), Gd(III), and Eu(III)) isostructural to Zr-MOF-808 are synthesized, characterized, and studied regarding their photophysical properties. Materials with high crystallinity and surface area are obtained from a reproducible synthetic procedure that involves the use of two fluorinated modulators. At the same time, these new RE-MOFs display tunable photoluminescent properties due to efficient linker-to-metal energy transfer promoted by the antenna effect, resulting in a series of RE-MOFs displaying lanthanoid-based emissions spanning the visible and near-infrared regions of the electromagnetic spectrum.

7.
Foods ; 13(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39200562

RESUMEN

The Mandorla di Avola is recognized all over the world as one of the best almond varieties. It is cultivated in a small area inside the provinces of Siracusa and Ragusa (Sicily, southern Italy). It is used in traditional Sicilian cuisine for both salty and sweet foods and of course in artisan pastry, apart from being consumed as a fruit. Due to its extraordinary organoleptic and beneficial features, the Mandorla di Avola is frequently counterfeit with almond varieties of lower quality coming from other countries. While its nutraceutical features have been studied, the possibility of authenticating it with respect to other varieties has not been explored. In this work, we used microelements determined with ICP-OES and ICP-MS as chemical descriptors to distinguish samples of Mandorla di Avola almonds from almonds coming from California and Spain, which are usually employed as substitutes in pastry. Among the different elements determined, Mn and P were found to be the best descriptors for authentication.

8.
Small Methods ; : e2400443, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39188200

RESUMEN

Biomolecular aggregates ensure the optimum concentration and proximity required for biochemical processes to take place. Synthetic aggregating systems are becoming increasingly essential to study/mimic dynamic condensates in nature. Herein the ratiometric DNA aggregation of self-assembled DNA constructs using lanthanide salts is reported. In addition, the aggregation is shown to be reversed by the addition of specific lanthanide-binding ligands. The aggregate formation is confirmed by dynamic light scattering experiment, electrophoretic mobility shift assay, and field emission scanning electron microscope. This programmed DNA aggregation and its reversion are applied to evaluating the lanthanide-DNA and lanthanide-ligand binding constants, respectively. To achieve this, Forster resonance energy transfer (FRET) pair dyes at the 3' or 5' end of the DNA strands are strategically placed that generate unique fluorescence patterns upon interaction with the DNA constructs and different triggers such as lanthanides/ligands/monovalent cations, thus enabling the tracking of various states of binding. It also demonstrates a "fast method" to form and stabilize G-quadruplex (GQ) using lanthanides which complements the existing slow formation of GQs with Na+/K+ ions. The formation of GQ by lanthanides is corroborated by FRET, circular dichroism (CD), and enzyme linked immunosorbent assay (ELISA) experiments. These DNA constructs, formed by lanthanides, have shown resistance to cleavage by DNase I, and distinctive binding to Protoporphyrin dyes and Thioflavin T.

9.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124926, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39116593

RESUMEN

Lanthanide photoluminescence (PL) emission has attracted much attention for technological and bioimaging applications because of its particularly interesting features, such as narrow emission bands and very long PL lifetimes. However, this emission process necessitates a preceding step of energy transfer from suitable antennas. While biocompatible applications require luminophores that are stable in aqueous media, most lanthanide-based emitters are quenched by water molecules. Previously, we described a small luminophore, 8-methoxy-2-oxo-1,2,4,5-tetrahydrocyclopenta[de]quinoline-3-phosphonic acid (PAnt), which is capable of dynamically coordinating with Tb(III) and Eu(III), and its exchangeable behavior improved their performance in PL lifetime imaging microscopy (PLIM) compared with conventional lanthanide cryptate imaging agents. Herein, we report an in-depth photophysical and time-dependent density functional theory (TD-DFT) computational study that reveals different sensitization mechanisms for Eu(III) and Tb(III) in stable complexes formed in water. Understanding this unique behavior in aqueous media enables the exploration of different applications in bioimaging or novel emitting materials.

10.
Molecules ; 29(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39202994

RESUMEN

Eu/Tb metal-organic frameworks (Eu/Tb-MOFs), exhibiting Eu3+ and Tb3+ emissions, stand out as some of the most fascinating luminescent thermometers. As the relative thermal sensitivity model is limited to its lack of precision for fitting ratio of Eu3+ and Tb3+ emissions, accurately predicting the sensing performance of Eu/Tb-MOFs remains a significant challenge. Herein, we report a series of luminescent Eu/Tb-MOF thermometers, EuxTb1-xL, with excellent thermal sensitivity around physiological levels, achieved through the tuning energy transfer from ligands to Eu3+ and Tb3+ and between the Ln ions. It was found that the singlet lowest-energy excited state (S1) of the ligand and the higher triplet energy level (Tn) are crucial in the energy transfer processes of ligand→Tb3+ and ligand→Eu3+. This enables EuxTb1-xL to serve as an effective platform for exploring the impact of these energy transfer processes on the temperature-sensing properties of luminescent Eu/Tb-MOF thermometers. The relative thermal sensitivity is comparable to that of dual-center MOF-based luminescent thermometers operating at physiological levels. This study provides valuable insights into the design of new Eu/Tb thermometers and the accurate prediction of their sensing performance.

11.
Molecules ; 29(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39203003

RESUMEN

Sandwich d/f heterometallic complexes [(Ln(hfac)3)2M(acac)3] (Ln = La, Pr, Sm, Dy and M = Co; Ln = La and M = Ru) were prepared in strictly anhydrous conditions reacting the formally unsaturated fragment [Ln(hfac)3] and [M(acac)3] in a 2-to-1 molar ratio. These heterometallic complexes are highly sensitive to moisture. Spectroscopic observation revealed that on hydrolysis, these compounds yield dinuclear heterometallic compounds [Ln(hfac)3M(acac)3], prepared here for comparison purposes only. Quantum mechanical calculations supported, on the one hand, the hypothesis on the geometrical arrangement obtained from ATR-IR and NMR spectra and, on the other hand, helped to rationalize the spontaneous hydrolysis reaction.

12.
Angew Chem Int Ed Engl ; : e202409789, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012726

RESUMEN

The imidophosphorane ligand, [NPtBu3]- (tBu = tert-butyl), enables isolation of a pseudo-tetrahedral, tetravalent praseodymium complex, [Pr4+(NPtBu3)4] (1-Pr), which is characterized by a suite of physical characterization methods including single-crystal X-ray diffraction, electron paramagnetic resonance, and L3-edge X-ray near-edge spectroscopies. Variable-temperature direct-current magnetic susceptibility data, supported by multiconfigurational quantum chemical calculations, demonstrate that the electronic structure diverges from the isoelectronic Ce3+ analogue, driven by increased crystal field. The four-coordinate environment around Pr4+ in 1-Pr, which is unparalleled in reported extended solid systems, provides a unique opportunity to study the interplay between crystal field splitting and spin-orbit coupling in a molecular tetravalent lanthanide within a pseudo-tetrahedral coordination geometry.

13.
Sci Total Environ ; 949: 175063, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39067591

RESUMEN

Limited knowledge exists regarding the potential risks associated with anthropogenic release of rare earth elements (REEs) in the environment. This study aimed to investigate REE signatures in the watershed Poyang Lake, the largest freshwater lake in China. Samples of surface water, wastewater, and groundwater were collected from five rivers discharging into the lake. Results revealed wastewater from wastewater treatment plants contained total REE concentrations from 231 to 904 µg/L, exceeding those found in surface water (0.4 to 1.3 µg/L) and groundwater (0.5 to 416 µg/L). Samples with elevated REE were found in Ca-Mg-Cl/SO4 type waters and exhibited an 18OD deviation from local meteoric water line. Wastewater exhibited a higher positive Gd anomaly compared to surface water and groundwater, attributed to anthropogenic input of Gd (Gdanth). The determined Gdanth concentration ranged from 0.04 to 0.21 µg/L, and from 0.06 to 0.37 µg/L, accounting for 4 % to 21 % and 49 % to 84 % of total Gd concentrations in groundwater and surface water, respectively. Gdanth concentration in wastewater (0.19 to 0.43 µg/L) remained constant in effluent after wastewater treatment. Surface water displayed relatively complex normalized REE patterns influenced by anthropogenic activities and natural processes (weathering and complexation), while groundwater exhibited heavy REEs enrichment, due to carbonate solution complexation. Additionally, Gdanth concentration showed a positive correlation with ΣREE, Pb, Ni, and Co concentrations in groundwater, indicating a good pollution tracing potential. Health risk assessment using the hazard quotient (HQ) suggested higher HQGd values in groundwater compared to surface water. Residents in the eastern part of Poyang Lake were found to face higher risks associated with Gd in groundwater compared to the western part, with infants and children at greater risk than adult males and females. These findings offer valuable insights into environmental behavior and health risks of REEs in aquatic systems impacted by human activities.

14.
Proc Natl Acad Sci U S A ; 121(32): e2322096121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39078674

RESUMEN

Many bacteria secrete metallophores, low-molecular-weight organic compounds that bind ions with high selectivity and affinity, in order to access essential metals from the environment. Previous work has elucidated the structures and biosynthetic machinery of metallophores specific for iron, zinc, nickel, molybdenum, and copper. No physiologically relevant lanthanide-binding metallophore has been discovered despite the knowledge that lanthanide metals (Ln) have been revealed to be essential cofactors for certain alcohol dehydrogenases across a diverse range of phyla. Here, we report the biosynthetic machinery, the structure, and the physiological relevance of a lanthanophore, methylolanthanin. The structure of methylolanthanin exhibits a unique 4-hydroxybenzoate moiety which has not previously been described in other metallophores. We find that production of methylolanthanin is required for normal levels of Ln accumulation in the methylotrophic bacterium Methylobacterium extorquens AM1, while overexpression of the molecule greatly increases bioaccumulation and adsorption. Our results provide a clearer understanding of how Ln-utilizing bacteria sense, scavenge, and store Ln; essential processes in the environment where Ln are poorly bioavailable. More broadly, the identification of this lanthanophore opens doors for study of how biosynthetic gene clusters are repurposed for additional functions and the complex relationship between metal homeostasis and fitness.


Asunto(s)
Elementos de la Serie de los Lantanoides , Methylobacterium extorquens , Elementos de la Serie de los Lantanoides/metabolismo , Elementos de la Serie de los Lantanoides/química , Methylobacterium extorquens/metabolismo , Methylobacterium extorquens/genética
15.
Mar Pollut Bull ; 206: 116694, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002213

RESUMEN

This study explored the alteration of naturally occurring radioactive materials (NORMs: 226Ra (≈238U), 232Th, 40K) in an anthropogenically disrupted urban river-basin (Turag, Bangladesh) in terms of constitutional substances (Sc, Ti, V, Fe, La, Ce, Sm, Eu, Tb, Dy, Ho, Yb, Lu, Hf, Ta, W, Th, U) of heavy-minerals. Average activity concentrations of 226Ra (≈238U), 232Th, and 40K were 41.5 ± 12.9, 72.1 ± 27.1, and 639 ± 100 Bqkg-1, respectively which were relatively higher compared to crustal origin. ∑REEs, Ta, W, Th, and U were ~2 times higher compared to crustal values with Ce and Eu-anomalies. APCS-MLR and PMF receptor models were used to determine the various anthropogenic and/or geogenic sources of NORMs and elements. Layer-wise variations of NORMs and elements were observed to trace the response of sedimentary processes towards the incoming pollution load. Presence of REEs indicates moderate degree of ecological risk to aquatic biota. However, carcinogenic risk (3.84 × 10-4 Sv-1) were significantly higher than threshold limit.


Asunto(s)
Monitoreo de Radiación , Ríos , Ríos/química , Medición de Riesgo , Bangladesh , Contaminantes Radiactivos del Agua/análisis , Torio/análisis , Minerales/análisis , Radioisótopos de Potasio/análisis , Radio (Elemento)
16.
Nanomaterials (Basel) ; 14(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38869596

RESUMEN

A new series of [Fe3-xLnx]O4 nanoparticles, with Ln = Gd; Dy; Lu and x = 0.05; 0.1; 0.15, was synthesized using the coprecipitation method. Analyses by X-ray diffraction (XRD), Rietveld refinement, and high-resolution transmission electron microscopy (HRTEM) indicate that all phases crystallized in space group Fd3¯m, characteristic of spinels. The XRD patterns, HRTEM, scanning electron microscopy analysis (SEM-EDS), and Raman spectra showed single phases. Transmission electron microscopy (TEM), Rietveld analysis, and Scherrer's calculations confirm that these materials are nanoparticles with sizes in the range of ~6 nm to ~13 nm. Magnetic measurements reveal that the saturation magnetization (Ms) of the as-prepared ferrites increases with lanthanide chemical substitution (x), while the coercivity (Hc) has low values. The Raman analysis confirms that the compounds are ferrites and the Ms behavior can be explained by the relationship between the areas of the signals. The magnetic measurements indicate superparamagnetic behavior. The blocking temperatures (TB) were estimated from ZFC-FC measurements, and the use of the Néel equation enabled the magnetic anisotropy to be estimated.

17.
Chemphyschem ; : e202400280, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38887965

RESUMEN

Coordination complexes of rare-earth ions (REI) show optical transitions with narrow linewidths enabling the creation of coherent light-matter interfaces for quantum information processing (QIP) applications. Among the REI-based complexes, Eu(III) complexes showing the 5D0→7F0 transition are of interest for QIP applications due to the narrow linewidths associated with the transition. Herein, we report on the synthesis, structure, and optical properties of a novel Eu(III) complex and its Gd(III) analogue composed of 2,9-bis(pyrazol-1-yl)-1,10-phenanthroline (dpphen) and three nitrate (NO3) ligands. The Eu(III) complex-[Eu(dpphen)(NO3)3]-showed sensitized metal-centred emission (5D0→7FJ; J=0,1,2,3, 4, 5, or 6) in the visible region, upon irradiation of the ligand-centred band at 369 nm, with the 5D0→7F0 transition centred at 580.9 nm. Spectral hole-burning (SHB) studies of the complex with stoichiometric Eu(III) concentration revealed a narrow homogeneous linewidth (Γh) of 1.55 MHz corresponding to a 0.205 µs long optical coherence lifetime (T2opt). Remarkably, long nuclear spin lifetimes (T1spin) of up to 41 s have been observed for the complex. The narrow optical linewidths and long T1spin lifetimes obtained for the Eu(III) complex showcase the utility of Eu(III) complexes as tuneable, following molecular engineering principles, coherent light-matter interfaces for QIP applications.

18.
J Chromatogr A ; 1729: 465033, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38852269

RESUMEN

Efficient rare earth element (REE) separations are becoming increasingly important to technologies ranging from renewable energy and high-performance magnets to applied radioisotope separations. These separations are made challenging by the extremely similar chemical and physical characteristics of the individual elements, which almost always occupy the 3+ oxidation state under ambient conditions. Herein, we discuss the development of a novel REE separation aimed at obtaining purified samples of neodymium (Nd) on a multi-milligram scale using high-speed counter-current chromatography (HSCCC). The method takes advantage of the subtle differences in ionic radii between neighboring REEs to tune elution rates in dilute acid through implementation of the di-(2-ethylhexyl)phosphoric acid (HDEHP)-infused stationary phase (SP) of the column. A La/Ce/Nd/Sm separation was demonstrated at a significantly higher metal loading than previously accomplished by HSCCC (15 mg, RNd/REE > 0.85), while the Pr/Nd separation was achieved at lower metal loadings (0.3 mg, RNd/Pr = 0.75 - 0.83). The challenges associated with scaling REE separations via HSCCC are presented and discussed within.


Asunto(s)
Distribución en Contracorriente , Neodimio , Distribución en Contracorriente/métodos , Neodimio/química , Neodimio/aislamiento & purificación , Organofosfatos
19.
Angew Chem Int Ed Engl ; 63(30): e202401683, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38719735

RESUMEN

Lanthanide nanoparticle (LnNP) scintillators exhibit huge potential in achieving radionuclide-activated luminescence (radioluminescence, RL). However, their structure-activity relationship remains largely unexplored. Herein, progressive optimization of LnNP scintillators is presented to unveil their structure-dependent RL property and enhance their RL output efficiency. Benefiting from the favorable host matrix and the luminescence-protective effect of core-shell engineering, NaGdF4 : 15 %Eu@NaLuF4 nanoparticle scintillators with tailored structures emerged as the top candidates. Living imaging experiments based on optimal LnNP scintillators validated the feasibility of laser-free continuous RL activated by clinical radiopharmaceuticals for tumor multiplex visualization. This research provides unprecedented insights into the rational design of LnNP scintillators, which would enable efficient energy conversion from Cerenkov luminescence, γ-radiation, and ß-electrons into visible photon signals, thus establishing a robust nanotechnology-aided approach for tumor-directed radio-phototheranostics.

20.
Chemistry ; 30(38): e202400900, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38738452

RESUMEN

Crystallophores are lanthanide complexes that have demonstrated outstanding induction of crystallization for various proteins. This article explores the effect of tailored modifications of the crystallophore first generation and their impact on the nucleating properties and protein crystal structures. Through high-throughput crystallization experiments and dataset analysis, we evaluated the effectiveness of these variants, in comparison to the first crystallophore generation G1. In particular, the V1 variant, featuring a propanol pendant arm, demonstrated the ability to produce new crystallization conditions for the proteins tested (hen-egg white lysozyme, proteinase K and thaumatin). Structural analysis performed in the case of hen egg-white lysozyme along with Molecular Dynamics simulations, highlights V1's unique behavior, taking advantage of the flexibility of its propanol arm to explore different protein surfaces and form versatile supramolecular interactions.


Asunto(s)
Simulación de Dinámica Molecular , Muramidasa , Muramidasa/química , Muramidasa/metabolismo , Endopeptidasa K/química , Endopeptidasa K/metabolismo , Elementos de la Serie de los Lantanoides/química , Cristalización , Animales , Cristalografía por Rayos X , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Pollos , Proteínas/química , Proteínas/metabolismo , Complejos de Coordinación/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA