Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Microbiol ; 23(1): 68, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918804

RESUMEN

At particular stages during their life cycles, fungi use multiple strategies to form specialized structures to survive unfavorable environmental conditions. These strategies encompass sporulation, as well as cell-wall melanization, multicellular tissue formation or even dimorphism. The resulting structures are not only used to disperse to other environments, but also to survive long periods of time awaiting favorable growth conditions. As a result, these specialized fungal structures are part of the microbial seed bank, which is known to influence the microbial community composition and contribute to the maintenance of diversity. Despite the importance of the microbial seed bank in the environment, methods to study the diversity of fungal structures with improved resistance only target spores dispersing in the air, omitting the high diversity of these structures in terms of morphology and environmental distribution. In this study, we applied a separation method based on cell lysis to enrich lysis-resistant fungal structures (for instance, spores, sclerotia, melanized yeast) to obtain a proxy of the composition of the fungal seed bank. This approach was first evaluated in-vitro in selected species. The results obtained showed that DNA from fungal spores and from yeast was only obtained after the application of the enrichment method, while mycelium was always lysed. After validation, we compared the diversity of the total and lysis-resistant fractions in the polyextreme environment of the Salar de Huasco, a high-altitude athalassohaline wetland in the Chilean Altiplano. Environmental samples were collected from the salt flat and from microbial mats in small surrounding ponds. Both the lake sediments and microbial mats were dominated by Ascomycota and Basidiomycota, however, the diversity and composition of each environment differed at lower taxonomic ranks. Members of the phylum Chytridiomycota were enriched in the lysis-resistant fraction, while members of the phylum Rozellomycota were never detected in this fraction. Moreover, we show that the community composition of the lysis-resistant fraction reflects the diversity of life cycles and survival strategies developed by fungi in the environment. To the best of our knowledge this is the first time that the fungal diversity is explored in the Salar de Huasco. In addition, the method presented here provides a simple and culture independent approach to assess the diversity of fungal lysis-resistant cells in the environment.


Asunto(s)
ADN de Hongos , Hongos , Sedimentos Geológicos , Micobioma , Esporas Fúngicas , Ascomicetos/genética , Ascomicetos/fisiología , Basidiomycota/genética , Basidiomycota/fisiología , Chile , Hongos/genética , Hongos/fisiología , Sedimentos Geológicos/microbiología , Lagos/microbiología , Microbiota/fisiología , Micelio/genética , Micelio/aislamiento & purificación , Micelio/fisiología , Micobioma/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Esporas Fúngicas/genética , Esporas Fúngicas/aislamiento & purificación , Esporas Fúngicas/fisiología , Humedales , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , ADN de Hongos/fisiología
2.
Microb Ecol ; 86(3): 1513-1533, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36752910

RESUMEN

Lake Villarrica, one of Chile's main freshwater water bodies, was recently declared a nutrient-saturated lake due to increased phosphorus (P) and nitrogen (N) levels. Although a decontamination plan based on environmental parameters is being established, it does not consider microbial parameters. Here, we conducted high-throughput DNA sequencing and quantitative polymerase chain reaction (qPCR) analyses to reveal the structure and functional properties of bacterial communities in surface sediments collected from sites with contrasting anthropogenic pressures in Lake Villarrica. Alpha diversity revealed an elevated bacterial richness and diversity in the more anthropogenized sediments. The phylum Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria dominated the community. The principal coordinate analysis (PCoA) and redundancy analysis (RDA) showed significant differences in bacterial communities of sampling sites. Predicted functional analysis showed that N cycling functions (e.g., nitrification and denitrification) were significant. The microbial co-occurrence networks analysis suggested Chitinophagaceae, Caldilineaceae, Planctomycetaceae, and Phycisphaerae families as keystone taxa. Bacterial functional genes related to P (phoC, phoD, and phoX) and N (nifH and nosZ) cycling were detected in all samples by qPCR. In addition, an RDA related to N and P cycling revealed that physicochemical properties and functional genes were positively correlated with several nitrite-oxidizing, ammonia-oxidizing, and N-fixing bacterial genera. Finally, denitrifying gene (nosZ) was the most significant factor influencing the topological characteristics of co-occurrence networks and bacterial interactions. Our results represent one of a few approaches to elucidate the structure and role of bacterial communities in Chilean lake sediments, which might be helpful in conservation and decontamination plans.


Asunto(s)
Bacterias , Lagos , Humanos , Lagos/microbiología , Chile , Bacterias/genética , Proteobacteria/genética , Genes Bacterianos , Bacteroidetes/genética , Sedimentos Geológicos/microbiología
3.
J Environ Manage ; 320: 115906, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36056497

RESUMEN

Phosphorus (P) cycling by microbial activity is highly relevant in the eutrophication of lakes. In this context, the contents of organic (Po) and inorganic (Pi) phosphorus, the activity of acid (ACP) and alkaline (ALP) phosphomonoesterase (Pase), and the abundances of bacterial Pase genes (phoD, phoC, and phoX) were studied in sediments from Budi Lake, a eutrophic coastal brackish water lake in Chile. Our results showed spatiotemporal variations in P fractions, Pase activities, and Pase gene abundances. In general, our results showed higher contents of Pi (110-144 mg kg-1), Po (512-576 mg kg-1), and total P (647-721 mg kg-1) in sediments from the more anthropogenized sampling sites in summer compared with those values of Pi (86-127 mg kg-1), Po (363-491 mg kg-1) and total P (449-618 mg kg-1) in less anthropogenized sampling sites in winter. In concordance, sediments showed higher Pase activities (µg nitrophenyl phosphate g-1 h-1) in sediments from the more anthropogenized sampling sites (9.7-22.7 for ACP and 5.9 to 9.6 for ALP) compared with those observed in less anthropogenized sampling sites in winter (4.2-12.9 for ACP and 0.3 to 6.7 for ALP). Higher abundances (gene copy g-1 sediment) of phoC (8.5-19 × 108), phoD (9.2-47 × 106), and phoX (8.5-26 × 106) genes were also found in sediments from the more anthropogenized sampling sites in summer compared with those values of phoC (0.1-1.1 × 108), phoD (1.4-2.4 × 106) and phoX (0.7-1.2 × 106) genes in the less anthropogenized sites in winter. Our results also showed a positive correlation between P contents, Pase activities, and abundances of bacterial Pase genes, independent of seasonality. The present study provided information on the microbial activity involved in P cycling in sediments of Budi Lake, which may be used in further research as indicators for the monitoring of eutrophication of lakes.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , Chile , China , Monitoreo del Ambiente/métodos , Eutrofización , Sedimentos Geológicos , Monoéster Fosfórico Hidrolasas , Fósforo/análisis , Aguas Salinas , Contaminantes Químicos del Agua/análisis
4.
Environ Sci Pollut Res Int ; 28(13): 16227-16243, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33280061

RESUMEN

Historical records of trace elements in lake sediments provide source-to-sink information about potentially toxic pollutants across space and time. We investigated two lakes located at different elevations in the Ecuadorian Andes to understand how trace element fluxes are related to (i) geology, (ii) erosion in the watersheds, and (iii) local point sources and atmospheric loads. In remote Lake Fondococha (4150 m a.s.l.), total Hg fluxes stay constant between ca. 1760 and 1950 and show an approximately 4.4-fold increase between pre-1950 and post-1950 values. The post-1950 increase in fluxes of other trace elements (V, Cr, Co, Ni, Cu, Zn, As, Cd, and Pb) is lower (2.1-3.0-fold) than for Hg. Mostly lithogenic sources and enhanced soil erosion contribute to their post-1950 increase (lithogenic contribution: > 85%, Hg: ~ 58%). Average post-1950 Hg fluxes are approximately 4.3 times higher in peri-urban Lake Llaviucu (3150 m a.s.l.) than in the remote Lake Fondococha. Post-1950 fluxes of the other trace elements showed larger differences between Lakes Fondococha and Llaviucu (5.2 < 25-29.5-fold increase; Ni < Pb-Cd). The comparison of the post-1950 average trace element fluxes that are derived from point and airborne sources revealed 5-687 (Hg-Pb) times higher values in Lake Llaviucu than in Lake Fondococha suggesting that Lake Llaviucu's proximity to the city of Cuenca strongly influences its deposition record (industrial emissions, traffic, caged fishery). Both lakes responded with temporary drops in trace element accumulations to park regulations in the 1970s and 1990s, but show again increasing trends in recent times, most likely caused by increase in vehicular traffic and openings of copper and gold mines around Cajas National Park.


Asunto(s)
Mercurio , Metales Pesados , Oligoelementos , Contaminantes Químicos del Agua , Ciudades , Ecuador , Monitoreo del Ambiente , Sedimentos Geológicos , Lagos , Metales Pesados/análisis , Parques Recreativos , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis
5.
Environ Sci Pollut Res Int ; 25(5): 4596-4606, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29192400

RESUMEN

Mercury concentrations in the environment tend to decrease in recent years due to environmental restrictions. Lakes store mercury in their sediments, making them potential secondary contamination sources. In South America, the occurrence of mercury in lake systems has been associated mainly with volcanic emissions and only few records anthropogenic contamination in the pre-Hispanic period. The objective of this research was to study historical anthropogenic mercury concentration in two lakes in Central Chile (La Señoraza and Pillo), in order to establish background mercury levels and their variations from preindustrial to modern periods. Different background levels and mercury concentrations were found in each lake, with significantly higher concentrations in Lake La Señoraza during the last 150 years. Mining-related activities during the nineteenth century could have a negligible influence on mercury concentrations. Later on, the use of coal railroads and subsequent employment of mercury in the cellulose industry were associated with three- and fourfold increases in mercury concentration over the nineteenth century background levels, which decrease once these activities ceased. However, in the case of Lake Pillo, an important increase in mercury concentration can be observed between 1990 and the early twenty-first century, which could be related to a higher watershed/lake area ratio, extensive agriculture, and volcanic emission, being the latter that could have contributed with mercury to both systems. Nevertheless, sedimentological characteristics in Lake Pillo can be favorable to retain mercury in this aquatic system up to the present day.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Lagos/química , Mercurio/análisis , Contaminantes Químicos del Agua/análisis , Chile , Monitoreo del Ambiente/historia , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Industrias/historia , Minería/historia , Urbanización
6.
Environ Pollut ; 223: 685-694, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28196721

RESUMEN

At the beginning of the 21st century, digital imaging technology replaced the traditional silver-halide film photography which had implications in Ag contamination. Lake Nahuel Huapi is a popular Patagonia tourist destination impacted by municipal silver (Ag) contamination from photographic processing facilities since 1990's. Silver concentrations in a dated sediment core from the lake bottom showed a 10-fold increase above background levels in the second half of the 20th century, then a decrease. This trend corresponds well with published annual global photography industry demand for Ag, which clearly shows the evolution and replacement of the traditional silver-halide film photography by digital imaging technology. There were significant decreases in Ag concentrations in sediments, mussels and fish across the lake between 1998 and 2011. Lower trophic organisms had variable whole-body Ag concentrations, from 0.2-2.6 µg g-1 dry weight (DW) in plankton to 0.02-3.1 µg g-1 DW in benthic macroinvertebrates. Hepatic Ag concentrations in crayfish, mussels and predatory fish were significantly elevated relative to muscle which often have Ag concentrations below the detection limit (0.01-0.05 µg g-1 DW). Trophodynamic analyses using δ15N and whole-body invertebrate and muscle Ag concentrations indicated food web biodilution trends. High sedimentation rates in conjunction with the reduction of silver waste products discharged to the lake, as a result of the change to digital image processing technologies, are resulting in unplanned but welcome remediation of the Ag contamination in Lake Nahuel Huapi.


Asunto(s)
Monitoreo del Ambiente , Residuos Industriales/análisis , Lagos/química , Fotograbar/métodos , Plata/análisis , Contaminantes Químicos del Agua/análisis , Animales , Organismos Acuáticos/química , Argentina , Biodegradación Ambiental , Peces/metabolismo , Cadena Alimentaria , Sedimentos Geológicos/química , Invertebrados/química , Tamaño de la Partícula , Plancton/química
7.
Environ Pollut ; 218: 150-159, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27552048

RESUMEN

There is an ongoing debate on the fate of mercury (Hg) in areas affected by artisanal and small-scale gold mining (ASGM). Over the last 30 years, ASGM has released 69 tons of Hg into the southeastern Peruvian Amazon. To investigate the role of suspended matter and hydrological factors on the fate of ASGM-Hg, we analysed riverbank sediments and suspended matter along the partially ASGM-affected Malinowski-Tambopata river system and examined Hg accumulation in fish. In addition, local impacts of atmospheric Hg emissions on aquatic systems were assessed by analysing a sediment core from an oxbow lake. Hg concentrations in riverbank sediments are lower (20-53 ng g-1) than in suspended matter (∼400-4000 ng g-1) due to differences in particle size. Elevated Hg concentrations in suspended matter from ASGM-affected river sections (∼1400 vs. ∼30-120 ng L-1 in unaffected sections) are mainly driven by the increased amount of suspended matter rather than increased Hg concentrations in the suspended matter. The oxbow lake sediment record shows low Hg concentrations (64-86 ng g-1) without evidence of any ASGM-related increase in atmospheric Hg input. Hg flux variations are mostly an effect of variations in sediment accumulation rates. Moreover, only 5% of the analysed fish (only piscivores) exceed WHO recommendations for human consumption (500 ng g-1). Our findings show that ASGM-affected river sections in the Malinowski-Tambopata system do not exhibit increased Hg accumulation, indicating that the released Hg is either retained at the spill site or transported to areas farther away from the ASGM areas. We suspect that the fate of ASGM-Hg in such tropical rivers is mainly linked to transport associated with the suspended matter, especially during high water situations. We assume that our findings are typical for ASGM-affected areas in tropical regions and could explain why aquatic systems in such ASGM regions often show comparatively modest enrichment in Hg levels.


Asunto(s)
Oro , Mercurio/análisis , Minería , Ríos/química , Contaminantes Químicos del Agua/análisis , Animales , Exposición a Riesgos Ambientales , Peces , Sedimentos Geológicos/química , Humanos , Perú , Estaciones del Año , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA