Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 19323, 2024 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164375

RESUMEN

TGF-ß1 activation of hepatic stellate cells (HSCs), transcriptional activator 3 (Stat3) activation and short chain fatty acids (SCFAs), metabolite of intestinal bacteria, is closely associated with hepatic fibrosis. Previous studies have shown that Lactucin has significant anti-inflammatory and hepatoprotective effects; however, the mechanism of Lactucin's role in liver fibrosis associated with SCFAs remains unknown. This study was intended to investigate whether effect of Lactucin on liver fibrosis was mediated by TGF-ß1/Stat3 and SCFAs. We found that Lactucin induced apoptosis in HSC-T6 cells, and inhibition of nuclear translocation of Stat3 and p-Stat3. And Smad3 and TGF-ß1 protein expression was significantly inhibited, while TLR4 and Smad7 protein expression was significantly enhanced. For in vivo experiments, we demonstrated that Lactucin alleviated liver fibrosis in mice, as evidenced by a reduction in inflammatory factors, collagen deposition, liver injury and fibrosis-related factors expression, especially the expression of Smad3 and TGF-ß1 proteins was significantly suppressed and Smad7 protein expression was significantly increased in the liver. In addition, the levels of acetic acid, butyric acid and valeric acid in the intestine of Lactucin-treated mice were significantly higher than those in the intestine of liver fibrosis mice. In conclusion, based on the results of in vivo and in vitro experiments, preventive mechanism of Lactucin against liver fibrosis in mice may be to improve the enterohepatic circulation by regulating the metabolites of intestinal microorganisms, acetic acid and butyric acid, and to further regulate the Stat3 and TGF-ß1 signaling pathway through the "gut-liver axis" to combat liver fibrosis.


Asunto(s)
Ácidos Grasos Volátiles , Células Estrelladas Hepáticas , Cirrosis Hepática , Factor de Transcripción STAT3 , Transducción de Señal , Factor de Crecimiento Transformador beta1 , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Transcripción STAT3/metabolismo , Ácidos Grasos Volátiles/metabolismo , Transducción de Señal/efectos de los fármacos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Masculino , Apoptosis/efectos de los fármacos , Línea Celular , Proteína smad3/metabolismo , Ratones Endogámicos C57BL , Ratas
2.
Anticancer Res ; 44(3): 1161-1171, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38423670

RESUMEN

BACKGROUND/AIM: Tetrazolium-based cell proliferation assays using MDA-MB-231 and HeLa cells revealed that 3,4-dihydro-lactucin (3,4-DHL), a compound isolated from Microbispora rosea AL22, possesses anticancer properties. Apoptotic cell death was observed in 3,4-DHL-treated cells. Lactucopicrin, a related compound, reportedly exerts anticancer activity against different cancer types. However, data on the anticancer mechanism of lactucins are limited. This study aimed to investigate apoptosis induction in MDA-MB-231 cells treated with 3,4-DHL. MATERIALS AND METHODS: Morphological changes, changes in mitochondrial membrane potential, and apoptosis induction in MDA-MB-231 cells treated with 3,4-DHL were investigated. Furthermore, molecular docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis of anti-apoptotic proteins were performed to determine the effector mechanism of 3,4-DHL. RESULTS: 3,4-DHL induced cytotoxicity at a half-maximal inhibitory concentration of 37.62 µg/ml, along with various morphological alterations in apoptotic and viable cells. Furthermore, 3,4-DHL-treated cells showed mitochondrial membrane potential depolarization, intense annexin V-fluorescein isothiocyanate staining, and increased caspase 3 and 8 activities. Molecular-docking studies demonstrated that 3,4-DHL should bind to the active site of various anti-apoptotic proteins, forming stable complexes. CONCLUSION: Our findings revealed that 3,4-DHL has great potential to be used as an apoptosis-inducing agent in cancer therapy. However, further in-vivo confirmation is required in evaluation of 3,4-DHL as an anticancer agent in cancer chemotherapy.


Asunto(s)
Actinobacteria , Antineoplásicos , Apoptosis , Lactonas , Forboles , Sesquiterpenos , Humanos , Células HeLa , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Proliferación Celular , Proteínas Reguladoras de la Apoptosis/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química
3.
Pharmaceuticals (Basel) ; 16(5)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37242554

RESUMEN

Sesquiterpene lactones (STLs) are a large group of terpenoids most commonly found in plants of the Asteraceae family, e.g., in chicory plants, displaying a wide range of interesting biological activities. However, further studies on the biological potential of chicory-derived STLs and analogues are challenging as only four of these molecules are commercially available (as analytical standards), and to date, there are no published or patented simple extraction-purification processes capable of large-scale STLs isolation. In this work, we describe a novel three-step large-scale extraction and purification method for the simultaneous purification of 11,13-dihydrolactucin (DHLc) and lactucin (Lc) starting from a chicory genotype rich in these STLs and the corresponding glucosyl and oxalyl conjugated forms. After a small-scale screening on 100 mg of freeze-dried chicory root powder, the best results were achieved with a 17 h water maceration at 30 °C. With these conditions, we managed to increase the content of DHLc and Lc, at the same time favoring the hydrolysis of their conjugated forms. On a larger scale, the extraction of 750 g of freeze-dried chicory root powder, followed by a liquid-liquid extraction step and a reversed-phase chromatography, allowed the recovery of 642.3 ± 76.3 mg of DHLc and 175.3 ± 32.9 mg of Lc. The two pure STLs were subsequently used in the context of semisynthesis to generate analogues for biological evaluation as antibacterial agents. In addition, other described chicory STLs that are not commercially available were also synthesized or extracted to serve as analytical standards for the study. In particular, lactucin-oxalate and 11,13-dihydrolactucin-oxalate were synthesized in two steps starting from Lc and DHLc, respectively. On the other hand, 11ß,13-dihydrolactucin-glucoside was obtained after a MeOH/H2O (70/30) extraction, followed by a liquid-liquid extraction step and a reversed-phase chromatography. Together, this work will help facilitate the evaluation of the biological potential of chicory-derived STLs and their semisynthetic analogues.

4.
J Ethnopharmacol ; 314: 116602, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37149068

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Although lettuce is traditionally known to have hypnotic and sedative effects, to date, only a few studies have documented its sleep-promoting effects and elucidated the related mechanisms. AIM OF THE STUDY: We aimed to investigate the sleep-promoting activity of Heukharang lettuce leaf extract (HLE) with increased lactucin content, known as a sleep-promoting substance in lettuce, in animal models. MATERIALS AND METHODS: To evaluate the effect of HLE on sleep behavior, analysis of electroencephalogram (EEG), gene expression of brain receptors, and activation mechanisms using antagonists were investigated in rodent models. RESULTS: High-performance liquid chromatography analysis showed that HLE contained lactucin (0.78 mg/g of extract) and quercetin-3-glucuronide (1.3 mg/g of extract). In the pentobarbital-induced sleep model, the group administered 150 mg/kg of HLE showed a 47.3% increase in sleep duration time as compared to the normal group (NOR). The EEG analysis showed that the HLE significantly increased non-rapid eye movement (NREM), where delta waves were improved by 59.5% when compared to the NOR, resulting in increased sleep time. In the caffeine-induced arousal model, HLE significantly decreased the awake time increased by caffeine administration (35.5%) and showed a similar level to NOR. In addition, HLE increased the gene and protein expression of gamma-aminobutyric acid receptor type A (GABAA), GABA type B, and 5-hydroxytryptamine (serotonin) receptor 1A. In particular, in comparison to the NOR, the group administered 150 mg/kg HLE showed an increase in expression levels of GABAA and protein by 2.3 and 2.5 times, respectively. When the expression levels were checked using GABAA receptor antagonists, HLE showed similar levels to NOR, as the sleep duration was reduced by flumazenil (45.1%), a benzodiazepine antagonist. CONCLUSIONS: HLE increased NREM sleep and significantly improved sleep behavior due to its action on the GABAA receptors. The collective findings suggest that HLE can be used as a novel sleep-enhancing agent in the pharmaceutical and food industries.


Asunto(s)
Lactuca , Receptores de GABA-A , Animales , Receptores de GABA-A/metabolismo , Lactuca/metabolismo , Cafeína/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Sueño , Hipnóticos y Sedantes/farmacología , Ácido gamma-Aminobutírico/farmacología
5.
J Agric Food Chem ; 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37036799

RESUMEN

For several sesquiterpene lactones (STLs) found in Asteraceae plants, very interesting biomedical activities have been demonstrated. Chicory roots accumulate the guaianolide STLs 8-deoxylactucin, lactucin, and lactucopicrin predominantly in oxalated forms in the latex. In this work, a supercritical fluid extract fraction of chicory STLs containing 8-deoxylactucin and 11ß,13-dihydro-8-deoxylactucin was shown to have anti-inflammatory activity in an inflamed intestinal mucosa model. To increase the accumulation of these two compounds in chicory taproots, the lactucin synthase that takes 8-deoxylactucin as the substrate for the regiospecific hydroxylation to generate lactucin needs to be inactivated. Three candidate cytochrome P450 enzymes of the CYP71 clan were identified in chicory. Their targeted inactivation using the CRISPR/Cas9 approach identified CYP71DD33 to have lactucin synthase activity. The analysis of the terpene profile of the taproots of plants with edits in CYP71DD33 revealed a nearly complete elimination of the endogenous chicory STLs lactucin and lactucopicrin and their corresponding oxalates. Indeed, in the same lines, the interruption of biosynthesis resulted in a strong increase of 8-deoxylactucin and its derivatives. The enzyme activity of CYP71DD33 to convert 8-deoxylactucin to lactucin was additionally demonstrated in vitro using yeast microsome assays. The identified chicory lactucin synthase gene is predominantly expressed in the chicory latex, indicating that the late steps in the STL biosynthesis take place in the latex. This study contributes to further elucidation of the STL pathway in chicory and shows that root chicory can be positioned as a crop from which different health products can be extracted.

6.
Pak J Biol Sci ; 25(10): 922-928, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36404746

RESUMEN

<b>Background and Objective:</b> The AL22 strain was isolated from the rhizosphere soil of <i>Alpinia galanga</i> (L.) Willd (Zingiberaceae) and identified as <i>Microbispora</i> sp., by analysing its morphology, chemotaxonomy and 16S rDNA sequence. Previous studies demonstrated the bactericidal effects of its crude extract against <i>Bacillus cereus</i>, <i>Bacillus subtilis</i>, <i>Staphylococcus aureus</i> and methicillin-resistant <i>Staphylococcus aureus</i>. The present study aimed to isolate the major compounds and evaluate their biological properties. <b>Materials and Methods:</b> Silica gel column chromatography and thin-layer chromatography were used for the purification and identification of 3,4-dihydro-lactucin (compound <b>1</b>) and umbelliferone (compound <b>2</b>) by NMR and mass spectrometry, respectively. Antibacterial and anticancer activities were carried out. <b>Results:</b> The bioassay studies illustrated that compound <b>1</b> had antibacterial activity against gram-positive bacteria, with its minimum inhibitory concentration and minimum bactericidal concentration of 16-32 and 64-128 µg mL<sup></sup><sup>1</sup>, respectively. The crude extract and purified compounds showed weak cytotoxic activity on the L929 and Vero cells with IC<sub>50</sub> values >512.00 µg mL<sup></sup><sup>1</sup>. The cytotoxicity of compound <b>1</b> was observed in the MDA-MB-231 and HeLa cells with IC<sub>50</sub> values of 37.62 and 75.34 µg mL<sup></sup><sup>1</sup>, respectively, while its IC<sub>50</sub> value against the HepG2 cells was 456.67 µg mL<sup></sup><sup>1</sup>. <b>Conclusion:</b> These findings showed that compound <b>1</b> of <i>Microbispora</i> sp., AL22 exhibited antibacterial and anticancer activities. Extensive studies on 3,4-dihydro-lactucin could lead to the development of beneficial approaches for managing bacterial infections and cancer.


Asunto(s)
Alpinia , Staphylococcus aureus Resistente a Meticilina , Humanos , Animales , Chlorocebus aethiops , Endófitos , Células HeLa , Células Vero , Antibacterianos , Mezclas Complejas/farmacología
7.
J Pharmacol Sci ; 150(2): 110-122, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36055749

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases, and there are no effective drugs available so far. Lactucin and Lactucopicrin belong to sesquiterpene lactones and are extracted from Cichorium glandulosum Boiss. et Huet (CG) possesses multiple biopharmacological activities. However, the therapeutic effects of both Lactucin and Lactucopicrin on many diseases and their underlying mechanisms remain largely unknown. Here, we analyzed the both natural compounds hypolipidemic effects on FFA-induced HepG2 cells and their potential mechanisms based on transcriptomics and experimental tests. Our results indicated that Lactucin (10 µM) and Lactucopicrin (20 µM) remarkably reduced TG accumulation. Transcriptomics analysis identified 1960, 1645, and 1791 differentially expressed genes (DEGs) and obtained 611 and 635 specific genes in different comparisons, respectively. The enrichment analysis and experimental validations (RT-qPCR and Western Blot) showed that their hypolipidemic activities were most probably exerted via regulating numerous key DEGs involved in lipid metabolism. Taken together, both Lactucin and Lactucopicrin may represent potent hepatoprotective agents. Both of them exhibited therapeutic effects against liver diseases such as NAFLD by regulating multi-gene and proteins like HADHA, ADAM17, SQSTM1, and GBA and modulating multi-pathways like fatty acid oxidation metabolic signaling.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Sesquiterpenos , Células Hep G2 , Humanos , Lactonas/farmacología , Lactonas/uso terapéutico , Metabolismo de los Lípidos/genética , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Forboles , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico
8.
Genes Genomics ; 43(10): 1199-1207, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34302634

RESUMEN

BACKGROUND: Lactucin, a naturally occurring active sesquiterpene lactone, is abundantly found in chicory and romaine lettuce. A recent study reported that lactucin could induce apoptosis in leukemia cells. However, its cytotoxicity and potential molecular mechanisms underlying cancer cell death remain unclear. OBJECTIVE: Therefore, in this study, we aimed to investigate the direct effect and underlying mechanism of action of lactucin on renal cancer cells. METHODS: MTT assay and flow cytometry were performed to evaluate the rate of cell proliferation and apoptosis, respectively. Western blotting, reverse transcription polymerase chain reaction, and protein stability analyses were performed to analyze the effect of lactucin on the expression of apoptosis-related proteins such as B-cell lymphoma 2 (BCL-2) and CFLAR (CASP8 and FADD like apoptosis regulator) long isoform (CFLARL) in Caki-1 human renal cancer cells. In addition, reactive oxygen species (ROS) generation was evaluated using flow cytometry. RESULTS: Lactucin treatment induced apoptosis in Caki-1 cells in a dose-dependent manner via activation of the caspase pathway. It downregulated BCL-2 and CFLARL expression levels by suppressing BCL-2 transcription and CFLARL protein stability, respectively. Pretreatment with N-acetyl-1-cysteine, a ROS scavenger, attenuated the lactucin-induced apoptosis and restored the BCL-2 and CFLARL expression to basal levels. Lactucin-facilitated BCL-2 downregulation was regulated at the transcriptional level through the inactivation of the NF-κB pathway. CONCLUSIONS: Our study is the first to demonstrate that lactucin-induced apoptosis is mediated by ROS production, which in turn activates the caspase-dependent apoptotic pathway by inhibiting BCL-2 and CFLARL expression in Caki-1 cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/biosíntesis , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales/metabolismo , Lactonas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sesquiterpenos/farmacología , Línea Celular Tumoral , Humanos , Neoplasias Renales/tratamiento farmacológico
9.
Front Pharmacol ; 12: 683613, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995112

RESUMEN

The development of liver fibrosis is closely related to the gut microbiota, and the "gut-liver axis" is the most important connection between the two. ethyl acetate extract of Cichorium pumilum Jacq (CGEA) is an herbal extract consisting mainly of sesquiterpenoids. The anti-inflammatory and hepatoprotective effects of CGEA have been reported, but the anti-fibrotic effects of CGEA via intestinal microbes and the "gut-liver axis" cycle have rarely been reported. In this study, we observed that CGEA not only directly attenuated inflammatory factor levels in inflamed mice, but also attenuated liver inflammation as well as liver fibrosis degeneration in rats with liver fibrosis caused by colitis. We observed in vitro that CGEA significantly promoted the growth of Bifidobacterium adolescentis. Similarly, fecal 16S rDNA sequencing of liver fibrosis rats showed that CGEA intervention significantly altered the composition of the intestinal microbiota of liver fibrosis rats. CGEA increased the abundance of intestinal microbiota, specifically, CGEA increased the ratio of Firmicutes to Bacteroidetes, CGEA could significantly increase the levels of Ruminococcus. In addition, CGEA intervention significantly protected intestinal mucosal tissues and improved intestinal barrier function in rats. Lactucin is the main sesquiterpenoid in CGEA, and HPLC results showed its content in CGEA was up to 6%. Lactucin has been reported to have significant anti-inflammatory activity, and in this study, we found that Lactucin decreased p38 kinases (p38), phosphorylation of the extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) protein phosphorylation in lipopolysaccharide (LPS)-activated RAW264.7 cells, thereby reducing mRNA expression and protein expression of pro-inflammatory factors inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and inhibiting the release of inflammatory factors interleukin (IL)-6 and nitric oxide (NO), exerting anti-inflammatory effects. In summary, the prevention of liver fibrosis caused by intestinal inflammation by CGEA may be achieved by regulating the intestinal microbiota and restoring the intestinal barrier thereby improving the "gut-liver axis" circulation, reducing liver inflammation, and ultimately alleviating liver fibrosis. Notably, the direct anti-inflammatory effect of CGEA may be due to its content of Lactucin, which can exert anti-inflammatory effects by inhibiting the phosphorylation of Mitogen-activated protein kinase (MAPK) and Akt signaling pathways.

10.
Nutrients ; 12(11)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228214

RESUMEN

Cichorium intybus L. has recently gained major attention due to large quantities of health-promoting compounds in its roots, such as inulin and sesquiterpene lactones (SLs). Chicory is the main dietary source of SLs, which have underexplored bioactive potential. In this study, we assessed the capacity of SLs to permeate the intestinal barrier to become physiologically available, using in silico predictions and in vitro studies with the well-established cell model of the human intestinal mucosa (differentiated Caco-2 cells). The potential of SLs to modulate inflammatory responses through modulation of the nuclear factor of activated T-cells (NFAT) pathway was also evaluated, using a yeast reporter system. Lactucopicrin was revealed as the most permeable chicory SL in the intestinal barrier model, but it had low anti-inflammatory potential. The SL with the highest anti-inflammatory potential was 11ß,13-dihydrolactucin, which inhibited up to 54% of Calcineurin-responsive zinc finger (Crz1) activation, concomitantly with the impairment of the nuclear accumulation of Crz1, the yeast orthologue of human NFAT.


Asunto(s)
Antiinflamatorios/farmacología , Cichorium intybus , Intestinos/efectos de los fármacos , Sesquiterpenos/farmacología , Humanos , Técnicas In Vitro , Lactonas/farmacología , Permeabilidad
11.
Cells ; 9(2)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32023857

RESUMEN

The prevalence of obesity has increased dramatically worldwide in the past ~50 years. Searching for safe and effective anti-obesity strategies are urgently needed. Lactucin, a plant-derived natural small molecule, is known for anti-malaria and anti-hyperalgesia. The study is to investigate whether lactucin plays a key role in adipogenesis. To this end, in vivo male C57BL/6 mice fed a high-fat diet (HFD) were treated with 20 mg/kg/day of lactucin or vehicle by gavage for seven weeks. Compared with vehicle-treated controls, Lactucin-treated mice showed lower body mass and mass of adipose tissue. Consistently, in vitro 3T3-L1 cells were treated with 20 µM of lactucin. Compared to controls, lactucin-treated cells showed significantly less lipid accumulation during adipocyte differentiation and lower levels of lipid synthesis markers. Mechanistically, we showed the anti-adipogenic property of lactucin was largely limited to the early stage of adipogenesis. Lactucin-treated cells fail to undergo mitotic clonal expansion (MCE). Further studies demonstrate that lactucin-induced MCE arrests might result from reduced phosphorylation of JAK2 and STAT3. We then asked whether activation of JAK2/STAT3 would restore the inhibitory effect of lactucin on adipogenesis with pharmacological STAT3 activator colivelin. Our results revealed similar levels of lipid accumulation between lactucin-treated cells and controls in the presence of colivelin, indicating that inactivation of STAT3 is the limiting factor for the anti-adipogenesis of lactucin in these cells. Together, our results provide the indication that lactucin exerts an anti-adipogenesis effect, which may open new therapeutic options for obesity.


Asunto(s)
Adipogénesis/efectos de los fármacos , Suplementos Dietéticos , Regulación hacia Abajo/efectos de los fármacos , Janus Quinasa 2/metabolismo , Lactonas/farmacología , Mitosis/efectos de los fármacos , Forboles/farmacología , Factor de Transcripción STAT3/metabolismo , Sesquiterpenos/farmacología , Transducción de Señal , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipogénesis/genética , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Clonales , Dieta Alta en Grasa , Regulación hacia Abajo/genética , Regulación de la Expresión Génica/efectos de los fármacos , Hiperglucemia/genética , Hiperglucemia/patología , Lactonas/química , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/patología , Forboles/química , Sesquiterpenos/química , Transducción de Señal/efectos de los fármacos , Triglicéridos/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA