Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Fish Biol ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075038

RESUMEN

Ballan wrasse Labrus bergylta is the largest species of wrasse inhabiting European waters and one of the longest-living species within the family Labridae. A large specimen was caught off the coast of Skjerjehamn, western Norway (total length = 410 mm; weight = 1274 g). The age of the specimen was determined to be 34 years old based on the analysis of its opercula bones. This specimen establishes a new maximum age for ballan wrasse, 5 years older than the previously observed maximum age.

2.
J Fish Biol ; 103(5): 906-923, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37321978

RESUMEN

Concerns have long been raised about the welfare of ballan wrasse (Labrus bergylta) used for the biological control of sea lice in Atlantic salmon (Salmo salar) aquaculture. This study assessed the effect of increased dietary eicosapentaenoic acid (EPA) levels and initial condition factor (CF) on the subsequent performance and welfare of ballan wrasse farmed in high and low water temperatures. Fish were fed a diet with either commercial or high EPA levels for 3 months at 15°C. Subsequently, fish were tagged with a passive integrated transponder, measured for their CF and divided into two groups consisting of fish from both treatments and reared for 4.5 months at either 15 or 6°C fed a commercial diet. Each fish was categorized as high (≥2.7) or low CF (<2.7) fish based on the calculated average CF of the population. Dietary composition influenced the fatty acid (FA) profile of the stored lipids without affecting the growth or welfare of ballan wrasse. Fish reared at 15°C showed higher growth, more fat and energy reserves and less ash content. Fish reared at 6°C lost weight, using up their body lipids at the end of the temperature trial. Gene expression analyses showed upregulation of the positive growth marker (GHrα) and two genes involved in the synthesis and oxidation of FAs (elovl5, cpt1) and downregulation of the negative growth marker (mstn) in fish reared at 15°C compared to those reared at 6°C. Fish reared at 6°C showed upregulated levels of il-6 compared to those reared at 15°C, suggesting an enhanced immune reaction in response to low temperature. Fish with high CF showed better survival, growth and performance compared to those with low CF. External welfare scoring showed higher prevalence and severity in emaciation, scale loss and the sum index score (of all measured welfare parameters) in fish reared at 6°C compared to those reared at 15°C and better welfare in fish with high CF compared to those with low CF. Histological examination of the skin showed that fish reared at 6°C had decreased epidermal thickness, a lower overall number of mucous cells in the inner and outer epidermis and a different organization of mucous cells compared to fish reared at 15°C, indicating stress in fish reared at 6°C. Overall, low water temperatures had profound effects on the performance and external and internal welfare parameters of ballan wrasse and can be considered a stressor likely affecting the delousing efficacy. These findings support the seasonal use of different cleaner fish species. High CF, but not increased dietary EPA levels, appeared to help fish cope better with low water temperatures and should thus be assessed and considered before deploying them in salmon cages.


Asunto(s)
Perciformes , Salmo salar , Animales , Dieta/veterinaria , Ácido Eicosapentaenoico/metabolismo , Peces/metabolismo , Perciformes/fisiología , Salmo salar/metabolismo , Temperatura , Agua
3.
J Fish Biol ; 98(4): 1049-1058, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32243571

RESUMEN

As a first attempt to assess bone health in cleaner fish production, wild and cultured ballan wrasse Labrus bergylta and lumpfish Cyclopterus lumpus were examined by radiology. In C. lumpus, wild fish (57%) had more vertebra deformities (≥1 deformed vertebrae) than cultured fish (2-16%). One wild C. lumpus had lordosis and another was missing the tail fin. In L. bergylta, wild fish (11%) had fewer vertebra deformities than cultured individuals (78-91%). Among the cultured L. bergylta, 17-53% of the fish had severe vertebra deformities (≥6 deformed vertebrae) with two predominate sites of location, one between vertebra 4 and 10 (S1) in the trunk, and one between 19 and 26 (S2) in the tail. Fusions dominated S1, while compressions dominated S2. Although wild L. bergylta had a low vertebra deformity level, 83% had calluses and 14% had fractures in haemal/neural spines and/or ribs. The site-specific appearance and pathology of fracture and callus in wild L. bergylta suggests these are induced by chronic mechanical stress, and a possible pathogenesis for fish hyperostosis is presented based on this notion. In conclusion, good bone health was documented in cultured C. lumpus, but cultured L. bergylta suffered poor bone health. How this affects survival, growth, swimming abilities and welfare in cultured wrasse should be further investigated. SIGNIFICANCE STATEMENT: Skeletal deformities were studied in ballan wrasse and lumpfish of both wild and cultured origin for the first time to identify potential welfare issues when deploying them as cleaner fish in salmon sea cages. While cultured lumpfish showed good bone health, cultured wrasse had a high occurrence of vertebra deformities, which is expected to impact lice eating efficiency and animal welfare negatively. These deformities are most likely induced early in development.


Asunto(s)
Acuicultura/métodos , Enfermedades del Desarrollo Óseo/veterinaria , Enfermedades de los Peces/patología , Perciformes , Salmo salar/parasitología , Animales , Enfermedades del Desarrollo Óseo/patología
4.
J Fish Biol ; 95(4): 1151-1155, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31365123

RESUMEN

The site fidelity of ballan wrasse Labrus bergylta was studied using photo-identification and external tagging. Five male individuals were observed to defend the same small territory composed of a few rocks during several reproductive seasons spanning 2 to 15 years. These results provide one of the strongest indications of long-term very fine-scale site fidelity in marine fishes.


Asunto(s)
Peces/fisiología , Territorialidad , Animales , Masculino , Factores de Tiempo
5.
Biol Open ; 5(9): 1241-51, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27422903

RESUMEN

Small fish larvae grow allometrically, but little is known about how this growth pattern may be affected by different growth rates and early diet quality. The present study investigates how different growth rates, caused by start-feeding with copepods or rotifers the first 30 days post-hatch (dph), affect allometric growth and development of nine major organs in ballan wrasse (Labrus bergylta) larvae up to experimental end at 60 dph. Feeding with cultivated copepod nauplii led to both increased larval somatic growth and faster development and growth of organ systems than feeding with rotifers. Of the organs studied, the digestive and respiratory organs increased the most in size between 4 and 8 dph, having a daily specific growth rate (SGR) between 30 and 40% in larvae fed copepods compared with 20% or less for rotifer-fed larvae. Muscle growth was prioritised from flexion stage and onwards, with a daily SGR close to 30% between 21 and 33 dph regardless of treatment. All larvae demonstrated a positive linear correlation between larval standard length (SL) and increase in total tissue volume, and no difference in allometric growth pattern was found between the larval treatments. A change from positive allometric to isometric growth was observed at a SL close to 6.0 mm, a sign associated with the start of metamorphosis. This was also where the larvae reached postflexion stage, and was accompanied by a change in growth pattern for most of the major organ systems. The first sign of a developing hepatopancreas was, however, first observed in the largest larva (17.4 mm SL, 55 dph), indicating that the metamorphosis in ballan wrasse is a gradual process lasting from 6.0 to at least 15-17 mm SL.

6.
Integr Zool ; 11(2): 162-72, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26748687

RESUMEN

The ballan wrasse (Labrus bergylta) is a marine fish belonging to the family Labridae characterized by 2 main morphotypes that occur in sympatry: spotty and plain. Previous studies have revealed differences in their life-history traits, such as growth and maturation; however, the genetic relationship between forms is presently unknown. Using 20 recently developed microsatellite markers, we conducted a genetic analysis of 41 and 48 spotty and plain ballan wrasse collected in Galicia (northwest Spain). The 2 morphotypes displayed highly significant genetic differences to each other (FST = 0.018, P < 0.0001). A similar degree of genetic differentiation (FST = 0.025, P < 0.0001) was shown using the STRUCTURE clustering approach with no priors at K = 2. In this case, the frequency of spotty and plain morphotypes was significantly different (χ(2) = 9.46, P = 0.002). It is concluded that there is significant genetic heterogeneity within this species, which appears to be highly associated with the spotty and plain forms, but not completely explained by them. Given the previously demonstrated biological differences between morphotypes, and the present genetic analyses, we speculate about the convenience of a taxonomic re-evaluation of this species.


Asunto(s)
Perciformes/clasificación , Perciformes/genética , Animales , ADN Mitocondrial/genética , Repeticiones de Microsatélite , Perciformes/anatomía & histología , Análisis de Secuencia de ADN , España , Simpatría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA