Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
J Agric Food Chem ; 72(25): 14433-14447, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38866717

RESUMEN

JHBp2 is a peptide purified from Jinhua ham broth with antibacterial activity against Salmonella typhimurium. Untargeted metabolomics and label-free quantitative proteomics were used to analyze metabolic and protein expression changes in S. typhimurium after JHBp2 treatment. Cell wall and membrane damage results indicate that JHBp2 has membrane-disruptive properties, causing leakage of intracellular nucleic acids and proteins. Metabolomics revealed 516 differentially expressed metabolites, involving cofactor biosynthesis, purine metabolism, ABC transporters, glutathione metabolism, pyrimidine metabolism, etc. Proteomics detected 735 differentially expressed proteins, involving pyruvate metabolism, amino acid biosynthesis, purine metabolism, carbon metabolism, glycolysis/gluconeogenesis, etc. RT-qPCR and proteomics results showed a positive correlation, and molecular docking demonstrated stable binding of JHBp2 to some differentially expressed proteins. In summary, JHBp2 could disrupt the S. typhimurium cell wall and membrane structure, interfere with synthesis of membrane-related proteins, trigger intracellular substance leak, and reduce levels of enzymes and metabolites involved in energy metabolism, amino acid anabolism, and nucleotide anabolism.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Metabolómica , Simulación del Acoplamiento Molecular , Proteómica , Salmonella typhimurium , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Porcinos , Animales , Antibacterianos/farmacología , Antibacterianos/química , Péptidos/química , Péptidos/farmacología , Péptidos/metabolismo , Productos de la Carne/microbiología , Productos de la Carne/análisis
2.
J Proteomics ; 303: 105224, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38866132

RESUMEN

Acute myeloid leukemia (AML) is an aggressive form of blood cancer and clinically highly heterogeneous characterized by the accumulation of clonally proliferative immature precursors of myeloid lineage leading to bone marrow failure. Although, the current diagnostic methods for AML consist of cytogenetic and molecular assessment, there is a need for new markers that can serve as useful candidates in diagnosis, prognosis and understanding the pathophysiology of the disease. This study involves the investigation of alterations in the bone marrow interstitial fluid and serum proteome of AML patients compared to controls using label-free quantitative proteomic approach. A total of 201 differentially abundant proteins were identified in AML BMIF, while in the case of serum 123 differentially abundant proteins were identified. The bioinformatics analysis performed using IPA revealed several altered pathways including FAK signalling, IL-12 signalling and production of macrophages etc. Verification experiments were performed in a fresh independent cohort of samples using MRM assays led to the identification of a panel of three proteins viz., PPBP, APOH, ENOA which were further validated in a new cohort of serum samples by ELISA. The three-protein panel could be helpful in the diagnosis, prognosis and understanding of the pathophysiology of AML in the future. BIOLOGICAL SIGNIFICANCE: Acute Myeloid Leukemia (AML) is a type haematological malignancy which constitute one third of total leukemias and it is the most common acute leukemia in adults. In the current clinical practice, the evaluation of diagnosis and progression of AML is largely based on morphologic, immunophenotypic, cytogenetic and molecular assessment. There is a need for new markers/signatures which can serve as useful candidates in diagnosis and prognosis. The present study aims to identify and validate candidate biosignature for AML which can be useful in diagnosis, prognosis and understand the pathophysiology of the disease. Here, we identified 201 altered proteins in AML BMIF and 123 in serum. Among these altered proteins, a set of three proteins viz., pro-platelet basic protein (CXCL7), enolase 1 (ENO1) and beta-2-glycoprotein 1 (APOH) were significantly increased in AML BMIF and serum suggest that this panel of proteins could help in future AML disease management and thereby improving the survival expectancy of AML patients.


Asunto(s)
Médula Ósea , Líquido Extracelular , Leucemia Mieloide Aguda , Proteoma , Humanos , Leucemia Mieloide Aguda/sangre , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/metabolismo , Masculino , Proteoma/análisis , Proteoma/metabolismo , Femenino , Persona de Mediana Edad , Médula Ósea/metabolismo , Médula Ósea/patología , Adulto , Líquido Extracelular/metabolismo , Biomarcadores de Tumor/sangre , Proteínas de Neoplasias/sangre , Proteínas de Neoplasias/metabolismo , Anciano , Proteómica/métodos
3.
J Agric Food Chem ; 72(26): 15040-15052, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38906536

RESUMEN

Wheat species with various ploidy levels may be different regarding their immunoreactive potential in celiac disease (CD), but a comprehensive comparison of peptide sequences with known epitopes is missing. Thus, we used an untargeted liquid chromatography tandem mass spectrometry method to analyze the content of peptides with CD-active epitope in the five wheat species common wheat, spelt, durum wheat, emmer, and einkorn. In total, 494 peptides with CD-active epitope were identified. Considering the average of the eight cultivars of each species, spelt contained the highest number of different peptides with CD-active epitope (193 ± 12, mean ± SD). Einkorn showed the smallest variability of peptides (63 ± 4) but higher amounts of certain peptides compared to the other species. The wheat species differ in the presence and distribution of CD-active epitopes; hence, the entirety of peptides with CD-active epitope is crucial for the assessment of their immunoreactive potential.


Asunto(s)
Enfermedad Celíaca , Epítopos , Proteínas de Plantas , Proteómica , Triticum , Enfermedad Celíaca/inmunología , Triticum/química , Triticum/inmunología , Epítopos/inmunología , Epítopos/química , Proteínas de Plantas/inmunología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Humanos , Espectrometría de Masas en Tándem , Péptidos/inmunología , Péptidos/química
4.
Methods Mol Biol ; 2758: 89-108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38549010

RESUMEN

Peptidomics is the detection and identification of the peptides present in a sample, and quantitative peptidomics provides additional information about the amounts of these peptides. It is possible to perform absolute quantitation of peptide levels in which the biological sample is compared to synthetic standards of each peptide. More commonly, relative quantitation is performed to compare peptide levels between two or more samples. Relative quantitation can measure differences between all peptides that are detectable, which can exceed 1000 peptides in a complex sample. In this chapter, various techniques used for quantitative peptidomics are described along with discussion of the advantages and disadvantages of each approach. A guide to selecting the optimal quantitative approach is provided, based on the goals of the experiment and the resources that are available.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Proteómica/métodos , Péptidos , Estándares de Referencia
5.
Res Sq ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38313302

RESUMEN

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and the prevalence of CVDs increases markedly with age. Due to the high energetic demand, the heart is highly sensitive to mitochondrial dysfunction. The complexity of the cardiac mitochondrial proteome hinders the development of effective strategies that target mitochondrial dysfunction in CVDs. Mammalian mitochondria are composed of over 1000 proteins, most of which can undergo post-translational protein modifications (PTMs). Top-down proteomics is a powerful technique for characterizing and quantifying all protein sequence variations and PTMs. However, there are still knowledge gaps in the study of age-related mitochondrial proteoform changes using this technique. In this study, we used top-down proteomics to identify intact mitochondrial proteoforms in young and old hearts and determined changes in protein abundance and PTMs in cardiac aging. METHODS: Intact mitochondria were isolated from the hearts of young (4-month-old) and old (24-25-month-old) mice. The mitochondria were lysed, and mitochondrial lysates were subjected to denaturation, reduction, and alkylation. For quantitative top-down analysis, there were 12 runs in total arising from 3 biological replicates in two conditions, with technical duplicates for each sample. The collected top-down datasets were deconvoluted and quantified, and then the proteoforms were identified. RESULTS: From a total of 12 LC-MS/MS runs, we identified 134 unique mitochondrial proteins in the different sub-mitochondrial compartments (OMM, IMS, IMM, matrix). 823 unique proteoforms in different mass ranges were identified. Compared to cardiac mitochondria of young mice, 7 proteoforms exhibited increased abundance and 13 proteoforms exhibited decreased abundance in cardiac mitochondria of old mice. Our analysis also detected PTMs of mitochondrial proteoforms, including N-terminal acetylation, lysine succinylation, lysine acetylation, oxidation, and phosphorylation. CONCLUSION: By combining mitochondrial protein enrichment using mitochondrial fractionation with quantitative top-down analysis using ultrahigh-pressure liquid chromatography (UPLC)-MS and label-free quantitation, we successfully identified and quantified intact proteoforms in the complex mitochondrial proteome. Using this approach, we detected age-related changes in abundance and PTMs of mitochondrial proteoforms in the heart.

6.
J Proteome Res ; 23(1): 465-482, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38147655

RESUMEN

Temozolomide (TMZ) is the first line of chemotherapy to treat primary brain tumors of the type glioblastoma multiforme (GBM). TMZ resistance (TMZR) is one of the main barriers to successful treatment and is a principal factor in relapse, resulting in a poor median survival of 15 months. The present paper focuses on proteomic analyses of cytosolic fractions from TMZ-resistant (TMZR) LN-18 cells. The experimental workflow includes an easy, cost-effective, and reproducible method to isolate subcellular fraction of cytosolic (CYTO) proteins, mitochondria, and plasma membrane proteins for proteomic studies. For this study, enriched cytoplasmic fractions were analyzed in replicates by nanoflow liquid chromatography tandem high-resolution mass spectrometry (nLC-MS/MS), and proteins identified were quantified using a label-free approach (LFQ). Statistical analysis of control (CTRL) and temozolomide-resistant (TMZR) proteomes revealed proteins that appear to be differentially controlled in the cytoplasm. The functions of these proteins are discussed as well as their roles in other cancers and TMZ resistance in GBM. Key proteins are also described through biological processes related to gene ontology (GO), molecular functions, and cellular components. For protein-protein interactions (PPI), network and pathway involvement analyses have been performed, highlighting the roles of key proteins in the TMZ resistance phenotypes. This study provides a detailed insight into methods of subcellular fractionation for proteomic analysis of TMZ-resistant GBM cells and the potential to apply this approach to future large-scale studies. Several key proteins, protein-protein interactions (PPI), and pathways have been identified, underlying the TMZ resistance phenotype and highlighting the proteins' biological functions.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/patología , Proteómica , Espectrometría de Masas en Tándem , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Línea Celular Tumoral , Recurrencia Local de Neoplasia , Citoplasma/metabolismo , Resistencia a Antineoplásicos , Neoplasias Encefálicas/genética
7.
Biochem Biophys Res Commun ; 680: 73-85, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37725837

RESUMEN

Self-renewal and differentiation of mouse embryonic stem cells (mESCs) are greatly affected by the extracellular matrix (ECM) environment; the composition and stiffness of which are sensed by the cells via integrin-associated focal adhesions (FAs) which link the cells to the ECM. Although FAs have been studied extensively in differentiated cells, their composition and function in mESCs are not as well elucidated. To gain more detailed knowledge of the molecular compositions of FAs in mESCs, we adopted the proximity-dependent biotinylation (BioID) proteomics approach. Paxillin, a known FA protein (FAP), is fused to the promiscuous biotin ligase TurboID as bait. We employed both SILAC- and label-free (LF)-based quantitative proteomics to strengthen as well as complement individual approach. The mass spectrometry data derived from SILAC and LF identified 38 and 443 proteins, respectively, with 35 overlapping candidates. Fifteen of these shared proteins are known FAPs based on literature-curated adhesome and 7 others are among the reported "meta-adhesome", suggesting the components of FAs are largely conserved between mESCs and differentiated cells. Furthermore, the LF data set contained an additional 18 literature-curated FAPs. Notably, the overlapped proteomics data failed to detect LIM-domain proteins such as zyxin family proteins, which suggests that FAs in mESCs are less mature than differentiated cells. Using the LF approach, we are able to identify PDLIM7, a LIM-domain protein, as a FAP in mESCs. This study illustrates the effectiveness of TurboID in mESCs. Importantly, we found that application of both SILAC and LF methods in combination allowed us to analyze the TurboID proteomics data in an unbiased, stringent and yet comprehensive manner.

8.
J Agric Food Chem ; 71(34): 12899-12909, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37582505

RESUMEN

Food processing conditions affect the structure, solubility, and therefore accurate detection of gluten proteins. We investigated the influence of dough, bread, and pretzel making on the composition of different wheat protein fractions obtained by Osborne fractionation. The albumin/globulin, gliadin, and glutenin fractions from flour, dough, crispbread, bread, and pretzel were analyzed using RP-HPLC, SDS-PAGE, and untargeted nanoLC-MS/MS. This approach enabled an in-depth profiling of the fractionated proteomes and related compositional changes to processing conditions (mixing, heat, and alkali treatment). Overall, heat treatment demonstrated the most pronounced effect. Label-free quantitation revealed significant changes in the relative abundances of 82 proteins within the fractions of bread crumb and crust in comparison to flour. Certain gluten proteins showed shifts or reductions in particular fractions, indicating their incorporation into the gluten network through SS and non-SS cross-links. Other gluten proteins were enriched, suggesting their limited involvement in the gluten network formation.


Asunto(s)
Espectrometría de Masas en Tándem , Triticum , Triticum/química , Proteómica , Glútenes/química , Gliadina/química , Pan/análisis , Harina/análisis
9.
Methods Mol Biol ; 2690: 241-253, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37450152

RESUMEN

Proteins generally achieve their functions through interactions with other proteins, so being able to determine which proteins interact with which other proteins underlies much of molecular biology. Co-fractionation (CF) is a mass spectrometry-based method for detecting proteome-wide protein-protein interactions. An attractive feature of CF is that it is not necessary to label or otherwise alter samples. Although we have previously published a widely used protocol for a label-incorporated CF methodology, no published protocols currently exist for the label-free variation. In this chapter, we describe a label-free CF-MS protocol. This protocol takes a minimum of a week, excluding the time for cell/tissue culture. It begins with cell/tissue lysis under non-denaturing conditions, after which intact protein complexes are isolated using size exclusion chromatography (SEC) where they are fractionated according to size. The proteins in each fraction are then prepared for mass spectrometry analysis where the constituent proteins are identified and quantified. Finally, we describe an in-house bioinformatics pipeline, PrInCE, to accurately predict protein complexes. Taken together, co-fractionation methodologies combined with mass spectrometry can identify and quantify thousands of protein-protein interactions in biological systems.


Asunto(s)
Proteoma , Espectrometría de Masas/métodos , Proteoma/metabolismo , Cromatografía en Gel
10.
J Proteome Res ; 22(7): 2460-2476, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37326657

RESUMEN

Label-free quantitation (LFQ) was applied to proteome profiling of rat brain cortical development during the early postnatal period. Male and female rat brain extracts were prepared using a convenient, detergent-free sample preparation technique at postnatal days (PND) 2, 8, 15, and 22. The PND protein ratios were calculated using Proteome Discoverer, and the PND protein change profiles were constructed separately for male and female animals for key presynaptic, postsynaptic, and adhesion brain proteins. The profiles were compared to the analogous profiles assembled from the published mouse and rat cortex proteomic data, including the fractionated-synaptosome data. The PND protein-change trendlines, Pearson correlation coefficient (PCC), and linear regression analysis of the statistically significant PND protein changes were used in the comparative analysis of the datasets. The analysis identified similarities and differences between the datasets. Importantly, there were significant similarities in the comparison of the rat cortex PND (current work) vs mouse (previously published) PND profiles, although in general, a lower abundance of synaptic proteins in mice than in rats was found. The male and female rat cortex PND profiles were expectedly almost identical (98-99% correlation by PCC), which also substantiated this LFQ nanoflow liquid chromatography-high-resolution mass spectrometry approach.


Asunto(s)
Proteoma , Proteómica , Ratas , Animales , Ratones , Masculino , Femenino , Proteoma/análisis , Encéfalo/metabolismo , Sinaptosomas/química
11.
Expert Rev Proteomics ; 20(4-6): 87-92, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37309581

RESUMEN

INTRODUCTION: Proteomic analysis of formalin-fixed paraffin-embedded (FFPE) tumor tissue specimens has gained interest in the last 5 years due to technological advances and improved sample collection, as well as biobanking for clinical trials. The real-world implementation of clinical proteomics to these specimens, however, is hampered by tedious sample preparation steps and long instrument acquisition times. AREAS COVERED: To advance the translation of quantitative proteomics into the clinic, we are comparing the performance of the leading commercial nanoflow liquid chromatography (nLC) system (based on literature reviews), the Easy-nLC 1200 (Thermo Fisher Scientific, Waltham, MA, U.S.A.), to the Evosep One HPLC (Evosep Biosystems, Odense, Denmark). We measured FFPE-tissue digests from 21 biological replicates with a similar gradient on both of the LC systems while keeping the on-column amount (1 µg total protein) and the single-shot data-dependent acquisition-based MS/MS method constant. EXPERT OPINION: Overall, the Evosep One facilitates robust and sensitive high-throughput sample acquisition, making it suitable for clinical MS. We found the Evosep One to be a useful platform for positioning mass spectrometry-based proteomics in the clinical setting. The clinical application of nLC/MS will inform clinical decision-making in oncology and other diseases.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Proteómica/métodos , Bancos de Muestras Biológicas , Cromatografía Liquida/métodos , Cromatografía Líquida de Alta Presión , Adhesión en Parafina/métodos , Formaldehído/química , Fijación del Tejido/métodos
12.
Methods Mol Biol ; 2665: 75-83, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37166594

RESUMEN

Label-free quantitation (LFQ) proteomics, mainly based on the extraction of the peptide (precursor) intensity at the MS1 (mass spectrum 1) level, enables to quantify the relative amount of the proteins among samples. In an LFQ proteomics study, all samples are scanned individually on an advanced mass spectrometer and the chromatographic features of each run are extracted to generate consensus patterns among various runs in the experiment. Here, we describe the LFQ proteomics experimental protocol adapted for plant research, such as plant iron homeostasis.


Asunto(s)
Proteínas , Proteómica , Proteómica/métodos , Proteínas/análisis , Péptidos/química , Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Proteoma/análisis
13.
Front Microbiol ; 14: 1059199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937286

RESUMEN

Saline soda lakes are of immense ecological value as they niche some of the most exclusive haloalkaliphilic communities dominated by bacterial and archaeal domains, with few eukaryotic algal representatives. A handful reports describe Picocystis as a key primary producer with great production rates in extremely saline alkaline habitats. An extremely haloalkaliphilic picoalgal strain, Picocystis salinarum SLJS6 isolated from hypersaline soda lake Sambhar, Rajasthan, India, grew robustly in an enriched soda lake medium containing mainly Na2CO3, 50 g/l; NaHCO3, 50 g/l, NaCl, 50 g/l (salinity ≈150‰) at pH 10. To elucidate the molecular basis of such adaptation to high inorganic carbon and NaCl concentrations, a high-throughput label-free quantitation based quantitative proteomics approach was applied. Out of the total 383 proteins identified in treated samples, 225 were differentially abundant proteins (DAPs), of which 150 were statistically significant (p < 0.05) including 70 upregulated and 64 downregulated proteins after 3 days of growth in highly saline-alkaline medium. Most DAPs were involved in photosynthesis, oxidative phosphorylation, glucose metabolism and ribosomal structural components envisaging that photosynthesis and ATP synthesis were central to the salinity-alkalinity response. Key components of photosynthetic machinery like photosystem reaction centres, adenosine triphosphate (ATP) synthase ATP, Rubisco, Fructose-1,6-bisphosphatase, Fructose-bisphosphate aldolase were highly upregulated. Enzymes peptidylprolyl isomerases (PPIase), important for correct protein folding showed remarkable marked-up regulation along with other chaperon proteins indicating their role in osmotic adaptation. Enhanced photosynthetic activity exhibited by P. salinarum in highly saline-alkaline condition is noteworthy as photosynthesis is suppressed under hyperosmotic conditions in most photosynthetic organisms. The study provided the first insights into the proteome of extremophilic alga P. salinarum exhibiting extraordinary osmotic adaptation and proliferation in polyextreme conditions prevailing in saline sodic ecosystems, potentially unraveling the basis of resilience in this not so known organism and paves the way for a promising future candidate for biotechnological applications and model organism for deciphering the molecular mechanisms of osmotic adaptation. The mass spectrometry proteomics data is available at the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD037170.

14.
Proteomics Clin Appl ; 17(5): e2200071, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36938941

RESUMEN

PURPOSE: This pilot study aimed to use proteomic profiling of sonicate fluid samples to compare host response during Staphylococcus aureus-associated periprosthetic joint infection (PJI) and non-infected arthroplasty failure (NIAF) and identify potential novel biomarkers differentiating the two. EXPERIMENTAL DESIGN: In this pilot study, eight sonicate fluid samples (four from NIAF and four from S. aureus PJI) were studied. Samples were reduced, alkylated, and trypsinized overnight, followed by analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on a high-resolution Orbitrap Eclipse mass spectrometer. MaxQuant software suite was used for protein identification, filtering, and label-free quantitation. RESULTS: Principal component analysis of the identified proteins clearly separated S. aureus PJI and NIAF samples. Overall, 810 proteins were identified based on their detection in at least three out of four samples from each group; 35 statistically significant differentially abundant proteins (DAPs) were found (two-sample t-test p-values ≤0.05 and log2 fold-change values ≥2 or ≤-2). Gene ontology pathway analysis found that microbial defense responses, specifically those related to neutrophil activation, to be increased in S. aureus PJI compared to NIAF samples. CONCLUSION AND CLINICAL RELEVANCE: Proteomic profiling of sonicate fluid using LC-MS/MS differentiated S. aureus PJI and NIAF in this pilot study. Further work is needed using a larger sample size and including non-S. aureus PJI and a diversty of NIAF-types.


Asunto(s)
Infecciones Relacionadas con Prótesis , Staphylococcus aureus , Humanos , Infecciones Relacionadas con Prótesis/diagnóstico , Proyectos Piloto , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem
15.
J Proteome Res ; 22(5): 1510-1519, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-36921255

RESUMEN

Method optimization is crucial for successful mass spectrometry (MS) analysis. However, extensive method assessments, altering various parameters individually, are rarely performed due to practical limitations regarding time and sample quantity. To maximize sample space for optimization while maintaining reasonable instrumentation requirements, a definitive screening design (DSD) is leveraged for systematic optimization of data-independent acquisition (DIA) parameters to maximize crustacean neuropeptide identifications. While DSDs require several injections, a library-free methodology enables surrogate sample usage for comprehensive optimization of MS parameters to assess biomolecules from limited samples. We identified several parameters contributing significant first- or second-order effects to method performance, and the DSD model predicted ideal values to implement. These increased reproducibility and detection capabilities enabled the identification of 461 peptides, compared to 375 and 262 peptides identified through data-dependent acquisition (DDA) and a published DIA method for crustacean neuropeptides, respectively. Herein, we demonstrate a DSD optimization workflow, using standard material, not reliant on spectral libraries for the analysis of any low abundance molecules from previous samples of limited availability. This extends the DIA method to low abundance isoforms dysregulated or only detectable in disease samples, thus improving characterization of previously inaccessible biomolecules, such as neuropeptides. Data are available via ProteomeXchange with identifier PXD038520.


Asunto(s)
Neuropéptidos , Proteómica , Proteómica/métodos , Reproducibilidad de los Resultados , Espectrometría de Masas/métodos , Péptidos/análisis , Proteoma/análisis
16.
Curr Issues Mol Biol ; 45(2): 1349-1372, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36826033

RESUMEN

Bottle gourd, a common vegetable in the human diet, has been valued for its medicinal and energetic properties. In this experiment, the time-resolved analysis of the changes in the proteins' electrophoretic patterning of the seed development at different crossing periods was studied in bottle gourd using label-free quantitative proteomics. Hybrid HBGH-35 had the highest observed protein levels at the 4th week of the crossing period (F4) compared to the parental lines, viz. G-2 (M) and Pusa Naveen (F). The crossing period is significantly correlated with grain filling and reserve accumulation. The observed protein expression profile after storage was related to seed maturation and grain filling in bottle gourds. A total of 2517 proteins were identified in differentially treated bottle gourd fruits, and 372 proteins were differentially expressed between different crossing periods. Proteins related to carbohydrate and energy metabolism, anthocyanin biosynthesis, cell stress response, and fruit firmness were characterized and quantified. Some proteins were involved in the development, while others were engaged in desiccation and the early grain-filling stage. F4 was distinguished by an increase in the accumulation of low molecular weight proteins and enzymes such as amylase, a serine protease, and trypsin inhibitors. The seed vigor also followed similar patterns of differential expression of seed storage proteins. Our findings defined a new window during seed production, which showed that at F4, maximum photosynthetic assimilates accumulated, resulting in an enhanced source-sink relationship and improved seed production. Our study attempts to observe the protein expression profiling pattern under different crossing periods using label-free quantitative proteomics in bottle gourd. It will facilitate future detailed investigation of the protein associated with quality traits and the agronomic importance of bottle gourd through selective breeding programs.

17.
Cells ; 11(18)2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36139443

RESUMEN

The sugarcane streak mosaic virus (SCSMV) is the most important disease in sugarcane produced in southern China. The SCSMV encoded protein 1 (P1SCSMV) is important in disease development, but little is known about its detailed functions in plant-virus interactions. Here, the differential accumulated proteins (DAPs) were identified in the heterologous expression of P1SCSMV via a potato virus X (PVX)-based expression system, using a newly developed four-dimensional proteomics approach. The data were evaluated for credibility and reliability using qRT-RCR and Western blot analyses. The physiological response caused by host factors that directly interacted with the PVX-encoded proteins was more pronounced for enhancing the PVX accumulation and pathogenesis in Nicotiana benthamiana. P1SCSMV reduced photosynthesis by damaging the photosystem II (PSII). Overall, P1SCSMV promotes changes in the physiological status of its host by up- or downregulating the expression of host factors that directly interact with the viral proteins. This creates optimal conditions for PVX replication and movement, thereby enhancing its accumulation levels and pathogenesis. Our investigation is the first to supply detailed evidence of the pathogenesis-enhancing role of P1SCSMV, which provides a deeper understanding of the mechanisms behind virus-host interactions.


Asunto(s)
Potexvirus , Antivirales , Complejo de Proteína del Fotosistema II , Filogenia , Enfermedades de las Plantas , Potexvirus/metabolismo , Potyviridae , Reproducibilidad de los Resultados , Nicotiana/metabolismo , Proteínas Virales/metabolismo
18.
J Agric Food Chem ; 70(33): 10259-10270, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35947788

RESUMEN

The aim of this study was to investigate the modifications of the proteome and flavor-related proteins in unsmoked bacon resulting from ultrasound treatment with the application of label-free quantitation technology together with bioinformatics analysis. Results showed that the expression levels of 137 proteins were markedly affected by ultrasound with most of them being significantly upregulated. The proteins distributed in the cytoplasm and the cytosol, the mitochondrion, and the nucleus were more susceptible to ultrasound treatment. Meanwhile, 20 flavor-related proteins, mostly myofibrillar proteins and metabolic enzymes mainly involved in the metabolic pathways of signaling and cellular processes and environmental information processing, were screened out. In addition, the differential expressions of flavor-related proteins induced by ultrasound were verified by western blotting. This study displayed insightful information from the proteomics perspective for a better understanding of the influential effect of ultrasound treatment on meat flavor.


Asunto(s)
Carne de Cerdo , Proteoma , Biología Computacional , Proteoma/metabolismo , Proteómica/métodos , Tecnología
19.
Clin Proteomics ; 19(1): 27, 2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842572

RESUMEN

BACKGROUND: Colon cancer is the third most common cancer and second highest cause of cancer deaths worldwide. The aim of the study was to find new biomarkers for diagnosis, prognosis and therapeutic drug targets for this disease. METHODS: Four low-grade and four high-grade human colon adenocarcinoma tumours with patient-matched normal colon tissues were analysed. Additionally, tissue-derived primary cell lines were established from each tumour tissue. The cell lines were validated using DNA sequencing to confirm that they are a suitable in vitro model for colon adenocarcinoma based on conserved gene mutations. Label-free quantitation proteomics was performed to compare the proteomes of colon adenocarcinoma samples to normal colon samples, and of colon adenocarcinoma tissues to tissue-derived cell lines to find significantly differentially abundant proteins. The functions enriched within the differentially expressed proteins were assessed using STRING. Proteomics data was validated by Western blotting. RESULTS: A total of 4767 proteins were identified across all tissues, and 4711 across primary tissue-derived cell lines. Of these, 3302 proteins were detected in both the tissues and the cell lines. On average, primary cell lines shared about 70% of proteins with their parent tissue, and they retained mutations to key colon adenocarcinoma-related genes and did not diverge far genetically from their parent tissues. Colon adenocarcinoma tissues displayed upregulation of RNA processing, steroid biosynthesis and detoxification, and downregulation of cytoskeletal organisation and loss of normal muscle function. Tissue-derived cell lines exhibited increased interferon-gamma signalling and aberrant ferroptosis. Overall, 318 proteins were significantly up-regulated and 362 proteins significantly down-regulated by comparisons of high-grade with low-grade tumours and low-grade tumour with normal colon tissues from both sample types. CONCLUSIONS: The differences exhibited between tissues and cell lines highlight the additional information that can be obtained from patient-derived primary cell lines. DNA sequencing and proteomics confirmed that these cell lines can be considered suitable in vitro models of the parent tumours. Various potential biomarkers for colon adenocarcinoma initiation and progression and drug targets were identified and discussed, including seven novel markers: ACSL4, ANK2, AMER3, EXOSC1, EXOSC6, GCLM, and TFRC.

20.
Front Genet ; 13: 867909, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35754844

RESUMEN

Accurate determination of estrus is essentially required for efficient reproduction management of farm animals. Buffalo is a shy breeder and does not manifest overt signs of estrus that make estrus detection difficult resulting in a poor conception rate. Therefore, identifying estrus biomarkers in easily accessible biofluid such as saliva is of utmost interest. In the current study, we generated saliva proteome profiles during proestrus (PE), estrus (E), metestrus (ME), and diestrus (DE) stages of the buffalo estrous cycle using both label-free quantitation (LFQ) and labeled (TMT) quantitation and mass spectrometry analysis. A total of 520 proteins were identified as DEPs in LFQ; among these, 59 and four proteins were upregulated (FC ≥ 1.5) and downregulated (FC ≤ 0.5) during E vs. PE, ME, and DE comparisons, respectively. Similarly, TMT-LC-MS/MS analysis identified 369 DEPs; among these, 74 and 73 proteins were upregulated and downregulated during E vs. PE, ME, and DE stages, respectively. Functional annotations of GO terms showed enrichment of glycolysis, pyruvate metabolism, endopeptidase inhibitor activity, salivary secretion, innate immune response, calcium ion binding, oocyte meiosis, and estrogen signaling. Over-expression of SERPINB1, HSPA1A, VMO1, SDF4, LCN1, OBP, and ENO3 proteins during estrus was further confirmed by Western blotting. This is the first comprehensive report on differential proteome analysis of buffalo saliva between estrus and non-estrus stages. This study generated an important panel of candidate proteins that may be considered buffalo estrus biomarkers which can be applied in the development of a diagnostic kit for estrus detection in buffalo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA