Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 840
Filtrar
1.
Bioimpacts ; 14(4): 28902, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104621

RESUMEN

Introduction: The microfluidic device is highly optimized to remove oocytes from the cumulus-corona cell mass surrounding them. Additionally, it effectively captures and immobilizes the oocytes, aiding in assessing their quality and facilitating the injection of sperm into the oocyte. In this study, a novel microfluidic chip was designed and manufactured using conventional soft lithography methods. Methods: This research proposes the utilization of a microfluidic chip as a substitute for the conventional manual procedures involved in oocyte denudation, trapping, and immobilization. The microfluidic chip was modeled and simulated using COMSOL Multiphysics® 5.2 software to optimize and enhance its design and performance. The microfluidic chip was fabricated using conventional injection molding techniques on a polydimethylsiloxane substrate by employing soft lithography methods. Results: A hydrostatic force was applied to guide the oocyte through predetermined pathways to eliminate the cumulus cells surrounding the oocyte. The oocyte was subsequently confined within the designated trap region by utilizing hydraulic resistance along the paths and immobilized by applying vacuum force. Conclusion: The application of this chip necessitates a lower level of operator expertise compared to enzymatic and mechanical techniques. Moreover, it is feasible to continuously monitor the oocyte's state throughout the procedure. There is a reduced need for cultural media compared to more standard approaches.

2.
Sci Rep ; 14(1): 19806, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191836

RESUMEN

Flow-based microfluidic biochips (FMBs) are widely used in biomedical research and diagnostics. However, their security against potential material-level cyber-physical attacks remains inadequately explored, posing a significant future challenge. One of the main components, polydimethylsiloxane (PDMS) microvalves, is pivotal to FMBs' functionality. However, their fabrication, which involves thermal curing, makes them susceptible to chemical tampering-induced material degradation attacks. Here, we demonstrate one such material-based attack termed "BioTrojans," which are chemically tampered and optically stealthy microvalves that can be ruptured through low-frequency actuations. To chemically tamper with the microvalves, we altered the associated PDMS curing ratio. Attack demonstrations showed that BioTrojan valves with 30:1 and 50:1 curing ratios ruptured quickly under 2 Hz frequency actuations, while authentic microvalves with a 10:1 ratio remained intact even after being actuated at the same frequency for 2 days (345,600 cycles). Dynamic mechanical analyzer (DMA) results and associated finite element analysis revealed that a BioTrojan valve stores three orders of magnitude more mechanical energy than the authentic one, making it highly susceptible to low-frequency-induced ruptures. To counter BioTrojan attacks, we propose a security-by-design approach using smooth peripheral fillets to reduce stress concentration by over 50% and a spectral authentication method using fluorescent microvalves capable of effectively detecting BioTrojans.

3.
ACS Sens ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140177

RESUMEN

Both microplastics and phytoplankton are found together in the ocean as suspended microparticles. There is a need for deployable technologies that can identify, size, and count these particles at high throughput to monitor plankton community structure and microplastic pollution levels. In situ analysis is particularly desirable as it avoids the problems associated with sample storage, processing, and degradation. Current technologies for phytoplankton and microplastic analysis are limited in their capability by specificity, throughput, or lack of deployability. Little attention has been paid to the smallest size fraction of microplastics and phytoplankton below 10 µm in diameter, which are in high abundance. Impedance cytometry is a technique that uses microfluidic chips with integrated microelectrodes to measure the electrical impedance of individual particles. Here, we present an impedance cytometer that can discriminate and count microplastics sampled directly from a mixture of phytoplankton in a seawater-like medium in the 1.5-10 µm size range. A simple machine learning algorithm was used to classify microplastic particles based on dual-frequency impedance measurements of particle size (at 1 MHz) and cell internal electrical composition (at 500 MHz). The technique shows promise for marine deployment, as the chip is sensitive, rugged, and mass producible.

4.
Biosens Bioelectron ; 263: 116632, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39116628

RESUMEN

Microfluidic devices are increasingly widespread in the literature, being applied to numerous exciting applications, from chemical research to Point-of-Care devices, passing through drug development and clinical scenarios. Setting up these microenvironments, however, introduces the necessity of locally controlling the variables involved in the phenomena under investigation. For this reason, the literature has deeply explored the possibility of introducing sensing elements to investigate the physical quantities and the biochemical concentration inside microfluidic devices. Biosensors, particularly, are well known for their high accuracy, selectivity, and responsiveness. However, their signals could be challenging to interpret and must be carefully analysed to carry out the correct information. In addition, proper data analysis has been demonstrated even to increase biosensors' mentioned qualities. To this regard, machine learning algorithms are undoubtedly among the most suitable approaches to undertake this job, automatically learning from data and highlighting biosensor signals' characteristics at best. Interestingly, it was also demonstrated to benefit microfluidic devices themselves, in a new paradigm that the literature is starting to name "intelligent microfluidics", ideally closing this benefic interaction among these disciplines. This review aims to demonstrate the advantages of the triad paradigm microfluidics-biosensors-machine learning, which is still little used but has a great perspective. After briefly describing the single entities, the different sections will demonstrate the benefits of the dual interactions, highlighting the applications where the reviewed triad paradigm was employed.


Asunto(s)
Técnicas Biosensibles , Aprendizaje Automático , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Humanos , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Diseño de Equipo
5.
Micromachines (Basel) ; 15(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39064331

RESUMEN

This study presents a novel absorption cell with a circular geometry that can be integrated into microfluidic devices for optical spectroscopy applications. The absorption cell is made of PDMS/SU8 and offers an optical path length that is 8.5 times its diameter, resulting in a significant increase in the sensitivity of the measurements. Overall, this design provides a reliable and efficient solution for optical spectroscopy in microfluidic systems, enabling the precise detection and analysis of small quantities of analytes.

6.
Anal Sci Adv ; 5(5-6): e2400003, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38948318

RESUMEN

Detecting foodborne contamination is a critical challenge in ensuring food safety and preventing human suffering and economic losses. Contaminated food, comprising biological agents (e.g. bacteria, viruses and fungi) and chemicals (e.g. toxins, allergens, antibiotics and heavy metals), poses significant risks to public health. Microfluidic technology has emerged as a transformative solution, revolutionizing the detection of contaminants with precise and efficient methodologies. By manipulating minute volumes of fluid on miniaturized systems, microfluidics enables the creation of portable chips for biosensing applications. Advancements from early glass and silicon devices to modern polymers and cellulose-based chips have significantly enhanced microfluidic technology, offering adaptability, flexibility, cost-effectiveness and biocompatibility. Microfluidic systems integrate seamlessly with various biosensing reactions, facilitating nucleic acid amplification, target analyte recognition and accurate signal readouts. As research progresses, microfluidic technology is poised to play a pivotal role in addressing evolving challenges in the detection of foodborne contaminants. In this short review, we delve into various manufacturing materials for state-of-the-art microfluidic devices, including inorganics, elastomers, thermoplastics and paper. Additionally, we examine several applications where microfluidic technology offers unique advantages in the detection of food contaminants, including bacteria, viruses, fungi, allergens and more. This review underscores the significant advancement of microfluidic technology and its pivotal role in advancing the detection and mitigation of foodborne contaminants.

7.
Biosensors (Basel) ; 14(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39056616

RESUMEN

Intracellular and extracellular sensing of physical and chemical variables is important for disease diagnosis and the understanding of cellular biology. Optical sensing utilizing fluorescent nanodiamonds (FNDs) is promising for probing intracellular and extracellular variables owing to their biocompatibility, photostability, and sensitivity to physicochemical quantities. Based on the potential of FNDs, we outlined the optical properties, biocompatibility, surface chemistry of FNDs and their applications in intracellular biosensing. This review also introduces biosensing platforms that combine FNDs and lab-on-a-chip approaches to control the extracellular environment and improve sample/reagent handling and sensing performance.


Asunto(s)
Técnicas Biosensibles , Dispositivos Laboratorio en un Chip , Nanodiamantes , Nanodiamantes/química , Humanos , Colorantes Fluorescentes
9.
Annu Rev Biomed Eng ; 26(1): 441-473, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38959386

RESUMEN

Multicellular model organisms, such as Drosophila melanogaster (fruit fly), are frequently used in a myriad of biological research studies due to their biological significance and global standardization. However, traditional tools used in these studies generally require manual handling, subjective phenotyping, and bulk treatment of the organisms, resulting in laborious experimental protocols with limited accuracy. Advancements in microtechnology over the course of the last two decades have allowed researchers to develop automated, high-throughput, and multifunctional experimental tools that enable novel experimental paradigms that would not be possible otherwise. We discuss recent advances in microtechnological systems developed for small model organisms using D. melanogaster as an example. We critically analyze the state of the field by comparing the systems produced for different applications. Additionally, we suggest design guidelines, operational tips, and new research directions based on the technical and knowledge gaps in the literature. This review aims to foster interdisciplinary work by helping engineers to familiarize themselves with model organisms while presenting the most recent advances in microengineering strategies to biologists.


Asunto(s)
Drosophila melanogaster , Animales , Microtecnología/métodos , Modelos Animales , Diseño de Equipo , Nanotecnología/métodos
10.
Biosens Bioelectron ; 262: 116546, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38968774

RESUMEN

Electronic communication in natural systems makes use, inter alia, of molecular transmission, where electron transfer occurs within networks of redox reactions, which play a vital role in many physiological systems. In view of the limited understanding of redox signaling, we developed an approach and an electrochemical-optical lab-on-a-chip to observe cellular responses in localized redox environments. The developed fluidic micro-system uses electrogenetic bacteria in which a cellular response is activated to electrically and chemically induced stimulations. Specifically, controlled environments for the cells are created by using microelectrodes to generate spatiotemporal redox gradients. The in-situ cellular responses at both single-cell and population levels are monitored by optical microscopy. The elicited electrogenetic fluorescence intensities after 210 min in response to electrochemical and chemical activation were 1.3 × 108±0.30 × 108 arbitrary units (A.U.) and 1.2 × 108±0.30 × 108 A.U. per cell population, respectively, and 1.05 ± 0.01 A.U. and 1.05 ± 0.01 A.U. per-cell, respectively. We demonstrated that redox molecules' mass transfer between the electrode and cells - and not the applied electrical field - activated the electrogenetic cells. Specifically, we found an oriented amplified electrogenetic response on the charged electrodes' downstream side, which was determined by the location of the stimulating electrodes and the flow profile. We then focused on the cellular responses and observed distinct subpopulations that were attributed to electrochemical rather than chemical stimulation, with the distance between the cells and the stimulating electrode being the main determinant. These observations provide a comprehensive understanding of the mechanisms by which diffusible redox mediators serve as electron shuttles, imposing context and activating electrogenetic responses.


Asunto(s)
Técnicas Biosensibles , Oxidación-Reducción , Técnicas Biosensibles/métodos , Análisis de la Célula Individual/métodos , Dispositivos Laboratorio en un Chip , Microelectrodos , Técnicas Electroquímicas/métodos , Diseño de Equipo , Transporte de Electrón
11.
J Agric Food Chem ; 72(28): 15401-15415, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38875493

RESUMEN

In the context of global population growth expected in the future, enhancing the agri-food yield is crucial. Plant diseases significantly impact crop production and food security. Modern microfluidics offers a compact and convenient approach for detecting these defects. Although this field is still in its infancy and few comprehensive reviews have explored this topic, practical research has great potential. This paper reviews the principles, materials, and applications of microfluidic technology for detecting plant diseases caused by various pathogens. Its performance in realizing the separation, enrichment, and detection of different pathogens is discussed in depth to shed light on its prospects. With its versatile design, microfluidics has been developed for rapid, sensitive, and low-cost monitoring of plant diseases. Incorporating modules for separation, preconcentration, amplification, and detection enables the early detection of trace amounts of pathogens, enhancing crop security. Coupling with imaging systems, smart and digital devices are increasingly being reported as advanced solutions.


Asunto(s)
Bacterias , Grano Comestible , Frutas , Hongos , Enfermedades de las Plantas , Verduras , Virus , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Frutas/microbiología , Frutas/química , Hongos/aislamiento & purificación , Verduras/microbiología , Verduras/química , Bacterias/aislamiento & purificación , Bacterias/clasificación , Grano Comestible/microbiología , Grano Comestible/química , Virus/aislamiento & purificación , Microfluídica/métodos , Microfluídica/instrumentación
12.
Sci Rep ; 14(1): 14364, 2024 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-38906940

RESUMEN

Despite many interventions, science education remains highly inequitable throughout the world. Internet-enabled experimental learning has the potential to reach underserved communities and increase the diversity of the scientific workforce. Here, we demonstrate the use of lab-on-a-chip (LoC) technologies to expose Latinx life science undergraduate students to introductory concepts of computer programming by taking advantage of open-loop cloud-integrated LoCs. We developed a context-aware curriculum to train students at over 8000 km from the experimental site. Through this curriculum, the students completed an assignment testing bacteria contamination in water using LoCs. We showed that this approach was sufficient to reduce the students' fear of programming and increase their interest in continuing careers with a computer science component. Altogether, we conclude that LoC-based internet-enabled learning can become a powerful tool to train Latinx students and increase the diversity in STEM.


Asunto(s)
Internet , Estudiantes , Humanos , Dispositivos Laboratorio en un Chip , Curriculum , Disciplinas de las Ciencias Biológicas/educación
13.
Biosensors (Basel) ; 14(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38920570

RESUMEN

Blood tests are widely used in modern medicine to diagnose certain illnesses and evaluate the overall health of a patient. To enable testing in resource-limited areas, there has been increasing interest in point-of-care (PoC) testing devices. To process blood samples, liquid mixing with active pumps is usually required, making PoC blood testing expensive and bulky. We explored the possibility of processing approximately 2 µL of whole blood for image flow cytometry using capillary structures that allowed test times of a few minutes without active pumps. Capillary pump structures with five different pillar shapes were simulated using Ansys Fluent to determine which resulted in the fastest whole blood uptake. The simulation results showed a strong influence of the capillary pump pillar shape on the chip filling time. Long and thin structures with a high aspect ratio exhibited faster filling times. Microfluidic chips using the simulated pump design with the most efficient blood uptake were fabricated with polydimethylsiloxane (PDMS) and polyethylene oxide (PEO). The chip filling times were tested with 2 µL of both water and whole blood, resulting in uptake times of 24 s for water and 111 s for blood. The simulated blood plasma results deviated from the experimental filling times by about 35% without accounting for any cell-induced effects. By comparing the flow speed induced by different pump pillar geometries, this study offers insights for the design and optimization of passive microfluidic devices for inhomogenous liquids such as whole blood in sensing applications.


Asunto(s)
Microfluídica , Sistemas de Atención de Punto , Humanos , Técnicas Biosensibles , Dimetilpolisiloxanos , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas , Citometría de Flujo
14.
Chin Med ; 19(1): 80, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853247

RESUMEN

Benefiting from the complex system composed of various constituents, medicament portions, species, and places of origin, traditional Chinese medicine (TCM) possesses numerous customizable and adaptable efficacies in clinical practice guided by its theories. However, these unique features are also present challenges in areas such as quality control, screening active ingredients, studying cell and organ pharmacology, and characterizing the compatibility between different Chinese medicines. Drawing inspiration from the holistic concept, an integrated strategy and pattern more aligned with TCM research emerges, necessitating the integration of novel technology into TCM modernization. The microfluidic chip serves as a powerful platform for integrating technologies in chemistry, biology, and biophysics. Microfluidics has given rise to innovative patterns like lab-on-a-chip and organoids-on-a-chip, effectively challenging the conventional research paradigms of TCM. This review provides a systematic summary of the nature and advanced utilization of microfluidic chips in TCM, focusing on quality control, active ingredient screening/separation, pharmaceutical analysis, and pharmacological/toxicological assays. Drawing on these remarkable references, the challenges, opportunities, and future trends of microfluidic chips in TCM are also comprehensively discussed, providing valuable insights into the development of TCM.

15.
Micromachines (Basel) ; 15(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38930642

RESUMEN

This paper presents a comprehensive study focusing on the detection and characterization of droplets with volumes in the nanoliter range. Leveraging the precise control of minute liquid volumes, we introduced a novel spectroscopic on-chip microsensor equipped with integrated microfluidic channels for droplet generation, characterization, and sensing simultaneously. The microsensor, designed with interdigitated ring-shaped electrodes (IRSE) and seamlessly integrated with microfluidic channels, offers enhanced capacitance and impedance signal amplitudes, reproducibility, and reliability in droplet analysis. We were able to make analyses of droplet length in the range of 1.0-6.0 mm, velocity of 0.66-2.51 mm/s, and volume of 1.07 nL-113.46 nL. Experimental results demonstrated that the microsensor's performance is great in terms of droplet size, velocity, and length, with a significant signal amplitude of capacitance and impedance and real-time detection capabilities, thereby highlighting its potential for facilitating microcapsule reactions and enabling on-site real-time detection for chemical and biosensor analyses on-chip. This droplet-based microfluidics platform has great potential to be directly employed to promote advances in biomedical research, pharmaceuticals, drug discovery, food engineering, flow chemistry, and cosmetics.

16.
Adv Mater ; 36(32): e2403568, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38814691

RESUMEN

The electrical conductivity of blood is a crucial physiological parameter with diverse applications in medical diagnostics. Here, a novel approach utilizing a portable millifluidic nanogenerator lab-on-a-chip device for measuring blood conductivity at low frequencies, is introduced. The proposed device employs blood as a conductive substance within its built-in triboelectric nanogenerator system. The voltage generated by this blood-based nanogenerator device is analyzed to determine the electrical conductivity of the blood sample. The self-powering functionality of the device eliminates the need for complex embedded electronics and external electrodes. Experimental results using simulated body fluid and human blood plasma demonstrate the device's efficacy in detecting variations in conductivity related to changes in electrolyte concentrations. Furthermore, artificial intelligence models are used to analyze the generated voltage patterns and to estimate the blood electrical conductivity. The models exhibit high accuracy in predicting conductivity based solely on the device-generated voltage. The 3D-printed, disposable design of the device enhances portability and usability, providing a point-of-care solution for rapid blood conductivity assessment. A comparative analysis with traditional conductivity measurement methods highlights the advantages of the proposed device in terms of simplicity, portability, and adaptability for various applications beyond blood analysis.


Asunto(s)
Conductividad Eléctrica , Dispositivos Laboratorio en un Chip , Nanotecnología , Humanos , Nanotecnología/instrumentación , Diseño de Equipo
17.
Adv Healthc Mater ; 13(20): e2400040, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38739022

RESUMEN

3D hydrogel-based cell cultures provide models for studying cell behavior and can efficiently replicate the physiologic environment. Hydrogels can be tailored to mimic mechanical and biochemical properties of specific tissues and allow to produce gel-in-gel models. In this system, microspheres encapsulating cells are embedded in an outer hydrogel matrix, where cells are able to migrate. To enhance the efficiency of such studies, a lab-on-a-chip named 3D cell migration-chip (3DCM-chip) is designed, which offers substantial advantages over traditional methods. 3DCM-chip facilitates the analysis of biochemical and physical stimuli effects on cell migration/invasion in different cell types, including stem, normal, and tumor cells. 3DCM-chip provides a smart platform for developing more complex cell co-cultures systems. Herein the impact of human fibroblasts on MDA-MB 231 breast cancer cells' invasiveness is investigated. Moreover, how the presence of different cellular lines, including mesenchymal stem cells, normal human dermal fibroblasts, and human umbilical vein endothelial cells, affects the invasive behavior of cancer cells is investigated using 3DCM-chip. Therefore, predictive tumoroid models with a more complex network of interactions between cells and microenvironment are here produced. 3DCM-chip moves closer to the creation of in vitro systems that can potentially replicate key aspects of the physiological tumor microenvironment.


Asunto(s)
Movimiento Celular , Células Endoteliales de la Vena Umbilical Humana , Hidrogeles , Dispositivos Laboratorio en un Chip , Humanos , Movimiento Celular/fisiología , Hidrogeles/química , Línea Celular Tumoral , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Técnicas de Cocultivo/métodos , Técnicas de Cultivo Tridimensional de Células/métodos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Modelos Biológicos
18.
Biosensors (Basel) ; 14(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38785727

RESUMEN

Heart failure represents a primary cause of hospitalization and mortality in both developed and developing countries, often necessitating heart transplantation as the only viable recovery path. Despite advances in transplantation medicine, organ rejection remains a significant post-operative challenge, traditionally monitored through invasive endomyocardial biopsies (EMB). This study introduces a rapid prototyping approach to organ rejection monitoring via a sensor-integrated flexible patch, employing electrical impedance spectroscopy (EIS) for the non-invasive, continuous assessment of resistive and capacitive changes indicative of tissue rejection processes. Utilizing titanium-dioxide-coated electrodes for contactless impedance sensing, this method aims to mitigate the limitations associated with EMB, including procedural risks and the psychological burden on patients. The biosensor's design features, including electrode passivation and three-dimensional microelectrode protrusions, facilitate effective monitoring of cardiac rejection by aligning with the heart's curvature and responding to muscle contractions. Evaluation of sensor performance utilized SPICE simulations, scanning electron microscopy, and cyclic voltammetry, alongside experimental validation using chicken heart tissue to simulate healthy and rejected states. The study highlights the potential of EIS in reducing the need for invasive biopsy procedures and offering a promising avenue for early detection and monitoring of organ rejection, with implications for patient care and healthcare resource utilization.


Asunto(s)
Espectroscopía Dieléctrica , Humanos , Trasplante de Corazón , Técnicas Biosensibles , Rechazo de Injerto/diagnóstico , Animales , Pollos , Monitoreo Fisiológico
19.
Sci Total Environ ; 937: 173597, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38810741

RESUMEN

Microfluidics, also called lab-on-a-chip, represents an emerging research platform that permits more precise and manipulation of samples at the microscale or even down to the nanoscale (nanofluidic) including picoliter droplets, microparticles, and microbes within miniaturized and highly integrated devices. This groundbreaking technology has made significant strides across multiple disciplines by providing an unprecedented view of physical, chemical, and biological events, fostering a holistic and an in-depth understanding of complex systems. The application of microfluidics to address the challenges in environmental science is likely to contribute to our better understanding, however, it's not yet fully developed. To raise researchers' interest, this discussion first delineates the valuable and underutilized environmental applications of microfluidic technology, ranging from environmental surveillance to acting as microreactors for investigating interfacial dynamic processes, and facilitating high-throughput bioassays. We highlight, with examples, how rationally designed microfluidic devices lead to new insights into the advancement of environmental science and technology. We then critically review the key challenges that hinder the practical adoption of microfluidic technologies. Specifically, we discuss the extent to which microfluidics accurately reflect realistic environmental scenarios, outline the areas to be improved, and propose strategies to overcome bottlenecks that impede the broad application of microfluidics. We also envision new opportunities and future research directions, aiming to provide guidelines for the broader utilization of microfluidics in environmental studies.


Asunto(s)
Ciencia Ambiental , Microfluídica , Microfluídica/métodos , Monitoreo del Ambiente/métodos , Dispositivos Laboratorio en un Chip
20.
Biosensors (Basel) ; 14(5)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38785702

RESUMEN

Legionella pneumophila has been pinpointed by the World Health Organization as the highest health burden of all waterborne pathogens in the European Union and is responsible for many disease outbreaks around the globe. Today, standard analysis methods (based on bacteria culturing onto agar plates) need several days (~12) in specialized analytical laboratories to yield results, not allowing for timely actions to prevent outbreaks. Over the last decades, great efforts have been made to develop more efficient waterborne pathogen diagnostics and faster analysis methods, requiring further advancement of microfluidics and sensors for simple, rapid, accurate, inexpensive, real-time, and on-site methods. Herein, a lab-on-a-chip device integrating sample preparation by accommodating bacteria capture, lysis, and DNA isothermal amplification with fast (less than 3 h) and highly sensitive, colorimetric end-point detection of L. pneumophila in water samples is presented, for use at the point of need. The method is based on the selective capture of viable bacteria on on-chip-immobilized and -lyophilized antibodies, lysis, the loop-mediated amplification (LAMP) of DNA, and end-point detection by a color change, observable by the naked eye and semiquantified by computational image analysis. Competitive advantages are demonstrated, such as low reagent consumption, portability and disposability, color change, storage at RT, and compliance with current legislation.


Asunto(s)
Colorimetría , Legionella pneumophila , Colorimetría/instrumentación , Colorimetría/métodos , Factores de Tiempo , Procedimientos Analíticos en Microchip/métodos , Legionella pneumophila/genética , Legionella pneumophila/aislamiento & purificación , Porosidad , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA