Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Cell Biol ; 44(6): 245-258, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38804232

RESUMEN

Betaine-homocysteine S-methyltransferase (BHMT) is one of the most abundant proteins in the liver and regulates homocysteine metabolism. However, the molecular mechanisms underlying Bhmt transcription have not yet been elucidated. This study aimed to assess the molecular mechanisms underlying Bhmt transcription and the effect of BHMT deficiency on metabolic functions in the liver mediated by liver receptor homolog-1 (LRH-1). During fasting, both Bhmt and Lrh-1 expression increased in the liver of Lrh-1f/f mice; however, Bhmt expression was decreased in LRH-1 liver specific knockout mice. Promoter activity analysis confirmed that LRH-1 binds to a specific site in the Bhmt promoter region. LRH-1 deficiency was associated with elevated production of reactive oxygen species (ROS), lipid peroxidation, and mitochondrial stress in hepatocytes, contributing to hepatic triglyceride (TG) accumulation. In conclusion, this study suggests that the absence of an LRH-1-mediated decrease in Bhmt expression promotes TG accumulation by increasing ROS levels and inducing mitochondrial stress. Therefore, LRH-1 deficiency not only leads to excess ROS production and mitochondrial stress in hepatocytes, but also disrupts the methionine cycle. Understanding these regulatory pathways may pave the way for novel therapeutic interventions against metabolic disorders associated with hepatic lipid accumulation.


Asunto(s)
Betaína-Homocisteína S-Metiltransferasa , Hepatocitos , Hígado , Metionina , Ratones Noqueados , Especies Reactivas de Oxígeno , Receptores Citoplasmáticos y Nucleares , Triglicéridos , Animales , Hígado/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Betaína-Homocisteína S-Metiltransferasa/metabolismo , Betaína-Homocisteína S-Metiltransferasa/genética , Hepatocitos/metabolismo , Metionina/metabolismo , Triglicéridos/metabolismo , Regiones Promotoras Genéticas/genética , Masculino , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Peroxidación de Lípido
2.
Cell Rep ; 42(12): 113513, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38039134

RESUMEN

The nuclear receptor liver receptor homolog-1 (LRH-1) has been shown to promote apoptosis resistance in various tissues and disease contexts; however, its role in liver cell death remains unexplored. Hepatocyte-specific deletion of LRH-1 causes mild steatosis and inflammation but unexpectedly shields female mice from tumor necrosis factor (TNF)-induced hepatocyte apoptosis and associated hepatitis. LRH-1-deficient hepatocytes show markedly attenuated estrogen receptor alpha and elevated nuclear factor κB (NF-κB) activity, while LRH-1 overexpression inhibits NF-κB activity. This inhibition relies on direct physical interaction of LRH-1's ligand-binding domain and the Rel homology domain of NF-κB subunit RelA. Mechanistically, increased transcription of anti-apoptotic NF-κB target genes and the proteasomal degradation of pro-apoptotic BCL-2 interacting mediator of cell death prevent mitochondrial apoptosis and ultimately protect mice from TNF-induced liver damage. Collectively, our study emphasizes LRH-1 as a critical, sex-dependent regulator of cell death and inflammation in the healthy and diseased liver.


Asunto(s)
FN-kappa B , Factor de Necrosis Tumoral alfa , Femenino , Ratones , Animales , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Apoptosis , Hígado/metabolismo , Hepatocitos/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Inflamación/patología
3.
BMC Biol ; 21(1): 277, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031019

RESUMEN

BACKGROUND: Estrogen receptor beta (ERß, Esr2) plays a pivotal role in folliculogenesis and ovulation, yet its exact mechanism of action is mainly uncharacterized. RESULTS: We here performed ERß ChIP-sequencing of mouse ovaries followed by complementary RNA-sequencing of wild-type and ERß knockout ovaries. By integrating the ERß cistrome and transcriptome, we identified its direct target genes and enriched biological functions in the ovary. This demonstrated its strong impact on genes regulating organism development, cell migration, lipid metabolism, response to hypoxia, and response to estrogen. Cell-type deconvolution analysis of the bulk RNA-seq data revealed a decrease in luteal cells and an increased proportion of theca cells and a specific type of cumulus cells upon ERß loss. Moreover, we identified a significant overlap with the gene regulatory network of liver receptor homolog 1 (LRH-1, Nr5a2) and showed that ERß and LRH-1 extensively bound to the same chromatin locations in granulosa cells. Using ChIP-reChIP, we corroborated simultaneous ERß and LRH-1 co-binding at the ERß-repressed gene Greb1 but not at the ERß-upregulated genes Cyp11a1 and Fkbp5. Transactivation assay experimentation further showed that ERß and LRH-1 can inhibit their respective transcriptional activity at classical response elements. CONCLUSIONS: By characterizing the genome-wide endogenous ERß chromatin binding, gene regulations, and extensive crosstalk between ERß and LRH-1, along with experimental corroborations, our data offer genome-wide mechanistic underpinnings of ovarian physiology and fertility.


Asunto(s)
Receptor beta de Estrógeno , Ovario , Animales , Femenino , Ratones , Cromatina/genética , Receptor beta de Estrógeno/genética , Regulación de la Expresión Génica , Transcriptoma
4.
Oncol Rep ; 50(5)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37800629

RESUMEN

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that certain of the western blotting data shown in Fig. 5C, and the cell migration and invasion data shown in Figs. 3C and D and 6B and C were strikingly similar to data that had already appeared in other articles. Owing to the fact that the contentious data in the above article had already been published prior to its submission to Oncology Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 38: 3071­3077, 2017; DOI: 10.3892/or.2017.5956].

5.
Protein Sci ; 32(10): e4754, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37572334

RESUMEN

Nuclear receptors (NRs) are transcription factors that regulate essential biological processes in response to cognate ligands. An important part of NR function involves ligand-induced conformational changes that recruit coregulator proteins to the activation function surface (AFS), ~15 Å away from the ligand-binding pocket. Ligands must communicate with the AFS to recruit appropriate coregulators and elicit different transcriptional outcomes, but this communication is poorly understood. These studies illuminate allosteric communication networks underlying activation of liver receptor homolog-1 (LRH-1), a NR that regulates development, metabolism, cancer progression, and intestinal inflammation. Using >100 µs of all-atom molecular dynamics simulations involving 74 LRH-1 complexes, we identify distinct signaling circuits used by active and inactive ligands for AFS communication. Inactive ligands communicate via strong, coordinated motions along paths through the receptor to the AFS. Activating ligands disrupt the "inactive" circuit and induce connectivity with a second allosteric site. Ligand-contacting residues in helix 7 help mediate the switch between circuits, suggesting new avenues for developing LRH-1-targeted therapeutics. We also elucidate aspects of coregulator signaling, showing that localized, destabilizing fluctuations are induced by inappropriate ligand-coregulator pairings. These studies have uncovered novel features of LRH-1 allostery, and the quantitative approach used to analyze many simulations provides a framework to study allosteric signaling in other receptors.


Asunto(s)
Receptores Citoplasmáticos y Nucleares , Factores de Transcripción , Ligandos , Simulación de Dinámica Molecular , Sitio Alostérico , Unión Proteica
6.
J Endocr Soc ; 6(8): bvac095, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35854979

RESUMEN

Context: Adiponectin is an adipokine mainly secreted by adipocytes that regulates the metabolism of lipids and glucose. Liver receptor homolog-1 (LRH-1), also named NR5A2, is a nuclear receptor that regulates lipid metabolism and homeostasis. Objective: The purpose of this study was to compare adiponectin and LRH-1 messenger RNA (mRNA) expression in adipose tissue and LRH-1 expression in skeletal muscle between men and women at baseline and to study the effects of aerobic exercise (AEX) training or weight loss (WL) on their expression. Methods: This hospital and university setting study included 62 overweight and obese men (n = 23) and women (n = 39) older than 45 years, of whom 41 completed 6 months of WL (n = 21) or AEX (n = 20). Outcomes included abdominal and gluteal adipose tissue and skeletal muscle gene expression. Results: Adiponectin and LRH-1 mRNA expression in adipose tissue and LRH-1 mRNA expression in skeletal muscle is higher in women than in men (P < .05). Adiponectin mRNA expression in gluteal and abdominal adipose tissue did not change significantly after AEX or WL. LRH-1 mRNA expression increased both in adipose tissue and skeletal muscle after AEX (P < .05) and the change in muscle LRH-1 was different between the groups (P < .05). Adiponectin was positively correlated to LRH-1 in adipose tissue (P < .001). The change in maximal oxygen consumption related to the change in LRH-1 mRNA (r = 0.43; P = .01). Conclusion: LRH-1, as a nuclear reporter, may activate adiponectin mRNA expression in adipose tissue and increases after AEX.

7.
EMBO Rep ; 23(9): e54195, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35801407

RESUMEN

Nuclear receptors are transcription factors with important functions in a variety of physiological and pathological processes. Targeting glucocorticoid receptor (GR) activity using glucocorticoids is a cornerstone in the treatment of patients with T cell acute lymphoblastic leukemia (T-ALL), and resistance to GC-induced cell death is associated with poor outcome and a high risk for relapse. Next to ligand-binding, heterodimerization with other transcription factors presents an important mechanism for the regulation of GR activity. Here, we describe a GC-induced direct association of the Liver Receptor Homolog-1 (LRH-1) with the GR in the nucleus, which results in reciprocal inhibition of transcriptional activity. Pharmacological and molecular interference with LRH-1 impairs proliferation and survival in T-ALL and causes a profound sensitization to GC-induced cell death, even in GC-resistant T-ALL. Our data illustrate that direct interaction between GR and LRH-1 critically regulates glucocorticoid sensitivity in T-ALL opening up new perspectives for developing innovative therapeutic approaches to treat GC-resistant T-ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores Citoplasmáticos y Nucleares , Receptores de Glucocorticoides , Apoptosis , Glucocorticoides/farmacología , Humanos , Errores Innatos del Metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Glucocorticoides/deficiencia , Receptores de Glucocorticoides/genética , Factores de Transcripción
8.
Cells ; 11(12)2022 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-35741034

RESUMEN

Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) and can be treated with glucocorticoids (GC), although some patients are unresponsive to this therapy. The transcription factor LRH-1/NR5A2 is critical to intestinal cortisol production (intestinal steroidogenesis), being reduced in UC patients. However, the relationship between LRH-1 expression and distribution with altered corticosteroid responses is unknown. To address this, we categorized UC patients by their steroid response. Here, we found that steroid-dependent and refractory patients presented reduced glucocorticoid receptor (GR)-mediated intestinal steroidogenesis compared to healthy individuals and responder patients, possibly related to increased colonic mucosa GR isoform beta (GRß) content and cytoplasmic LRH-1 levels in epithelial and lamina propria cells. Interestingly, an intestinal epithelium-specific GR-induced knockout (GRiKO) dextran sodium sulfate (DSS)-colitis mice model presented decreased epithelial LRH-1 expression, whilst it increased in the lamina propria compared to DSS-treated control mice. Mechanistically, GR directly induced NR5A2 gene expression in CCD841CoN cells and human colonic organoids. Furthermore, GR bound to two glucocorticoid-response elements within the NR5A2 promoter in dexamethasone-stimulated CCD841CoN cells. We conclude that GR contributes to intestinal steroidogenesis by inducing LRH-1 in epithelial cells, suggesting LRH-1 as a potential marker for glucocorticoid-impaired response in UC. However, further studies with a larger patient cohort will be necessary to confirm role of LRH-1 as a therapeutic biomarker.


Asunto(s)
Colitis Ulcerosa , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Ratones , Esteroides/metabolismo
9.
Animals (Basel) ; 12(9)2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35565639

RESUMEN

The purpose of the present investigation was to assess the function of LRH-1 on GCs and the mechanisms involved. Here, LRH- was highly expressed in the bovine GCs of atretic follicles. Treatment with 50 µM of LRH-1 agonist (DLPC) significantly induced the expression of LRH-1 (p < 0.05). In particular, LRH-1 activation blocked the progestogen receptor signaling pathway via downregulating progesterone production and progestogen receptor levels (p < 0.05), but had no effect on 17 beta-estradiol synthesis. Meanwhile, LRH-1 activation promoted the apoptosis of GCs and increased the activity of caspase 3 (p < 0.05). Importantly, upregulating the progestogen receptor signaling pathway with progestogen could attenuate the LRH-1-induced proapoptotic effect. Moreover, treatment with progestogen decreased the activity of the proapoptotic gene caspase 3 and increased the expression of antiapoptotic gene Bcl2 in LRH-1 activated GCs (p < 0.05). Taken together, these results demonstrate that LRH-1 might be dependent on the progestogen receptor signaling pathway to modulate bovine follicular atresia.

10.
Virology ; 571: 52-58, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35509137

RESUMEN

ß-catenin regulates HBV transcription in cell culture and viral biosynthesis in vivo in the transgenic mouse model of chronic HBV infection. Therefore, it is important to understand which transcription factor activities are coactivated by ß-catenin to enhance HBV biosynthesis. The effect of ß-catenin expression in the context of nuclear receptor-mediated HBV transcription was evaluated initially in the human embryonic kidney cell line, HEK293T. Reporter gene and viral replication assays revealed that ß-catenin can coactivate HBV transcription through some, most predominantly liver receptor homolog 1 (LRH1), but not all nuclear receptors known to activate viral biosynthesis. Similarly, ß-catenin activated nuclear receptor-mediated HBV transcription and replication in the human hepatoma cell line, Huh7, primarily through its effect on the farnesoid X receptor α (FXRα). These data indicate that ß-catenin can enhance nuclear receptor-mediated HBV biosynthesis, but the relative importance of various transcription factors is dependent upon the precise cellular environment.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Animales , Células HEK293 , Virus de la Hepatitis B/fisiología , Humanos , Ratones , Receptores Citoplasmáticos y Nucleares/genética , Transcripción Viral , Replicación Viral , beta Catenina/genética , beta Catenina/metabolismo
11.
Cell Chem Biol ; 29(7): 1174-1186.e7, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35316658

RESUMEN

Phospholipids are ligands for nuclear hormone receptors (NRs) that regulate transcriptional programs relevant to normal physiology and disease. Here, we demonstrate that mimicking phospholipid-NR interactions is a robust strategy to improve agonists of liver receptor homolog-1 (LRH-1), a therapeutic target for colitis. Conventional LRH-1 modulators only partially occupy the binding pocket, leaving vacant a region important for phospholipid binding and allostery. Therefore, we constructed a set of molecules with elements of natural phospholipids appended to a synthetic LRH-1 agonist. We show that the phospholipid-mimicking groups interact with the targeted residues in crystal structures and improve binding affinity, LRH-1 transcriptional activity, and conformational changes at a key allosteric site. The best phospholipid mimetic markedly improves colonic histopathology and disease-related weight loss in a murine T cell transfer model of colitis. This evidence of in vivo efficacy for an LRH-1 modulator in colitis represents a leap forward in agonist development.


Asunto(s)
Colitis , Fosfolípidos , Receptores Citoplasmáticos y Nucleares , Animales , Colitis/tratamiento farmacológico , Ligandos , Ratones , Fosfolípidos/uso terapéutico , Receptores Citoplasmáticos y Nucleares/agonistas
12.
In Vitro Cell Dev Biol Anim ; 58(1): 21-28, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34993764

RESUMEN

The apoptosis of granulosa cells can result in follicular atresia, a key process in follicle selection and development. The related molecular mechanisms were explored to study the effects of liver receptor homolog-1 (Lrh-1) on apoptosis, sodium-titanium system, and steroid synthesis of granulosa cells from Hu sheep in vitro. After constructing, designing, and synthesizing the Lrh-1 overexpression vector, liposomes were used to transfect Hu sheep granulosa cells. Thereafter, qRT-PCR and Western blot were used to detect the mechanism of Lrh-1 on the titanium system and steroid synthesis of Hu sheep granulosa cells. The overexpression efficiency was determined by fluorescence 48 h after liposome transfection into the Hu sheep granulosa cells in vitro culture. The transfection efficiency was higher, hence providing a basis for subsequent experiments. However, the protein level and transcriptional level of Lrh-1 significantly increased after transfection with Lrh-1 overexpression vector in Hu sheep granulosa cells. We further revealed that after Lrh-1 overexpression in Hu sheep granulosa cells, the expression of the pro-apoptotic gene Bax decreased significantly, while that of the anti-apoptotic gene Bcl-2 increased significantly, as well as the sodium peptide system. Moreover, the expression levels of natriuretic peptide precursor A, B, and C (NPPA, NPPB, NPPC) all showed an upward trend, while the expression levels of steroid synthesis-related genes (P450arom and P450scc) decreased. The above results showed that Lrh-1 overexpression influenced the apoptosis, sodium peptide system, and steroid synthesis.


Asunto(s)
Atresia Folicular , Células de la Granulosa , Animales , Apoptosis/genética , Femenino , Células de la Granulosa/metabolismo , Hormonas/metabolismo , Hígado , Ovinos , Esteroides/metabolismo
13.
J Biomol Struct Dyn ; 40(7): 3082-3097, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33183172

RESUMEN

Poor prognosis, rapid progression and the lack of an effective treatment make pancreatic cancer one of the most lethal malignancies. Recent studies point to a role for liver receptor homolog-1 (LRH-1) in pathogenesis of pancreatic cancer and suggest prevention of the ß-catenin/LRH-1 complex formation as a potential strategy for inhibition of the pancreas cancer cells progression. In the current investigation, we have followed a biomimetic strategy and designed an affinity peptide with sequence DEMEEPQQTE to inhibit formation of the ß-catenin/LRH-1 complex. Quantitative real-time PCR experiments on the AsPC-1 pancreatic metastatic cells showed that the peptide has an inhibitory effect on the Wnt signaling proliferation line by reducing the expression levels of the CCND1, CCNE1, and MYC genes. Furthermore, the increased expression level of BAX gene showed that AsPC-1 cells were directed to the apoptosis pathway. At last, POU5F1, KLF4, and CD44 gene expression levels suggested that the peptide has an inhibitory effect on the stemness feature of the AsPC-1 cells. Here, we introduced a novel peptide inhibitor targeting an important protein-protein interaction, the ß-catenin/LRH-1 complex, which may provide highly promising starting points for subsequent drug design. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Neoplasias Pancreáticas , beta Catenina , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Ligandos , Hígado , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias Pancreáticas
14.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34561301

RESUMEN

Nervous system malignancies are characterized by rapid progression and poor survival rates. These clinical observations underscore the need for novel therapeutic insights and pharmacological targets. To this end, here, we identify the orphan nuclear receptor NR5A2/LRH1 as a negative regulator of cancer cell proliferation and promising pharmacological target for nervous system-related tumors. In particular, clinical data from publicly available databases suggest that high expression levels of NR5A2 are associated with favorable prognosis in patients with glioblastoma and neuroblastoma tumors. Consistently, we experimentally show that NR5A2 is sufficient to strongly suppress proliferation of both human and mouse glioblastoma and neuroblastoma cells without inducing apoptosis. Moreover, short hairpin RNA-mediated knockdown of the basal expression levels of NR5A2 in glioblastoma cells promotes their cell cycle progression. The antiproliferative effect of NR5A2 is mediated by the transcriptional induction of negative regulators of the cell cycle, CDKN1A (encoding for p21cip1), CDKN1B (encoding for p27kip1) and Prox1 Interestingly, two well-established agonists of NR5A2, dilauroyl phosphatidylcholine (DLPC) and diundecanoyl phosphatidylcholine, are able to mimic the antiproliferative action of NR5A2 in human glioblastoma cells via the induction of the same critical genes. Most importantly, treatment with DLPC inhibits glioblastoma tumor growth in vivo in heterotopic and orthotopic xenograft mouse models. These data indicate a tumor suppressor role of NR5A2 in the nervous system and render this nuclear receptor a potential pharmacological target for the treatment of nervous tissue-related tumors.


Asunto(s)
Glioblastoma/patología , Neoplasias del Sistema Nervioso/patología , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Ciclo Celular/fisiología , Línea Celular Tumoral , Proliferación Celular , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Humanos , Estimación de Kaplan-Meier , Ratones SCID , Neoplasias del Sistema Nervioso/tratamiento farmacológico , Neoplasias del Sistema Nervioso/metabolismo , Neoplasias del Sistema Nervioso/mortalidad , Células-Madre Neurales/efectos de los fármacos , Neuroblastoma/metabolismo , Neuroblastoma/patología , Fosfatidilcolinas/farmacología , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/genética , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Pathol Res Pract ; 223: 153319, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33991848

RESUMEN

BACKGROUND: Nuclear Receptor Subfamily 5 Group A Member 2 (NR5A2, LRH-1) is an oncogene in a wide range of cancer types. Bioinformatics analysis on glioblastoma multiforme (GBM) tumors has revealed that the miR-139-5p-NR5A2 axis may be putatively regulated by the long non-coding RNA (lncRNA) RP3-439F8.1. This led us to hypothesize the existence of a RP3-439F8.1-miR-139-5p-NR5A2 regulatory axis in GBM cells. METHODS: Gene expression analysis was performed in GBM tumor samples and normal controls from our hospital, the Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM) cohort, and the Gene Expression Omnibus (GEO) database (GSE7696). Cell proliferation, apoptosis, Matrigel Transwell, colony formation, and cell cycle assays were performed in T98 G and U251 cells in vitro. An orthotopic U251 xenograft murine model was employed to test the effects of RP3-439F8.1 knockdown in vivo. RESULTS: NR5A2 was upregulated in the three independent GBM tumor cohorts. In vitro, NR5A2 overexpression enhanced GBM cell proliferation, colony formation, invasiveness, and G0-G1 cell cycle phase shift via co-activating ß-catenin/TCF4 signaling, with no apparent effect upon apoptosis. In contrast, RP3-439F8.1 knockdown produced the opposite effects. RP3-439F8.1 knockdown reduced tumor progression in vivo, increasing overall survival in model mice. Further in vitro experiments revealed that RP3-439F8.1 acts as a competing endogenous RNA (ceRNA) to regulate NR5A2 by sponging the microRNA miR-139-5p. These findings were clinically validated by a positive correlation between RP3-439F8.1 and NR5A2 and a negative correlation between RP3-439F8.1 and miR-139-5p in GBM tumors. CONCLUSIONS: Our study supports a tumorigenic role for RP3-439F8.1 in GBM through the RP3-439F8.1/miR-139-5p/NR5A2 axis.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Proliferación Celular , Glioblastoma/metabolismo , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Bases de Datos Genéticas , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , Receptores Citoplasmáticos y Nucleares/genética , Transducción de Señal , Carga Tumoral , Regulación hacia Arriba
16.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921851

RESUMEN

Diabetes is a chronic metabolic disease caused by an absolute or relative deficiency in functional pancreatic ß-cells that leads to defective control of blood glucose. Current treatments for diabetes, despite their great beneficial effects on clinical symptoms, are not curative treatments, leading to a chronic dependence on insulin throughout life that does not prevent the secondary complications associated with diabetes. The overwhelming increase in DM incidence has led to a search for novel antidiabetic therapies aiming at the regeneration of the lost functional ß-cells to allow the re-establishment of the endogenous glucose homeostasis. Here we review several aspects that must be considered for the development of novel and successful regenerative therapies for diabetes: first, the need to maintain the heterogeneity of islet ß-cells with several subpopulations of ß-cells characterized by different transcriptomic profiles correlating with differences in functionality and in resistance/behavior under stress conditions; second, the existence of an intrinsic islet plasticity that allows stimulus-mediated transcriptome alterations that trigger the transdifferentiation of islet non-ß-cells into ß-cells; and finally, the possibility of using agents that promote a fully functional/mature ß-cell phenotype to reduce and reverse the process of dedifferentiation of ß-cells during diabetes.


Asunto(s)
Islotes Pancreáticos/metabolismo , Medicina Regenerativa/métodos , Animales , Transdiferenciación Celular/fisiología , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
17.
Front Cell Dev Biol ; 9: 643522, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33791301

RESUMEN

Osteosarcoma (OS) that mainly occurs during childhood and adolescence is a devastating disease with poor prognosis presented by extreme metastases. Recent studies have revealed that liver receptor homolog 1 (LRH-1) plays a vital role in the metastasis of several human cancers, but its role is unknown in the metastasis of OS. In this study, Gene Ontology (GO) enrichment analyses based on high-throughput RNA-seq data revealed that LRH-1 acted a pivotal part in the positive regulation of cell migration, motility, and angiogenesis. Consistently, LRH-1 knockdown inhibited the migration of human OS cells, which was concurrent with the downregulation of mesenchymal markers and the upregulation of epithelial markers. In addition, short hairpin RNAs (shRNAs) targeting LRH-1 inactivated transforming growth factor beta (TGF-ß) signaling pathway. LRH-1 knockdown inhibited human umbilical vein endothelial cell (HUVEC) proliferation, migration, and tube formation. Vascular endothelial growth factor A (VEGFA) expression was also downregulated after LRH-1 knockdown. Immunohistochemistry (IHC) revealed that the expression of LRH-1 protein was significantly higher in tumor tissues than in normal bone tissues. We found that high LRH-1 expression was associated with poor differentiation and advanced TNM stage in OS patients using IHC. Based on The Cancer Genome Atlas (TCGA) database, high LRH-1 expression predicts poor survival in lung squamous cell carcinoma (LUSC), kidney renal papillary cell carcinoma (KIRP), and pancreatic adenocarcinoma (PAAD). The downregulation of LRH-1 significantly hindered the migration and motility of LUSC cells. Using multi-omic bioinformatics, the positive correlation between LRH-1- and EMT-related genes was found across these three cancer types. GO analysis indicated that LRH-1 played a vital role in "blood vessel morphogenesis" or "vasculogenesis" in KIRP. Our results indicated that LRH-1 plays a tumor-promoting role in human OS, could predict the early metastatic potential, and may serve as a potential target for cancer therapy.

18.
J Hepatol ; 75(2): 400-413, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33746084

RESUMEN

BACKGROUND & AIMS: Cholestatic liver diseases comprise a variety of disorders of bile formation and/or flow which generally result in progressive hepatobiliary injury. Regulation of bile acid (BA) synthesis and homeostasis is a promising strategy for the treatment of cholestatic liver disease. Limb expression 1-like protein (LIX1L) plays an important role in post-transcriptional gene regulation, yet its role in cholestatic liver injury remains unclear. METHODS: LIX1L expression was studied in patients with primary sclerosing cholangitis (PSC) or primary biliary cholangitis (PBC), and 3 murine models of cholestasis (bile duct ligation [BDL], Mdr2 knockout [Mdr2-/-], and cholic acid [CA] feeding). Lix1l knockout mice were employed to investigate the function of LIX1L in cholestatic liver diseases. Chromatin immunoprecipitation assays were performed to determine whether Egr-1 bound to the Lix1l promoter. MiRNA expression profiling was analyzed by microarray. An adeno-associated virus (AAV)-mediated hepatic delivery system was used to identify the function of miR-191-3p in vivo. RESULTS: LIX1L expression was increased in the livers of patients with PSC and PBC, and in the 3 murine models, as well as in BA-stimulated primary mouse hepatocytes. BA-induced Lix1l upregulation was dependent on Egr-1, which served as a transcriptional activator. LIX1L deficiency attenuated cholestatic liver injury in BDL and Mdr2-/- mice. MiR-191-3p was the most reduced miRNA in livers of WT-BDL mice, while it was restored in Lix1l-/--BDL mice. MiR-191-3p targets and downregulates Lrh-1, thereby inhibiting Cyp7a1 and Cyp8b1 expression. AAV-mediated hepatic delivery of miR-191-3p significantly attenuated cholestatic liver injury in Mdr2-/- mice. CONCLUSIONS: LIX1L deficiency alleviates cholestatic liver injury by inhibiting BA synthesis. LIX1L functions as a nexus linking BA/Egr-1 and miR-191-3p/LRH-1 signaling. LIX1L and miR-191-3p may be promising targets for the treatment of BA-associated hepatobiliary diseases. LAY SUMMARY: Bile acid homeostasis can be impaired in cholestatic liver diseases. Our study identified a novel mechanism of positive feedback regulation in cholestasis. LIX1L and miR-191-3p represent potential therapeutic targets for cholestatic liver diseases.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Ictericia Obstructiva/etiología , Proteínas de Unión al ARN/metabolismo , Animales , Modelos Animales de Enfermedad , Ictericia Obstructiva/genética , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática Biliar/complicaciones , Ratones , Proteínas de Unión al ARN/genética
19.
Cancers (Basel) ; 13(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672730

RESUMEN

The process of self-renewal in normal intestinal epithelium is characterized by a fine balance between proliferation, differentiation, migration, and cell death. When even one of these aspects escapes the normal control, cellular proliferation and differentiation are impaired, with consequent onset of tumorigenesis. In humans, colorectal cancer (CRC) is the main pathological manifestation of this derangement. Nowadays, CRC is the world's fourth most deadly cancer with a limited survival after treatment. Several conditions can predispose to CRC development, including dietary habits and pre-existing inflammatory bowel diseases. Given their extraordinary ability to interact with DNA, it is widely known that nuclear receptors play a key role in the regulation of intestinal epithelium, orchestrating the expression of a series of genes involved in developmental and homeostatic pathways. In particular, the nuclear receptor Liver Receptor Homolog-1 (LRH-1), highly expressed in the stem cells localized in the crypts, promotes intestine cell proliferation and renewal in both direct and indirect DNA-binding manner. Furthermore, LRH-1 is extensively correlated with diverse intestinal inflammatory pathways. These evidence shed a light in the dynamic intestinal microenvironment in which increased regenerative epithelial cell turnover, mutagenic insults, and chronic DNA damages triggered by factors within an inflammatory cell-rich microenvironment act synergistically to favor cancer onset and progression.

20.
Mol Neurobiol ; 58(5): 1952-1962, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33411242

RESUMEN

Neurogenesis in the dentate gyrus (DG) of the adult hippocampus is actively involved in brain homeostasis. Thus, identification of novel regulators in adult neurogenesis could significantly contribute to new therapies. We have recently unraveled the regulatory role of NR5A2 (also known as LRH1), a druggable orphan nuclear receptor, in embryonic neurogenesis. However, its involvement in adult neurogenesis is still an open question. Here we show that NR5A2 is differentially expressed in the DG of the adult hippocampus with neurons exhibiting higher levels of expression than adult neural stem/progenitor cells (aNSCs), suggesting a correlation with neuronal differentiation. Notably, NR5A2 overexpression in ex vivo cultured aNSCs induces expression of Prox1, a critical regulator of adult hippocampal neurogenesis. In agreement, NR5A2 is sufficient to reduce proliferation, increase neuronal differentiation, and promote axon outgrowth. Moreover, depletion of NR5A2 in DG cells in vivo caused a decrease in the number of NeuN as well as Calbindin-positive neurons, indicating its necessity for the maintenance of neuronal identity. Our data propose a regulatory role of NR5A2 in neuronal differentiation and fate specification of adult hippocampal NSCs.


Asunto(s)
Hipocampo/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Animales , Calbindinas/metabolismo , Ciclo Celular/fisiología , Proliferación Celular/fisiología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA