Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Ophthalmol Sci ; 2(3): 100188, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36245757

RESUMEN

Purpose: Retinoblastomas are malignant eye tumors diagnosed in young children. Most retinoblastomas are genetically characterized by biallelic inactivation of the RB1 gene. However, 1.5% of tumors demonstrate high-level amplification of the proto-oncogene MYCN. Patients with MYCN-amplified RB1-proficient retinoblastoma receive a diagnosis at an earlier age and show a clinically and histologically more malignant phenotype. This study aimed to identify genome-wide molecular features that distinguish this subtype from other retinoblastomas. Design: Cohort study. Participants: Forty-seven retinoblastoma tumors, comprising 36 RB1 -/-, 4 RB1 +/-, and 7 RB1 +/+ tumors. In total, 5 retinoblastomas displayed high-level MYCN amplification, with 3 being RB1 +/+, 1 being RB1 +/-, and 1 being RB1 -/- . Methods: Integrated analysis, based on gene expression, methylation, and methylation-expression correlations, was performed to identify distinct molecular components of MYCN-amplified RB1-proficient retinoblastomas compared with other retinoblastoma subtypes. The methylation and methylation-expression correlation analysis was initially conducted within a subset of samples (n = 15) for which methylation profiles were available. The significant findings were cross-validated in the entire cohort (n = 47) and in publicly available data. Main Outcome Measures: Differentially expressed genes/pathways, differentially methylated genes, and methylation-driven differential gene expression. Results: A large number of genes (n = 3155) were identified with distinct expression patterns in MYCN-amplified RB1-proficient retinoblastomas. The upregulated and downregulated genes were associated with translation and cell-cycle processes, respectively. Methylation analysis revealed distinct methylated patterns in MYCN-amplified RB1-proficient tumors, many of which showing significant impact on gene expression. Data integration identified a 40-gene expression signature with hypermethylated state resulting in a significant downregulation in MYCN-amplified RB1-proficient retinoblastomas. Cross-validation using the entire cohort and the public domain expression data verified the overall lower expression of these genes not only in retinoblastomas with a MYCN-amplified RB1-proficient background, but also in MYCN-amplified neuroblastomas. These include the metabolism-associated TSTD1 gene and the cyclin-dependent kinase inhibitor gene CDKN2C. Conclusions: MYCN-amplified RB1-proficient retinoblastomas display significantly distinct molecular features compared with other retinoblastomas, including a set of 40 hypermethylation-driven downregulated genes. This gene set can give insight into the biology of MYCN-amplified retinoblastomas and may help us to understand the more aggressive clinical behavior.

2.
Comput Struct Biotechnol J ; 20: 4870-4884, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36147664

RESUMEN

Transcriptome level expression data connected to the spatial organization of the cells and molecules would allow a comprehensive understanding of how gene expression is connected to the structure and function in the biological systems. The spatial transcriptomics platforms may soon provide such information. However, the current platforms still lack spatial resolution, capture only a fraction of the transcriptome heterogeneity, or lack the throughput for large scale studies. The strengths and weaknesses in current ST platforms and computational solutions need to be taken into account when planning spatial transcriptomics studies. The basis of the computational ST analysis is the solutions developed for single-cell RNA-sequencing data, with advancements taking into account the spatial connectedness of the transcriptomes. The scRNA-seq tools are modified for spatial transcriptomics or new solutions like deep learning-based joint analysis of expression, spatial, and image data are developed to extract biological information in the spatially resolved transcriptomes. The computational ST analysis can reveal remarkable biological insights into spatial patterns of gene expression, cell signaling, and cell type variations in connection with cell type-specific signaling and organization in complex tissues. This review covers the topics that help choosing the platform and computational solutions for spatial transcriptomics research. We focus on the currently available ST methods and platforms and their strengths and limitations. Of the computational solutions, we provide an overview of the analysis steps and tools used in the ST data analysis. The compatibility with the data types and the tools provided by the current ST analysis frameworks are summarized.

3.
Comput Struct Biotechnol J ; 20: 3718-3728, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35891790

RESUMEN

Human cancer arises from a population of cells that have acquired a wide range of genetic alterations, most of which are targets of therapeutic treatments or are used as prognostic factors for patient's risk stratification. Among these, copy number alterations (CNAs) are quite frequent. Currently, several molecular biology technologies, such as microarrays, NGS and single-cell approaches are used to define the genomic profile of tumor samples. Output data need to be analyzed with bioinformatic approaches and particularly by employing computational algorithms. Molecular biology tools estimate the baseline region by comparing either the mean probe signals, or the number of reads to the reference genome. However, when tumors display complex karyotypes, this type of approach could fail the baseline region estimation and consequently cause errors in the CNAs call. To overcome this issue, we designed an R-package, BoBafit , able to check and, eventually, to adjust the baseline region, according to both the tumor-specific alterations' context and the sample-specific clustered genomic lesions. Several databases have been chosen to set up and validate the designed package, thus demonstrating the potential of BoBafit to adjust copy number (CN) data from different tumors and analysis techniques. Relevantly, the analysis highlighted that up to 25% of samples need a baseline region adjustment and a redefinition of CNAs calls, thus causing a change in the prognostic risk classification of the patients. We support the implementation of BoBafit within CN analysis bioinformatics pipelines to ensure a correct patient's stratification in risk categories, regardless of the tumor type.

4.
MethodsX ; 9: 101761, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774415

RESUMEN

The interpretation of hereditary genetic sequencing variants is often limited due to the absence of functional data and other key evidence to assess the role of variants in disease. Cancer genetics is unique, as two sets of genomic information are often available from a cancer patient: somatic and germline. Despite the progress made in the integrated analysis of somatic and germline findings, the assessment of pathogenicity of germline variants in high penetrance genes remains grossly underutilized. Indeed, standard ACMG/AMP guidelines for interpreting germline sequence variants do not address the evidence derived from tumor data in cancer. Previously, we have demonstrated the utility of somatic tumor data as supporting evidence to elucidate the role of germline variants in patients suspected with VHL syndrome and other cancers. We have leveraged the key elements of cancer genetics in these cases: genes with expected high disease penetrance and those with a known biallelic mechanism of tumorigenicity. Here we provide our optimized protocol for evaluating the pathogenicity of germline VHL variants using informative somatic profiling data. This protocol provides details of case selection, assessment of personal and family evidence, somatic tumor profiles, and loss of heterozygosity (LOH) as supporting evidence for the re-evaluation of germline variants.

5.
Ann Med Surg (Lond) ; 73: 103150, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34917354

RESUMEN

OBJECTIVES: Vitamin D deficiency is a driving force of common cancers like breast cancer. Vitamin D receptor (VDR) can play a tumor suppressor role by helping the precise function of vitamin D in cells such as modulation TGF-ß signaling pathway. This study aimed to investigate the association of VDR gene variants and susceptibility to breast cancer in Iranian women. METHODS: Genomic DNAs were isolated from blood samples of 161 women with breast cancer and 150 healthy women. After amplification of five positions of VDR gene, the prepared amplicons were digested with TaqI, ApaI, BsmI, Cdx2, and FokI restriction enzymes. RESULTS: Subsequently, the digested products were electrophoresed on the 1.5% agarose gel. Odds ratios (ORs) for breast cancer were calculated for genotypes and estimated haplotypes. Binary logistic regression analysis showed FokI (rs2228570), BsmI (rs1544410), and ApaI (rs7975232) polymorphisms had the significant distribution in patients than to the normal group. Analysis of linkage disequilibrium for all pairs of SNPs showed that D'-value between SNP TaqI and SNP BsmI was significantly (p ≤ 0.05). We observed that four major haplotypes of ApaI, BsmI, FokI, Cdx2, and TaqI SNPs significantly were in high frequency than predicted frequency. Among these four haplotypes, CGTAT haplotype was in a higher significant association than others with breast cancer risk (p-value = 0.0001). CONCLUSION: Our results showed that FokI, BsmI, and ApaI of VDR polymorphisms associated with the risk of breast cancer in Iranian population.

6.
JAAD Case Rep ; 9: 102-104, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33681440
7.
JHEP Rep ; 2(2): 100068, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32181445

RESUMEN

BACKGROUND & AIMS: Biliary tract tumors are uncommon but highly aggressive malignancies with poor survival outcomes. Due to their low incidence, research into effective therapeutics has been limited. Novel research platforms for pre-clinical studies are desperately needed. We sought to develop a patient-derived biliary tract cancer xenograft catalog. METHODS: With appropriate consent and approval, surplus malignant tissues were obtained from surgical resection or radiographic biopsy and implanted into immunocompromised mice. Mice were monitored for xenograft growth. Established xenografts were verified by a hepatobiliary pathologist. Xenograft characteristics were correlated with original patient/tumor characteristics and oncologic outcomes. A subset of xenografts were then genomically characterized using Mate Pair sequencing (MPseq). RESULTS: Between October 2013 and January 2018, 87 patients with histologically confirmed biliary tract carcinomas were enrolled. Of the 87 patients, 47 validated PDX models were successfully generated. The majority of the PDX models were created from surgical resection specimens (n = 44, 94%), which were more likely to successfully engraft when compared to radiologic biopsies (p = 0.03). Histologic recapitulation of original patient tumor morphology was observed in all xenografts. Successful engraftment was an independent predictor for worse recurrence-free survival. MPseq showed genetically diverse tumors with frequent alterations of CDKN2A, SMAD4, NRG1, TP53. Sequencing also identified worse survival in patients with tumors containing tetraploid genomes. CONCLUSIONS: This is the largest series of biliary tract cancer xenografts reported to date. Histologic and genomic analysis of patient-derived xenografts demonstrates accurate recapitulation of original tumor morphology with direct correlations to patient outcomes. Successful development of biliary cancer tumografts is feasible and may be used to direct subsequent therapy in high recurrence risk patients. LAY SUMMARY: Patient biliary tract tumors grown in immunocompromised mice are an invaluable resource in the treatment of biliary tract cancers. They can be used to guide individualized cancer treatment in high-risk patients.

8.
9.
Respir Med Case Rep ; 22: 77-82, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28706850

RESUMEN

Perivascular epithelioid cell tumors (PEComas) are mesenchymal neoplasms with immunoreactivity for both melanocytic and smooth muscle markers. PEComas occur at multiple sites, and malignant PEComas can undergo metastasis, recurrence and aggressive clinical courses. Although the lung is a common metastatic site of PEComas, they usually appear as multiple nodules but rarely become cystic or cavitary. Here, we describe a female patient whose lungs manifested multiple cystic, cavity-like and nodular metastases 3 years after the resection of uterine tumors tentatively diagnosed as epithelioid smooth muscle tumors with uncertain malignant potential. This patient's subsequent pneumothorax necessitated video-assisted thoracoscopic surgery, and examination of her resected lung specimens eventually led to correcting the diagnosis, i.e., to a PEComa harboring tuberous sclerosis complex 1 (TSC1) loss-of-heterozygosity that originated in the uterus and then metastasized to the lungs. The administration of a gonadotropin-releasing hormone analogue later stabilized her clinical course. To the best of our knowledge, the present case is the first in the literature that associates PEComas with a TSC1 abnormality. Additionally, the pulmonary manifestations, including imaging appearance and pneumothorax, somewhat resembled those of lymphangioleiomyomatosis, a representative disease belonging to the PEComa family. Although PEComas are rare, clinicians, radiologists and pathologists should become aware of this disease entity, especially in the combined clinical setting of multiple cystic, cavity-like, nodular lesions on computed tomography of the chest and a past history of the tumor in the female reproductive system.

10.
Cell Mol Gastroenterol Hepatol ; 3(3): 348-358, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28462377

RESUMEN

Gastric cancer (GC) remains the third most common cause of cancer death worldwide, with limited therapeutic strategies available. With the advent of next-generation sequencing and new preclinical model technologies, our understanding of its pathogenesis and molecular alterations continues to be revolutionized. Recently, the genomic landscape of GC has been delineated. Molecular characterization and novel therapeutic targets of each molecular subtype have been identified. At the same time, patient-derived tumor xenografts and organoids now comprise effective tools for genetic evolution studies, biomarker identification, drug screening, and preclinical evaluation of personalized medicine strategies for GC patients. These advances are making it feasible to integrate clinical, genome-based and phenotype-based diagnostic and therapeutic methods and apply them to individual GC patients in the era of precision medicine.

11.
Meta Gene ; 7: 95-104, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26909336

RESUMEN

Familial Adenomatous Polyposis (FAP) is the second most common inherited predisposition to colorectal cancer (CRC) associated with the development of hundreds to thousands of adenomas in the colon and rectum. Mutations in APC are found in ~ 80% polyposis patients with FAP. In the remaining 20% no genetic diagnosis can be provided suggesting other genes or mechanisms that render APC inactive may be responsible. Copy number variants (CNVs) remain to be investigated in FAP and may account for disease in a proportion of polyposis patients. A cohort of 56 polyposis patients and 40 controls were screened for CNVs using the 2.7M microarray (Affymetrix) with data analysed using ChAS (Affymetrix). A total of 142 CNVs were identified unique to the polyposis cohort suggesting their involvement in CRC risk. We specifically identified CNVs in four unrelated polyposis patients among CRC susceptibility genes APC, DCC, MLH1 and CTNNB1 which are likely to have contributed to disease development in these patients. A recurrent deletion was observed at position 18p11.32 in 9% of the patients screened that was of particular interest. Further investigation is necessary to fully understand the role of these variants in CRC risk given the high prevalence among the patients screened.

12.
Cancer Biol Ther ; 16(7): 1080-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25961141

RESUMEN

Deletions of chromosome 8p occur frequently in breast cancers, but analyses of its clinical relevance have been limited to small patient cohorts and provided controversial results. A tissue microarray with 2,197 breast cancers was thus analyzed by fluorescence in-situ hybridization using an 8p21 probe in combination with a centromere 8 reference probe. 8p deletions were found in 50% of carcinomas with no special type, 67% of papillary, 28% of tubular, 37% of lobular cancers and 56% of cancers with medullary features. Deletions were always heterozygous. 8p deletion was significantly linked to advanced tumor stage (P < 0.0001), high-grade (P < 0.0001), high tumor cell proliferation (Ki67 Labeling Index; P < 0.0001), and shortened overall survival (P < 0.0001). For example, 8p deletion was seen in 32% of 290 grade 1, 43% of 438 grade 2, and 65% of 427 grade 3 cancers. In addition, 8p deletions were strongly linked to amplification of MYC (P < 0.0001), HER2 (P < 0.0001), and CCND1 (p = 0.001), but inversely associated with ER receptor expression (p = 0.0001). Remarkably, 46.5% of 8p-deleted cancers harbored amplification of at least one of the analyzed genes as compared to 27.5% amplifications in 8p-non-deleted cancers (P < 0.0001). In conclusion, 8p deletion characterizes a subset of particularly aggressive breast cancers. As 8p deletions are easy to analyze, this feature appears to be highly suited for future DNA based prognostic breast cancer panels. The strong link of 8p deletion with various gene amplifications raises the possibility of a role for regulating genomic stability.


Asunto(s)
Neoplasias de la Mama/genética , Deleción Cromosómica , Cromosomas Humanos Par 8/genética , Amplificación de Genes , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/metabolismo , Ciclina D1/genética , Femenino , Genes myc/genética , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Antígeno Ki-67/análisis , Persona de Mediana Edad , Pronóstico , Receptor ErbB-2/genética , Análisis de Matrices Tisulares
13.
Oral Oncol ; 51(2): 178-81, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25467776

RESUMEN

OBJECTIVES: Oral leukoplakia (OL) is the most common potentially malignant lesion of the oral cavity, and OL diagnosis is a risk factor for developing subsequent oral squamous cell carcinomas (OSCC). Notably, loss of heterozygosity (LOH) profiles have been validated as risk predictors of malignant transformation of OL. Similar to other solid malignant tumors, OSCC exhibit molecular heterogeneity. However, if and to what extent tumor heterogeneity is present in premalignant lesions of the oral cavity has not been addressed. As LOH analysis is currently being used to stratify OL patients at risk for OSCC development in chemoprevention studies, insight into the issue of molecular heterogeneity of OL is of clinical significance. MATERIALS AND METHODS: To address this issue, 11 polymorphic microsatellite markers localizing to chromosomes 3, 9, 11 and 17 were used to detect LOH in 28 samples of 14 OL patients, by capillary electrophoresis analysis. These samples were either clinically recurrent lesions, or two anatomically distinct biopsies from the same lesion, or even two different OL lesions located at distinct intraoral sites. RESULTS: In all but one of the biopsies pairs, distinct LOH patterns were displayed regardless of histopathological grade. These data provide evidence for inter- and intra-lesional molecular heterogeneity in OL. CONCLUSIONS: On the basis of these findings, molecular heterogeneity needs to be addressed in subsequent studies targeting specific carcinogenic pathways/genes in chemoprevention of malignant transformation of OL.


Asunto(s)
Heterogeneidad Genética , Leucoplasia Bucal/patología , Adulto , Anciano , Femenino , Humanos , Leucoplasia Bucal/genética , Masculino , Persona de Mediana Edad
14.
Cell Mol Gastroenterol Hepatol ; 1(2): 131-153, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28210673

RESUMEN

Gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN), considered a heterogeneous neoplasia, exhibit ill-defined pathobiology and protean symptomatology and are ubiquitous in location. They are difficult to diagnose, challenging to manage, and outcome depends on cell type, secretory product, histopathologic grading, and organ of origin. A morphologic and molecular genomic review of these lesions highlights tumor characteristics that can be used clinically, such as somatostatin-receptor expression, and confirms features that set them outside the standard neoplasia paradigm. Their unique pathobiology is useful for developing diagnostics using somatostatin-receptor targeted imaging or uptake of radiolabeled amino acids specific to secretory products or metabolism. Therapy has evolved via targeting of protein kinase B signaling or somatostatin receptors with drugs or isotopes (peptide-receptor radiotherapy). With DNA sequencing, rarely identified activating mutations confirm that tumor suppressor genes are relevant. Genomic approaches focusing on cancer-associated genes and signaling pathways likely will remain uninformative. Their uniquely dissimilar molecular profiles mean individual tumors are unlikely to be easily or uniformly targeted by therapeutics currently linked to standard cancer genetic paradigms. The prevalence of menin mutations in pancreatic NEN and P27KIP1 mutations in small intestinal NEN represents initial steps to identifying a regulatory commonality in GEP-NEN. Transcriptional profiling and network-based analyses may define the cellular toolkit. Multianalyte diagnostic tools facilitate more accurate molecular pathologic delineations of NEN for assessing prognosis and identifying strategies for individualized patient treatment. GEP-NEN remain unique, poorly understood entities, and insight into their pathobiology and molecular mechanisms of growth and metastasis will help identify the diagnostic and therapeutic weaknesses of this neoplasia.

15.
Neoplasia ; 16(10): 868-73, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25379023

RESUMEN

Adrenal medullary hyperplasias (AMHs) are adrenal medullary proliferations with a size < 1 cm, while larger lesions are considered as pheochromocytoma (PCC). This arbitrary distinction has been proposed decades ago, although the biological relationship between AMH and PCC has never been investigated. Both lesions are frequently diagnosed in multiple endocrine neoplasia type 2 (MEN2) patients in whom they are considered as two unrelated clinical entities. In this study, we investigated the molecular relationship between AMH and PCC in MEN2 patients. Molecular aberrations of 19 AMHs and 13 PCCs from 18 MEN2 patients were determined by rearranged during transfection (RET) proto-oncogene mutation analysis and loss of heterozygosity (LOH) analysis for chromosomal regions 1p13, 1p36, 3p, and 3q, genomic areas covering commonly altered regions in RET-related PCC. Identical molecular aberrations were found in all AMHs and PCCs, at similar frequencies. LOH was seen for chromosomes 1p13 in 8 of 18 (44%), 1p36 in 9 of 15 (60%), 3p12-13 in 12 of 18 (67%), and 3q23-24 in 10 of 16 (63%) of AMHs, and for chromosome 1p13 in 13 of 13 (100%), 1p36 in 7 of 11 (64%), 3p12-13 in 4 of 11 (36%), and 3q23-24 in 11 of 12 (92%) of PCCs. Our results indicate that AMHs are not hyperplasias and, in clinical practice, should be regarded as PCCs, which has an impact on diagnosis and treatment of MEN2 patients. We therefore propose to replace the term AMH by micro-PCC to indicate adrenal medullary proliferations of less than 1 cm.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales/etiología , Médula Suprarrenal/patología , Neoplasia Endocrina Múltiple Tipo 2a/genética , Neoplasia Endocrina Múltiple Tipo 2a/patología , Feocromocitoma/etiología , Cromosomas Humanos Par 1 , Cromosomas Humanos Par 3 , Análisis Mutacional de ADN , Humanos , Hiperplasia , Pérdida de Heterocigocidad , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-ret/genética
16.
Artículo en Coreano | WPRIM (Pacífico Occidental) | ID: wpr-71676

RESUMEN

Recently the adenomaatous polyposis coli(APC) gene, a tumor suppressor gene, was identified and the cDNA was cloned from chromosome 5q21. Allelic deletion or point mutation of tumor suppressor genes(TSGs) has been considered as an important mechanism in development of human tumor. Point mutations affecting APC gene are seen in the hereditary syndrome, adenomatous polyposis and spordic colon cancer. However, the mutation of APC gene and other TSGs have not been described in gastric cancer. In order to identify the mutation of exon 11 of APC gene for gastric cancer, we amplified DNA extracted from paraffin-embedded tissues by polymerase chain reaction(PCR) and digested the PCR products with restriction enzyme Rsa I. We examined the DNA extracted from paraffin-embedded 44 gastric cancer tissues with lymph nodes. Eighteen(41%) among 44 were informative for the study exon 11 of the APC gene, and we found loss of heterozygosity(LOH) for APC in 6/18(33.3%). These data suggest that the point mutation or the base change of APC gene commonly occurs in gastric cancer. We conclude that the mutation of APC gene is strongly connected with development of human gastric cancer.


Asunto(s)
Humanos , Genes Supresores de Tumor , Neoplasias Gástricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA