Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Foods ; 13(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063352

RESUMEN

Chromatographic analysis of phenolic phytochemicals in foods has significantly advanced over the past decade (2014-2024), meeting increasing demands for precision and efficiency. This review covers both conventional and advanced chromatographic techniques used for detecting phenolic phytochemicals in foods. Conventional methods like High-Performance Liquid Chromatography, Ultra High-Performance Liquid Chromatography, Thin-Layer Chromatography, and Gas Chromatography are discussed, along with their benefits and limitations. Advanced techniques, including Hydrophilic Interaction Liquid Chromatography, Nano-LC, Multidimensional Liquid Chromatography, and Capillary Electrophoresis, are highlighted for their innovations and improved capabilities. The review addresses challenges in current chromatographic methods, emphasizing the need for standardized and validated procedures according to the Food and Drug Administration, European Cooperation for Accreditation of Laboratories, and The International Organization for Standardization guidelines to ensure reliable and reproducible results. It also considers novel strategies for reducing the environmental impact of chromatographic methods, advocating for sustainable practices in analytical chemistry.

2.
J Chromatogr A ; 1730: 465079, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38897111

RESUMEN

Due to the decoupling of the first (1D) and second (2D) dimension in pulsed elution-LC × LC (PE-LC × LC), method development is more flexible and straightforward compared to fast comprehensive LC × LC where the dependencies of key parameters between the two dimensions limits its flexibility. In this study we present a method for pulse generation, which is based on a switching valve alternating between one pump that delivers the gradient and a second pump that delivers low eluotrophic strength for the pause state. Consequently, the dwell volume of the system was circumvented and 7.5, and 3.75 times shorter pulse widths could be generated at flow rates of 0.2, and 0.4 mL/min with satisfactory accuracies between programmed and observed mobile phase composition (relative deviation of 6.0 %). We investigated how key parameters including pulse width and step height, 2D gradient time and flow rate affected the peak capacity in PE-LC × LC. The conditions yielding the highest peak capacity for the PE-LC × LC- high-resolution mass spectrometry (HRMS) system were applied to a wastewater effluent sample. The results were compared to a one dimensional (1D)-LC-HRMS chromatogram. The peak capacity increased with a factor 34 from 112 for the 1D-LC run to 3770 for PE-LC × LC-HRMS after correction for undersampling. The analysis time for PE-LC × LC-HRMS was 12.1 h compared to 67.5 min for the 1D-LC-HRMS run. The purity of the mass spectra improved for PE-LC × LC-HRMS by a factor 2.6 (p-value 3.3 × 10-6) and 2.0 (p-value 2.5 × 10-3) for the low and high collision energy trace compared to the 1D-LC-HRMS analysis. Furthermore, the signal-to-noise ratio (S/N) was 4.2 times higher (range: 0.06-56.7, p-value 3.8 × 10-2) compared to the 1D-LC-HRMS separation based on 42 identified compounds. The improvements in S/N were explained by the lower peak volume obtained in the PE-LC × LC-HRMS.


Asunto(s)
Espectrometría de Masas , Aguas Residuales , Aguas Residuales/química , Aguas Residuales/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos
3.
J Chromatogr A ; 1691: 463821, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36724722

RESUMEN

The nearly opposite retention mechanism in the two-dimensional liquid chromatography (2D-LC), which combines normal phase liquid chromatography (NPLC) and reversed phase liquid chromatography (RPLC), shows extremely high orthogonality and theoretical peak capacity. However, peak breakthrough and peak distortion caused by the highly incompatible 2D mobile phases counteracts the advantages offered by high orthogonality. To address this difficulty, this study proposes a comprehensive two-dimensional NPLC × RPLC integrating temperature-sensitive aqueous-phase compatible normal-phase chromatography (TSACNPLC) and at-column dilution modulation (ACDM). The proposed 2D-LC system uses an aqueous-miscible acetonitrile/methanol eluent in the 1st D NPLC, instead of an aqueous-phase immiscible eluent, such as n-hexane/methanol, to increase the miscibility with the RP mobile phase system. Additionally, the system exploits temperature-sensitive retention behavior to enhance the retention ability of aqueous-phase compatible NPLC. To verify the feasibility of the proposed 2D-LC, this study selected three multi-component samples with mid-to-low polarity, including ethoxylated (n ≈ 6) bisphenol A (BPA-6EO), ethoxylated (n ≈ 6) tristearylphenol (TSP-6EO), and safflower methanol extract. Next, the effectiveness of the constructed 2D-LC was systematically investigated, including low temperature-induced retention enhancement of NPLC, overcoming solvent incompatibility by ACDM, and optimization of 2 D separation conditions, was systematically investigated.


Asunto(s)
Cromatografía de Fase Inversa , Metanol , Cromatografía de Fase Inversa/métodos , Temperatura , Cromatografía Liquida/métodos , Frío , Agua
4.
J Chromatogr A ; 1536: 195-204, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-28899555

RESUMEN

Comprehensive on-line two-dimensional liquid chromatography (LCxLC) is expected to generate impressive peak capacities, which makes it a method of choice for the analysis of complex samples such as pharmaceuticals. A comparative study of different sets of chromatographic conditions including stationary phase, pH additive and organic modifier was carried out with two real pharmaceutical samples in order to find out the best analytical conditions for implementation of one or several generic on-line LCxLC separations. Our choice was based on the evaluation of both degree of orthogonality and practical sample peak capacity under linear gradient conditions. The potential of 190 combinations of chromatographic systems was compared. A set of 3 RPLCxRPLC configurations was found to be very attractive for both samples and in good agreement with the findings of a previous study carried out with 17 model compounds, thereby supporting the idea of using generic LCxLC conditions in the pharmaceutical area. The three selected 2D-systems were implemented for the on-line RPLCxRPLC-UV/MS analysis of two pharmaceutical samples. It was shown, for each sample, that these 2D-systems were able to generate an effective peak capacity close to 1000 in less than 50min. For each sample, baseline separation was obtained for every known compound and furthermore a large number of unknown impurities could also be separated and identified. Finally, in the proposed conditions, the total number of compounds detected was significantly improved from one RPLC separation to one RPLCxRPLC separation. Only a small additional gain was observed by performing a second RPLCxRPLC separation or even a third one.


Asunto(s)
Química Farmacéutica/métodos , Cromatografía Liquida/métodos , Preparaciones Farmacéuticas/análisis , Química Farmacéutica/instrumentación
5.
J Chromatogr A ; 1498: 183-195, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28132733

RESUMEN

This study was devoted to the search for conditions leading to highly efficient sub-hour separations of complex peptide samples with the objective of coupling to mass spectrometry. In this context, conditions for one dimensional reversed phase liquid chromatography (1D-RPLC) were optimized on the basis of a kinetic approach while conditions for on-line comprehensive two-dimensional liquid chromatography using reversed phase in both dimensions (on-line RPLCxRPLC) were optimized on the basis of a Pareto-optimal approach. Maximizing the peak capacity while minimizing the dilution factor for different analysis times (down to 5min) were the two objectives under consideration. For gradient times between 5 and 60min, 15cm was found to be the best column length in RPLC with sub-2µm particles under 800bar as system pressure. In RPLCxRPLC, for less than one hour as first dimension gradient time, the sampling rate was found to be a key parameter in addition to conventional parameters including column dimension, particle size, flow-rate and gradient conditions in both dimensions. It was shown that the optimum sampling rate was as low as one fraction per peak for very short gradient times (i.e. below 10min). The quality descriptors obtained under optimized RPLCxRPLC conditions were compared to those obtained under optimized RPLC conditions. Our experimental results for peptides, obtained with state of the art instrumentation, showed that RPLCxRPLC could outperform 1D-RPLC for gradient times longer than 5min. In 60min, the same peak intensity (same dilution) was observed with both techniques but with a 3-fold lower injected amount in RPLCxRPLC. A significant increase of the signal-to-noise ratio mainly due to a strong noise reduction was observed in RPLCxRPLC-MS compared to the one in 1D-RPLC-MS making RPLCxRPLC-MS a promising technique for peptide identification in complex matrices.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa/métodos , Modelos Teóricos , Péptidos/análisis , Bradiquinina/análisis , Bradiquinina/aislamiento & purificación , Encefalina Leucina/análisis , Encefalina Leucina/aislamiento & purificación , Espectrometría de Masas , Mapeo Peptídico , Péptidos/aislamiento & purificación , Espectrofotometría Ultravioleta , Factores de Tiempo
6.
Free Radic Biol Med ; 68: 186-95, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24321318

RESUMEN

A number of oxidative protein modifications have been well characterized during the past decade. Presumably, reversible oxidative posttranslational modifications (PTMs) play a significant role in redox signaling pathways, whereas irreversible modifications including reactive protein carbonyl groups are harmful, as their levels are typically increased during aging and in certain diseases. Despite compelling evidence linking protein carbonylation to numerous disorders, the underlying molecular mechanisms at the proteome remain to be identified. Recent advancements in analysis of PTMs by mass spectrometry provided new insights into the mechanisms of protein carbonylation, such as protein susceptibility and exact modification sites, but only for a limited number of proteins. Here we report the first proteome-wide study of carbonylated proteins including modification sites in HeLa cells for mild oxidative stress conditions. The analysis relied on our recent strategy utilizing mass spectrometry-based enrichment of carbonylated peptides after DNPH derivatization. Thus a total of 210 carbonylated proteins containing 643 carbonylation sites were consistently identified in three replicates. Most carbonylation sites (284, 44.2%) resulted from oxidation of lysine residues (aminoadipic semialdehyde). Additionally, 121 arginine (18.8%), 121 threonine (18.8%), and 117 proline residues (18.2%) were oxidized to reactive carbonyls. The sequence motifs were significantly enriched for lysine and arginine residues near carbonylation sites (±10 residues). Gene Ontology analysis revealed that 80% of the carbonylated proteins originated from organelles, 50% enrichment of which was demonstrated for the nucleus. Moreover, functional interactions between carbonylated proteins of kinetochore/spindle machinery and centrosome organization were significantly enriched. One-third of the 210 carbonylated proteins identified here are regulated during apoptosis.


Asunto(s)
Estrés Oxidativo/genética , Carbonilación Proteica/genética , Proteoma , Secuencia de Aminoácidos , Células HeLa , Humanos , Oxidación-Reducción , Procesamiento Proteico-Postraduccional/genética , Especies Reactivas de Oxígeno/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA