Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Foods ; 11(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36553844

RESUMEN

Walnut protein is a key plant protein resource due to its high nutritional value, but walnuts are prone to oxidation during storage and processing. This article explored the oxidative modification and digestion mechanism of walnut protein isolates by peroxyl radical and obtained new findings. SDS-PAGE and spectral analysis were used to identify structural changes in the protein after oxidative modification, and LC-MS/MS was used to identify the digestion products. The findings demonstrated that as the AAPH concentration increased, protein carbonyl content increased from 2.36 to 5.12 nmol/mg, while free sulfhydryl content, free amino content, and surface hydrophobicity decreased from 4.30 nmol/mg, 1.47 µmol/mg, and 167.92 to 1.72 nmol/mg, 1.13 µmol/mg, and 40.93 nmol/mg, respectively. Furthermore, the result of Tricine-SDS-PAGE in vitro digestion revealed that protein oxidation could cause gastric digestion resistance and a tendency for intestinal digestion promotion. Carbonyl content increased dramatically during the early stages of gastric digestion and again after 90 min of intestine digestion, and LC-MS/MS identified the last digestive products of the stomach and intestine as essential seed storage proteins. Oxidation causes walnut proteins to form aggregates, which are then re-oxidized during digestion, and proper oxidative modification may benefit intestinal digestion.

2.
Curr Protoc ; 1(4): e80, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33844460

RESUMEN

The bacterial cell wall, composed of peptidoglycan (PG), provides structural integrity for the cell and is responsible for cell shape in most bacteria. Here we present tools to study the cell wall using a clickable PG-specific sugar, 2-alkyne muramic acid (MurNAc-alk), as a metabolic probe. Here we present a new reaction pathway for generating MurNAc-alk. We also include protocols for labeling PG synthesis in Helicobacter pylori, determining the identity of the labeled muropeptides using LC-MS/MS, sample preparation of cells labeled for a short fraction of the doubling time, and visualization using 3D structured illumination microscopy. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Alternative synthesis of MurNAc-alk (direct coupling) Support Protocol 1: Growing Helicobacter pylori in liquid culture Support Protocol 2: Fosfomycin rescue assay Basic Protocol 2: Mass spectrometry (MS) analysis to determine incorporation of MurNAc-alk within the peptidoglycan of H. pylori Support Protocol 3: Hayashi test to determine if SDS is present in the supernatant of peptidoglycan preparations Support Protocol 4: Creating custom cytocentrifuge units for use in a swinging-bucket tabletop centrifuge Basic Protocol 3: Labeling H. pylori with MurNAc-alk or D-Ala-alk Basic Protocol 4: Structured illumination microscopy (SIM) imaging on the DeltaVision OMX.


Asunto(s)
Helicobacter pylori , Peptidoglicano , Cromatografía Liquida , Ácidos Murámicos , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA