Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Rep ; 43(8): 114540, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39058595

RESUMEN

Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Our studies reveal that SPNs manifest a heterosynaptic, nitric oxide (NO)-dependent form of long-term postsynaptic depression of glutamatergic SPN synapses (NO-LTD) that is preferentially engaged at quiescent synapses. Plasticity is gated by Ca2+ entry through CaV1.3 Ca2+ channels and phosphodiesterase 1 (PDE1) activation, which blunts intracellular cyclic guanosine monophosphate (cGMP) and NO signaling. Both experimental and simulation studies suggest that this Ca2+-dependent regulation of PDE1 activity allows for local regulation of dendritic cGMP signaling. In a mouse model of Parkinson disease (PD), NO-LTD is absent because of impaired interneuronal NO release; re-balancing intrastriatal neuromodulatory signaling restores NO release and NO-LTD. Taken together, these studies provide important insights into the mechanisms governing NO-LTD in SPNs and its role in psychomotor disorders such as PD.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1 , Plasticidad Neuronal , Neuronas , Sinapsis , Animales , Sinapsis/metabolismo , Plasticidad Neuronal/fisiología , Ratones , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Cuerpo Estriado/metabolismo , GMP Cíclico/metabolismo , Ácido Glutámico/metabolismo , Calcio/metabolismo , Ratones Endogámicos C57BL , Masculino , Depresión Sináptica a Largo Plazo/fisiología
2.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39062812

RESUMEN

Dietary intake of omega-3 polyunsaturated fatty acids (eicosapentaenoic acid, EPA) exerts antiarrhythmic effects, although the mechanisms are poorly understood. Here, we investigated the possible beneficial actions of EPA on saturated fatty acid-induced changes in the L-type Ca2+ channel in cardiomyocytes. Cardiomyocytes were cultured with an oleic acid/palmitic acid mixture (OAPA) in the presence or absence of EPA. Beating rate reduction in cardiomyocytes caused by OAPA were reversed by EPA. EPA also retrieved a reduction in Cav1.2 L-type Ca2+ current, mRNA, and protein caused by OAPA. Immunocytochemical analysis revealed a distinct downregulation of the Cav1.2 channel caused by OAPA with a concomitant decrease in the phosphorylated component of a transcription factor adenosine-3',5'-cyclic monophosphate (cAMP) response element binding protein (CREB) in the nucleus, which were rescued by EPA. A free fatty acid receptor 4 (FFAR4) agonist TUG-891 reversed expression of Cav1.2 and CREB mRNA caused by OAPA, whereas an FFAR4 antagonist AH-7614 abolished the effects of EPA. Excessive reactive oxygen species (ROS) accumulation caused by OAPA decreased Cav1.2 and CREB mRNA expressions, which was reversed by an ROS scavenger. Our data suggest that EPA rescues cellular Cav1.2-Ca2+ channel decline caused by OAPA lipotoxicity and oxidative stresses via both free fatty acid receptor 4-dependent and -independent pathways.


Asunto(s)
Canales de Calcio Tipo L , Ácido Eicosapentaenoico , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Ácido Eicosapentaenoico/farmacología , Animales , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/genética , Ratas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ácidos Grasos/metabolismo , Transducción de Señal/efectos de los fármacos , Células Cultivadas
3.
Channels (Austin) ; 18(1): 2341077, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38601983

RESUMEN

Voltage-gated calcium channels (VGCCs) are the major conduits for calcium ions (Ca2+) within excitable cells. Recent studies have highlighted the non-ionotropic functionality of VGCCs, revealing their capacity to activate intracellular pathways independently of ion flow. This non-ionotropic signaling mode plays a pivotal role in excitation-coupling processes, including gene transcription through excitation-transcription (ET), synaptic transmission via excitation-secretion (ES), and cardiac contraction through excitation-contraction (EC). However, it is noteworthy that these excitation-coupling processes require extracellular calcium (Ca2+) and Ca2+ occupancy of the channel ion pore. Analogous to the "non-canonical" characterization of the non-ionotropic signaling exhibited by the N-methyl-D-aspartate receptor (NMDA), which requires extracellular Ca2+ without the influx of ions, VGCC activation requires depolarization-triggered conformational change(s) concomitant with Ca2+ binding to the open channel. Here, we discuss the contributions of VGCCs to ES, ET, and EC coupling as Ca2+ binding macromolecules that transduces external stimuli to intracellular input prior to elevating intracellular Ca2+. We emphasize the recognition of calcium ion occupancy within the open ion-pore and its contribution to the excitation coupling processes that precede the influx of calcium. The non-ionotropic activation of VGCCs, triggered by the upstroke of an action potential, provides a conceptual framework to elucidate the mechanistic aspects underlying the microseconds nature of synaptic transmission, cardiac contractility, and the rapid induction of first-wave genes.


Asunto(s)
Canales de Calcio , Calcio , Calcio/metabolismo , Canales de Calcio/metabolismo , Transducción de Señal , Acoplamiento Excitación-Contracción , Iones/metabolismo , Señalización del Calcio/fisiología , Canales de Calcio Tipo L/metabolismo
4.
Front Pharmacol ; 14: 1223132, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637427

RESUMEN

The increase of intracellular Ca2+ concentration, produced principally by its influx through the L-type Ca2+ channels, is one of the major contributors to the ischemia-reperfusion injury. The inhibition of those channels in different experimental models was effective to ameliorate the post-ischemic damage. However, at a clinical level, the results were contradictory. Recent results of our group obtained in an ¨ex vivo¨ heart model demonstrated that a chemical derived from acetazolamide, the N-methylacetazolamide (NMA) protected the heart against ischemia-reperfusion injury, diminishing the infarct size and improving the post-ischemic recovery of myocardial function and mitochondrial dynamic. A significant inhibitory action on L-type Ca2+ channels was also detected after NMA treatment, suggesting this action as responsible for the beneficial effects on myocardium exerted by this compound. Although these results were promising, the effectiveness of NMA in the treatment of ischemic heart disease in humans as well as the advantages or disadvantages in comparison to the classic calcium antagonists needs to be investigated.

5.
Biol Pharm Bull ; 46(8): 1120-1127, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37532563

RESUMEN

To clarify the pharmacological properties of the Na+/Ca2+ exchanger (NCX) inhibitor SEA0400 as an antiarrhythmic agent, we assessed its effects on rapid component of delayed rectifier K+ current (IKr) blocker-induced torsade de pointes (TdP) in isoflurane-anesthetized rabbits. Atrioventricular block was induced in rabbits using a catheter ablation technique, and the monophasic action potential (MAP) of the right ventricle was measured under electrical pacing at 60 beats/min. In non-treated control animals, intravenous administration of low-dose (0.3 mg/kg) or high-dose nifekalant (3 mg/kg) prolonged the MAP duration (MAP90) by 113 ± 11 ms (n = 5) and 237 ± 39 ms (n = 5), respectively, where TdP was induced in 1/5 animals treated with a low dose and in 3/5 animals treated with a high dose of nifekalant. In SEA0400-treated animals, low- and high-dose nifekalant prolonged the MAP90 by 65 ± 13 ms (n = 5) and 230 ± 20 ms (n = 5), respectively. No TdP was induced by the low dose but 1/5 animals treated with a high dose of nifekalant developed TdP. In verapamil-treated animals, low-dose and high-dose nifekalant prolonged MAP90 by 50 ± 12 ms (n = 5) and 147 ± 30 ms (n = 5), respectively, without inducing TdP. These results suggest that SEA0400 has the potential to inhibit low-dose nifekalant-induced TdP by suppressing the MAP-prolonging action of nifekalant, whereas the drug inhibited high-dose nifekalant-induced TdP without affecting the MAP-prolonging action of nifekalant. This may reveal that, in contrast to verapamil, the antiarrhythmic effects of SEA0400 on IKr blocker-induced TdP may be multifaceted, depending on the severity of the proarrhythmogenic conditions present.


Asunto(s)
Bloqueo Atrioventricular , Síndrome de QT Prolongado , Torsades de Pointes , Animales , Conejos , Bloqueo Atrioventricular/inducido químicamente , Bloqueo Atrioventricular/tratamiento farmacológico , Intercambiador de Sodio-Calcio , Antiarrítmicos/efectos adversos , Síndrome de QT Prolongado/inducido químicamente , Torsades de Pointes/inducido químicamente , Torsades de Pointes/tratamiento farmacológico , Verapamilo/efectos adversos , Potenciales de Acción
6.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835338

RESUMEN

Mechanisms for the α-adrenoceptor-mediated positive inotropy in neonatal mouse ventricular myocardium were studied with isolated myocardial preparations. The phenylephrine-induced positive inotropy was suppressed by prazosin, nifedipine, and chelerythrine, a protein kinase C inhibitor, but not by SEA0400, a selective Na+/Ca2+ exchanger inhibitor. Phenylephrine increased the L-type Ca2+ channel current and prolonged the action potential duration, while the voltage-dependent K+ channel current was not influenced. In the presence of cromakalim, an ATP-sensitive K+ channel opener, the phenylephrine-induced prolongation of action potential duration, as well as the positive inotropy, were smaller than in the absence of cromakalim. These results suggest that the α-adrenoceptor-mediated positive inotropy is mediated by an increase in Ca2+ influx through the L-type Ca2+ channel, and the concomitant increase in action potential duration acts as an enhancing factor.


Asunto(s)
Contracción Miocárdica , Miocardio , Ratones , Animales , Potenciales de Acción , Cromakalim/farmacología , Contracción Miocárdica/fisiología , Fenilefrina/farmacología , Receptores Adrenérgicos
7.
Biol Pharm Bull ; 46(1): 133-137, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36596522

RESUMEN

The negative inotropic effects of nine Vaughan Williams class I antiarrhythmic drugs were examined in guinea pig ventricular tissue preparations. The drugs decreased the contractile force of papillary muscles with different potencies: the potency order was propafenone > aprindine > cibenzoline > flecainide > ranolazine > disopyramide > pilsicainide > mexiletine > GS-458967. The potency of drugs correlated with the reported IC50 values to block the L-type Ca2+ channel rather than the Na+ channel. The effects of drugs were roughly the same when examined under a high extracellular K+ solution, which inactivates the Na+ channel. Furthermore, the attenuation of the extracellular Ca2+-induced positive inotropy was strong with propafenone, moderate with cibenzoline, and weak with pilsicainide. These results indicate that the negative inotropic effects of class I antiarrhythmic drugs can be largely explained by their blockade of the L-type Ca2+ channel.


Asunto(s)
Antiarrítmicos , Propafenona , Cobayas , Animales , Antiarrítmicos/farmacología , Propafenona/farmacología , Miocardio , Lidocaína/farmacología , Músculos Papilares
8.
Heart Rhythm ; 20(1): 89-99, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007726

RESUMEN

BACKGROUND: A missense mutation in the α1c subunit of voltage-gated L-type Ca2+ channel-coding CACNA1C-E1115K, located in the Ca2+ selectivity site, causes a variety of arrhythmogenic phenotypes. OBJECTIVE: We aimed to investigate the electrophysiological features and pathophysiological mechanisms of CACNA1C-E1115K in patient-specific induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs). METHODS: We generated iPSCs from a patient carrying heterozygous CACNA1C-E1115K with overlapping phenotypes of long QT syndrome, Brugada syndrome, and mild cardiac dysfunction. Electrophysiological properties were investigated using iPSC-CMs. We used iPSCs from a healthy individual and an isogenic iPSC line corrected using CRISPR-Cas9-mediated gene editing as controls. A mathematical E1115K-CM model was developed using a human ventricular cell model. RESULTS: Patch-clamp analysis revealed that E1115K-iPSC-CMs exhibited reduced peak Ca2+ current density and impaired Ca2+ selectivity with an increased permeability to monovalent cations. Consequently, E1115K-iPSC-CMs showed decreased action potential plateau amplitude, longer action potential duration (APD), and a higher frequency of early afterdepolarization compared with controls. In optical recordings examining the antiarrhythmic drug effect, late Na+ channel current (INaL) inhibitors (mexiletine and GS-458967) shortened APDs specifically in E1115K-iPSC-CMs. The AP-clamp using a voltage command obtained from E1115K-iPSC-CMs with lower action potential plateau amplitude and longer APD confirmed the upregulation of INaL. An in silico study recapitulated the in vitro electrophysiological properties. CONCLUSION: Our iPSC-based analysis in CACNA1C-E1115K with disrupted CaV1.2 selectivity demonstrated that the aberrant currents through the mutant channels carried by monovalent cations resulted in specific action potential changes, which increased endogenous INaL, thereby synergistically contributing to the arrhythmogenic phenotype.


Asunto(s)
Síndrome de Brugada , Canales de Calcio Tipo L , Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Humanos , Potenciales de Acción , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Síndrome de QT Prolongado/genética , Miocitos Cardíacos/metabolismo , Fenotipo
9.
J Neurophysiol ; 128(6): 1555-1564, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36350063

RESUMEN

Neuronal L-type Ca2+ channels of the CaV1.3 subclass are transmembrane protein complexes that contribute to the pacemaker activity in the adult substantia nigra dopaminergic neurons. The altered function of these channels may play a role in the development and progress of neurodegenerative mechanisms implicated in Parkinson's disease (PD). Although L-type channel expression is precisely regulated, an increased functional expression has been observed in PD. Previously, we showed that Parkin, an E3 enzyme of the ubiquitin-proteasome system (UPS) interacts with neuronal CaV2.2 channels promoting their ubiquitin-mediated degradation. In addition, previous studies show an increase in CaV1.3 channel activity in dopaminergic neurons of the SNc and that Parkin expression is reduced in PD. These findings suggest that the decrease in Parkin may affect the proteasomal degradation of CaV1.3, which helps explain the increase in channel activity. Therefore, the present report aims to gain insight into the degradation mechanisms of the neuronal CaV1.3 channel by the UPS. Immunoprecipitation assays showed the interaction between Parkin and the CaV1.3 channels expressed in HEK-293 cells and neural tissues. Likewise, Parkin overexpression reduced the total and membrane channel levels and decreased the current density. Consistent with this, patch-clamp recordings in the presence of an inhibitor of the UPS, MG132, prevented the effects of Parkin, suggesting enhanced channel proteasomal degradation. In addition, the half-life of the pore-forming CaV1.3α1 protein was significantly reduced by Parkin overexpression. Finally, electrophysiological recordings using a PRKN knockout HEK-293 cell line generated by CRISPR/Cas9 showed increased current density. These results suggest that Parkin promotes the proteasomal degradation of CaV1.3, which may be a relevant aspect for the pathophysiology of PD.NEW & NOTEWORTHY The increased expression of CaV1.3 calcium channels is a crucial feature of Parkinson's disease (PD) pathophysiology. However, the mechanisms that determine this increase are not yet defined. Parkin, an enzyme of the ubiquitin-proteasome system, is known to interact with neuronal channels promoting their ubiquitin-mediated degradation. Interestingly, Parkin mutations also play a role in PD. Here, the degradation mechanisms of CaV1.3 channels and their relationship with the pathophysiology of PD are studied in detail.


Asunto(s)
Canales de Calcio Tipo L , Enfermedad de Parkinson , Ubiquitina-Proteína Ligasas , Humanos , Neuronas Dopaminérgicas/metabolismo , Células HEK293 , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo
10.
FEBS Lett ; 596(22): 2974-2985, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36310389

RESUMEN

Calmodulin (CaM) binds to the membrane-proximal cytosolic C-terminal domain of CaV 1.2 (residues 1520-1669, CT(1520-1669)) and causes Ca2+ -induced conformational changes that promote Ca2+ -dependent channel inactivation (CDI). We report biophysical studies that probe the structural interaction between CT(1520-1669) and CaM. The recombinantly expressed CT(1520-1669) is insoluble, but can be solubilized in the presence of Ca2+ -saturated CaM (Ca4 /CaM), but not in the presence of Ca2+ -free CaM (apoCaM). We show that half-calcified CaM (Ca2 /CaM12 ) forms a complex with CT(1520-1669) that is less soluble than CT(1520-1669) bound to Ca4 /CaM. The NMR spectrum of CT(1520-1669) reveals spectral differences caused by the binding of Ca2 /CaM12 versus Ca4 /CaM, suggesting that the binding of Ca2+ to the CaM N-lobe may induce a conformational change in CT(1520-1669).


Asunto(s)
Calcio , Calmodulina , Calmodulina/metabolismo , Calcio/metabolismo , Unión Proteica
11.
Biol Pharm Bull ; 45(9): 1354-1363, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36047205

RESUMEN

An increase in intracellular Ca2+ concentration ([Ca2+]i) activates Ca2+-sensitive enzymes such as Ca2+/calmodulin-dependent kinases (CaMK) and induces gene transcription in various types of cells. This signaling pathway is called excitation-transcription (E-T) coupling. Recently, we have revealed that a L-type Ca2+ channel/CaMK kinase (CaMKK) 2/CaMK1α complex located within caveolae in vascular smooth muscle cells (SMCs) can convert [Ca2+]i changes to gene transcription profiles that are related to chemotaxis. Although CaMK1α is expected to be the key molecular identity that can transport Ca2+ signals originated within caveolae to the nucleus, data sets directly proving this scheme are lacking. In this study, multicolor fluorescence imaging methods were utilized to address this question. Live cell imaging using mouse primary aortic SMCs revealed that CaMK1α can translocate from the cytosol to the nucleus; and that this movement was blocked by nifedipine or a CaMKK inhibitor, STO609. Experiments using two types of Ca2+ chelators, ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), combined with caveolin-1 knockout (cav1-KO) mice showed that local Ca2+ events within caveolae are required to trigger this CaMK1α nuclear translocation. Importantly, overexpression of cav1 in isolated cav1-KO myocytes recovered the CaMK1α translocation. In SMCs freshly isolated from mesenteric arteries, CaMK1α was localized mainly within caveolae in the resting state. Membrane depolarization induced both nuclear translocation and phosphorylation of CaMK1α. These responses were inhibited by nifedipine, STO609, cav1-KO, or BAPTA. These new findings strongly suggest that CaMK1α can transduce Ca2+ signaling generated within or very near caveolae to the nucleus and thus, promote E-T coupling.


Asunto(s)
Caveolas , Músculo Liso Vascular , Animales , Calcio/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Ratones , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/metabolismo , Nifedipino
12.
Front Cell Neurosci ; 16: 949923, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35936499

RESUMEN

Methamphetamine (meth) increases monoamine oxidase (MAO)-dependent mitochondrial stress in axons of substantia nigra pars compacta (SNc), and ventral tegmental area (VTA) dopamine neurons. Chronic administration of meth results in SNc degeneration and MAO inhibition is neuroprotective, whereas, the VTA is resistant to degeneration. This differential vulnerability is attributed, at least in part, to the presence of L-type Ca2+ channel-dependent mitochondrial stress in SNc but not VTA dopamine neurons. MAO is also expressed in other monoaminergic neurons such as noradrenergic locus coeruleus (LC) and serotonergic dorsal raphe (DR) neurons. The impact of meth on mitochondrial stress in LC and DR neurons is unknown. In the current study we used a genetically encoded redox biosensor to investigate meth-induced MAO-dependent mitochondrial stress in LC and DR neurons. Similar to SNc and VTA neurons, meth increased MAO-dependent mitochondrial stress in axonal but not somatic compartments of LC norepinephrine and DR serotonin neurons. Chronic meth administration (5 mg/kg; 28-day) resulted in degeneration of LC neurons and MAO inhibition was neuroprotective whereas DR neurons were resistant to degeneration. Activating L-type Ca2+ channels increased mitochondrial stress in LC but not DR axons and inhibiting L-type Ca2+ channels in vivo with isradipine prevented meth-induced LC degeneration. These data suggest that similar to recent findings in SNc and VTA dopamine neurons, the differential vulnerability between LC and DR neurons can be attributed to the presence of L-type Ca2+ channel-dependent mitochondrial stress. Taken together, the present study demonstrates that both meth-induced MAO- and L-type Ca2+ channel-dependent mitochondrial stress are necessary for chronic meth-induced neurodegeneration.

13.
Toxicol Res ; 38(3): 355-364, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35874500

RESUMEN

3-Caffeoyl-4-dicaffeoylquinic acid (CDCQ) is a natural chlorogenic acid isolated from Salicornia herbacea that protects against oxidative stress, inflammation, and cancer. Nitric oxide (NO) plays a physiologically beneficial role in the cardiovascular system, including vasodilation, protection of endothelial cell function, and anti-inflammation. However, the effect of CDCQ on NO production and eNOS phosphorylation in endothelial cells is unclear. We investigated the effect of CDCQ on eNOS phosphorylation and NO production in human endothelial cells, and the underlying signaling pathway. CDCQ significantly increased NO production and the phosphorylation of eNOS at Ser1177. Additionally, CDCQ induced phosphorylation of PKA, CaMKII, CaMKKß, and AMPK. Interestingly, CDCQ increased the intracellular Ca2+ level, and L-type Ca2+ channel (LTCC) blockade significantly attenuated CDCQ-induced eNOS activity and NO production by inhibiting PKA, CaMKII, CaMKKß, and AMPK phosphorylation. These results suggest that CDCQ increased eNOS phosphorylation and NO production by Ca2+-dependent phosphorylation of PKA, CaMKII, CaMKKß, and AMPK. Our findings provide evidence that CDCQ plays a pivotal role in the activity of eNOS and NO production, which is involved in the protection of endothelial dysfunction.

14.
J Adv Res ; 38: 29-39, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35572395

RESUMEN

Introduction: Investigation into the action mechanisms of plant secondary metabolites against pests is a vital strategy for the development of novel promising biopesticides. Scoparone (isolated from Artemisia capillaris), a renewable plant-derived bioresource, displays potent acaricidal activities against mites, but its targets of action remain unclear. Objectives: This study aimed to systematically explore the potential molecular targets of scoparone against Tetranychus cinnabarinus and provide insights to guide the future application of scoparone as an agent for the management of agricultural mite pests worldwide. Methods: The mechanism and potential targets of scoparone against mites were investigated using RNA-seq analysis; RNA interference (RNAi) assays; bioassays; and [Ca2+]i, pull-down and electrophysiological recording assays. Results: RNA-seq analysis identified Ca2+ signalling pathway genes, specifically 5 calmodulin (CaM1-5) genes and 1 each of L-, T-, N-type voltage-gated Ca2+ channel (VGCC) genes, as candidate target genes for scoparone against mites. Furthermore, RNAi and electrophysiological data showed that the CaM1- and L-VGCC-mediated Ca2+ signalling pathways were activated by scoparone. Interestingly, by promoting the interaction between CaM1 and the IQ motif (a consensus CaM-binding domain of L-VGCC), CaM1 markedly enhanced the activating effect of scoparone on L-VGCC. Pull-down assays further demonstrated that CaM interacted with the IQ motif, triggering L-VGCC opening. Importantly, mutation of the IQ motif significantly weakened CaM1 binding and eliminated the CaM1-mediated enhancement of scoparone-induced L-VGCC activation, indicating that the effect of scoparone was dependent on the CaM1-IQ interaction. Conclusion: This study demonstrates, for the first time, that the acaricidal compound scoparone targets the interface between CaM1 and L-VGCC and activates the CaM-binding site, located in the IQ motif at the L-VGCC C-terminus. This work may contribute to the development of target-specific green acaricidal compounds based on L-VGCC.


Asunto(s)
Acaricidas , Ácaros , Tetranychidae , Acaricidas/farmacología , Animales , Calmodulina/química , Calmodulina/metabolismo , Calmodulina/farmacología , Cumarinas/farmacología , Ácaros/metabolismo , Tetranychidae/metabolismo
15.
Biochim Biophys Acta Gen Subj ; 1866(5): 130098, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35104623

RESUMEN

Our objective was to examine the effects of N-methylacetazolamide (NMA), a non­carbonic anhydrase inhibitor, on ischemia-reperfusion injury. Isolated rat hearts were assigned to the following groups: 1) Non-ischemic control (NIC):110 min of perfusion and 2) Ischemic control (IC): 30 min of global ischemia and 60 min of reperfusion (R). Both groups were repeated in presence of NMA (5 µM), administered during the first 10 min of R. Infarct size (IS) was measured by TTC staining. Developed pressure (LVDP) and end-diastolic pressure (LVEDP) of the left ventricle were used to assess systolic and diastolic function, respectively. The content of P-Akt, P-PKCε, P-Drp1 and calcineurin Aß were measured. In cardiomyocytes the L-type Ca2+ current (ICaL) was recorded with the whole-cell configuration of patch-clamp technique. The addition of NMA to non-ischemic hearts decreased 15% the contractility. In ischemic hearts (IC group), NMA decreased IS (22 ± 2% vs 32 ± 2%, p < 0.05) and improved the post-ischemic recovery of myocardial function. At the end of R, LVDP was 54 ± 7% vs 18 ± 3% and LVEDP was 23 ± 8 vs. 55 ± 7 mmHg ¨p < 0.05¨. The level of P-Akt, P-PKCε and P-Drp1 increased and the expression of calcineurin Aß decreased in NMA treated hearts. Peak ICaL density recorded at 0 mV was smaller in myocytes treated with NMA than in non-treated cells (-1.91 ± 0.15 pA/pF vs -2.32 ± 0.17 pA/pF, p < 0.05). These data suggest that NMA protects the myocardium against ischemia-reperfusion injury through an attenuation of mitochondrial fission by calcineurin/Akt/PKCε-dependent pathways associated to the decrease of ICaL current.


Asunto(s)
Bloqueadores de los Canales de Calcio , Cardiotónicos , Metazolamida , Daño por Reperfusión Miocárdica , Animales , Calcineurina , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Cardiotónicos/farmacología , Metazolamida/farmacología , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas
16.
Biomolecules ; 11(12)2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34944455

RESUMEN

L-type voltage-gated Ca2+ channels (CaV1.2 and CaV1.3, called CaV) interact with the Ca2+ sensor proteins, calmodulin (CaM) and Ca2+ binding Protein 1 (CaBP1), that oppositely control Ca2+-dependent channel activity. CaM and CaBP1 can each bind to the IQ-motif within the C-terminal cytosolic domain of CaV, which promotes increased channel open probability under basal conditions. At elevated cytosolic Ca2+ levels (caused by CaV channel opening), Ca2+-bound CaM binding to CaV is essential for promoting rapid Ca2+-dependent channel inactivation (CDI). By contrast, CaV binding to CaBP1 prevents CDI and promotes Ca2+-induced channel opening (called CDF). In this review, I provide an overview of the known structures of CaM and CaBP1 and their structural interactions with the IQ-motif to help understand how CaM promotes CDI, whereas CaBP1 prevents CDI and instead promotes CDF. Previous electrophysiology studies suggest that Ca2+-free forms of CaM and CaBP1 may pre-associate with CaV under basal conditions. However, previous Ca2+ binding data suggest that CaM and CaBP1 are both calculated to bind to Ca2+ with an apparent dissociation constant of ~100 nM when CaM or CaBP1 is bound to the IQ-motif. Since the neuronal basal cytosolic Ca2+ concentration is ~100 nM, nearly half of the neuronal CaV channels are suggested to be bound to Ca2+-bound forms of either CaM or CaBP1 under basal conditions. The pre-association of CaV with calcified forms of CaM or CaBP1 are predicted here to have functional implications. The Ca2+-bound form of CaBP1 is proposed to bind to CaV under basal conditions to block CaV binding to CaM, which could explain how CaBP1 might prevent CDI.


Asunto(s)
Calmodulina , Proteínas de Unión al Calcio , Humanos , Activación del Canal Iónico
17.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34681928

RESUMEN

Ca2+ entry through Cav1.3 Ca2+ channels plays essential roles in diverse physiological events. We employed yeast-two-hybrid (Y2H) assays to mine novel proteins interacting with Cav1.3 and found Snapin2, a synaptic protein, as a partner interacting with the long carboxyl terminus (CTL) of rat Cav1.3L variant. Co-expression of Snapin with Cav1.3L/Cavß3/α2δ2 subunits increased the peak current density or amplitude by about 2-fold in HEK-293 cells and Xenopus oocytes, without affecting voltage-dependent gating properties and calcium-dependent inactivation. However, the Snapin up-regulation effect was not found for rat Cav1.3S containing a short CT (CTS) in which a Snapin interaction site in the CTL was deficient. Luminometry and electrophysiology studies uncovered that Snapin co-expression did not alter the membrane expression of HA tagged Cav1.3L but increased the slope of tail current amplitudes plotted against ON-gating currents, indicating that Snapin increases the opening probability of Cav1.3L. Taken together, our results strongly suggest that Snapin directly interacts with the CTL of Cav1.3L, leading to up-regulation of Cav1.3L channel activity via facilitating channel opening probability.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/metabolismo , Regulación hacia Arriba , Proteínas de Transporte Vesicular/metabolismo , Animales , Sitios de Unión , Femenino , Células HEK293 , Humanos , Dominios Proteicos , Ratas , Técnicas del Sistema de Dos Híbridos , Xenopus
18.
Neuropharmacology ; 200: 108817, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34610287

RESUMEN

Methamphetamine (meth) increases monoamine oxidase (MAO)-dependent mitochondrial stress in substantia nigra pars compacta (SNc) axons; chronic administration produces SNc degeneration that is prevented by MAO inhibition suggesting that MAO-dependent axonal mitochondrial stress is a causal factor. To test whether meth similarly increases mitochondrial stress in ventral tegmental area (VTA) axons, we used a genetically encoded redox biosensor to assess mitochondrial stress ex vivo. Meth increased MAO-dependent mitochondrial stress in both SNc and VTA axons. However, despite having the same meth-induced stress as SNc neurons, VTA neurons were resistant to chronic meth-induced degeneration indicating that meth-induced MAO-dependent mitochondrial stress in axons was necessary but not sufficient for degeneration. To determine whether L-type Ca2+ channel-dependent stress differentiates SNc and VTA axons, as reported in the soma, the L-type Ca2+ channel activator Bay K8644 was used. Opening L-type Ca2+ channels increased axonal mitochondrial stress in SNc but not VTA axons. To first determine whether mitochondrial stress was necessary for SNc degeneration, mice were treated with the mitochondrial antioxidant mitoTEMPO. Chronic meth-induced SNc degeneration was prevented by mitoTEMPO thereby confirming the necessity of mitochondrial stress. Similar to results with the antioxidant, both MAO inhibition and L-type Ca2+ channel inhibition also prevented SNc degeneration. Taken together the presented data demonstrate that both MAO- and L-type Ca2+ channel-dependent mitochondrial stress is necessary for chronic meth-induced degeneration.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Metanfetamina/farmacología , Enfermedades Neurodegenerativas/patología , Porción Compacta de la Sustancia Negra/efectos de los fármacos , Área Tegmental Ventral/efectos de los fármacos , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Animales , Antioxidantes/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Inhibidores de la Monoaminooxidasa/farmacología
19.
Front Physiol ; 12: 737291, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650447

RESUMEN

Daily regulation of Ca2+ - and voltage-activated BK K+ channel activity is required for action potential rhythmicity in the suprachiasmatic nucleus (SCN) of the hypothalamus, the brain's circadian clock. In SCN neurons, BK activation is dependent upon multiple types of Ca2+ channels in a circadian manner. Daytime BK current predominantly requires Ca2+ influx through L-type Ca2+ channels (LTCCs), a time when BK channels are closely coupled with their Ca2+ source. Here we show that daytime BK current is resistant to the Ca2+ chelator BAPTA. However, at night when LTCCs contribute little to BK activation, BK current decreases by a third in BAPTA compared to control EGTA conditions. In phase with this time-of-day specific effect on BK current activation, LTCC current is larger during the day. The specific Ca2+ channel subtypes underlying the LTCC current in SCN, as well as the subtypes contributing the Ca2+ influx relevant for BK current activation, have not been identified. SCN neurons express two LTCC subtypes, CaV1.2 and CaV1.3. While a role for CaV1.2 channels has been identified during the night, CaV1.3 channel modulation has also been suggested to contribute to daytime SCN action potential activity, as well as subthreshold Ca2+ oscillations. Here we characterize the role of CaV1.3 channels in LTCC and BK current activation in SCN neurons using a global deletion of CACNA1D in mouse (CaV1.3 KO). CaV1.3 KO SCN neurons had a 50% reduction in the daytime LTCC current, but not total Ca2+ current, with no difference in Ca2+ current levels at night. During the day, CaV1.3 KO neurons exhibited oscillations in membrane potential, and most neurons, although not all, also had BK currents. Changes in BK current activation were only detectable at the highest voltage tested. These data show that while CaV1.3 channels contribute to the daytime Ca2+ current, this does not translate into a major effect on the daytime BK current. These data suggest that BK current activation does not absolutely require CaV1.3 channels and may therefore also depend on other LTCC subtypes, such as CaV1.2.

20.
Cell Biosci ; 11(1): 160, 2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404451

RESUMEN

BACKGROUND: Cardiovascular disease is the leading cause of death worldwide. Cardiac electrical remodeling including altered ion channel expression and imbalance of calcium homeostasis can have detrimental effects on cardiac function. While it has been extensively reported that miR-221/222 are involved in structural remodeling, their role in electrical remodeling still has to be evaluated. We previously reported that subunits of the L-type Ca2+ channel (LTCC) are direct targets of miR-221/222. Furthermore, HL-1 cells transfected with miR-221 or -222 mimics showed a reduction in LTCC current density while the voltage-dependence of activation was not altered. The aim of the present study was to determine the influence of miR-221/222 on cardiomyocyte calcium handling and function. RESULTS: Transient transfection of HL-1 cells with miR-221/222 mimics led to slower depolarization-dependent Ca2+ entry and increased proportion of non-responding cells. Angiotensin II-induced Ca2+ release from the SR was not affected by miR-221/222. In miR-222-transfected neonatal cardiomyocytes the isoprenaline-induced positive inotropic effect on the intracellular Ca2+ transient was lost and the positive chronotropic effect on spontaneous beating activity was strongly reduced. This could have severe consequences for cardiomyocytes and could lead to a reduced contractility and systolic dysfunction of the whole heart. CONCLUSIONS: This study adds a new role of miR-221/222 in cardiomyocytes by showing the impact on ß-adrenergic regulation of LTCC function, calcium handling and beating frequency. Together with the previous report that miR-221/222 reduce GIRK1/4 function and LTCC current density, it expands our knowledge about the role of these miRs on cardiac ion channel regulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA