Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Comp Neurol ; 532(2): e25575, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38335058

RESUMEN

The distinct organization of Kv2 voltage-gated potassium channels on and near the cell body of brain neurons enables their regulation of action potentials and specialized membrane contact sites. Somatosensory neurons have a pseudounipolar morphology and transmit action potentials from peripheral nerve endings through axons that bifurcate to the spinal cord and the cell body within ganglia including the dorsal root ganglia (DRG). Kv2 channels regulate action potentials in somatosensory neurons, yet little is known about where Kv2 channels are located. Here, we define the cellular and subcellular localization of the Kv2 paralogs, Kv2.1 and Kv2.2, in DRG somatosensory neurons with a panel of antibodies, cell markers, and genetically modified mice. We find that relative to spinal cord neurons, DRG neurons have similar levels of detectable Kv2.1 and higher levels of Kv2.2. In older mice, detectable Kv2.2 remains similar, while detectable Kv2.1 decreases. Both Kv2 subtypes adopt clustered subcellular patterns that are distinct from central neurons. Most DRG neurons co-express Kv2.1 and Kv2.2, although neuron subpopulations show preferential expression of Kv2.1 or Kv2.2. We find that Kv2 protein expression and subcellular localization are similar between mouse and human DRG neurons. We conclude that the organization of both Kv2 channels is consistent with physiological roles in the somata and stem axons of DRG neurons. The general prevalence of Kv2.2 in DRG as compared to central neurons and the enrichment of Kv2.2 relative to detectable Kv2.1 in older mice, proprioceptors, and axons suggest more widespread roles for Kv2.2 in DRG neurons.


Asunto(s)
Axones , Ganglios Espinales , Ratones , Humanos , Animales , Potenciales de Acción , Células Receptoras Sensoriales/fisiología
2.
Neurobiol Stress ; 28: 100593, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38075025

RESUMEN

Glucocorticoids are primary stress hormones that exert neuronal effects via both genomic and non-genomic signaling pathways. However, their rapid non-genomic effects and underlying mechanisms on neural activities remain elusive. In the present study, we investigated the rapid non-genomic effect of glucocorticoids on Kv2.2 channels in cultured HEK293 cells and acute brain slices including cortical pyramidal neurons and calyx-type synapses in the brain stem. We found that cortisol, the endogenous glucocorticoids, rapidly increased Kv2.2 currents by increasing the single-channel open probability in Kv2.2-expressing HEK293 cells through activation of the membrane-associated glucocorticoid receptor. Bovine serum albumin-conjugated dexamethasone, a membrane-impermeable agonist of the glucocorticoid receptor, could mimic the effect of cortisol on Kv2.2 channels. The cortisol-increased Kv2.2 currents were induced by activation of the extracellular signal-regulated protein kinase (ERK) 1/2 kinase, which could be inhibited by U0126, an antagonist of the ERK signaling pathway. In layer 2 cortical pyramidal neurons and the calyx of Held synapses, cortisol suppressed the action potential firing frequency during depolarization and reduced the successful rate upon high-frequency stimulation by activating Kv2.2 channels. We further examined the postsynaptic responses and found that cortisol did not affect the mEPSC and evoked EPSC, but increased the activity-dependent synaptic depression induced by a high-frequency stimulus train. In conclusion, glucocorticoids can rapidly activate Kv2.2 channels through membrane-associated glucocorticoid receptors via the ERK1/2 signaling pathway, suppress presynaptic action potential firing, and inhibit synaptic transmission and plasticity. This may be a universal mechanism of the glucocorticoid-induced non-genomic effects in the central nervous system.

3.
bioRxiv ; 2023 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-38187582

RESUMEN

The distinct organization of Kv2 voltage-gated potassium channels on and near the cell body of brain neurons enables their regulation of action potentials and specialized membrane contact sites. Somatosensory neurons have a pseudounipolar morphology and transmit action potentials from peripheral nerve endings through axons that bifurcate to the spinal cord and the cell body within ganglia including the dorsal root ganglia (DRG). Kv2 channels regulate action potentials in somatosensory neurons, yet little is known about where Kv2 channels are located. Here we define the cellular and subcellular localization of the Kv2 paralogs, Kv2.1 and Kv2.2, in DRG somatosensory neurons with a panel of antibodies, cell markers, and genetically modified mice. We find that relative to spinal cord neurons, DRG neurons have similar levels of detectable Kv2.1, and higher levels of Kv2.2. In older mice, detectable Kv2.2 remains similar while detectable Kv2.1 decreases. Both Kv2 subtypes adopt clustered subcellular patterns that are distinct from central neurons. Most DRG neurons co-express Kv2.1 and Kv2.2, although neuron subpopulations show preferential expression of Kv2.1 or Kv2.2. We find that Kv2 protein expression and subcellular localization is similar between mouse and human DRG neurons. We conclude that the organization of both Kv2 channels is consistent with physiological roles in the somata and stem axons of DRG neurons. The general prevalence of Kv2.2 in DRG as compared to central neurons and the enrichment of Kv2.2 relative to detectable Kv2.1, in older mice, proprioceptors, and axons suggest more widespread roles for Kv2.2 in DRG neurons.

4.
Neurosci Bull ; 38(2): 135-148, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34542799

RESUMEN

The family of voltage-gated potassium Kv2 channels consists of the Kv2.1 and Kv2.2 subtypes. Kv2.1 is constitutively highly phosphorylated in neurons and its function relies on its phosphorylation state. Whether the function of Kv2.2 is also dependent on its phosphorylation state remains unknown. Here, we investigated whether Kv2.2 channels can be phosphorylated by protein kinase C (PKC) and examined the effects of PKC-induced phosphorylation on their activity and function. Activation of PKC inhibited Kv2.2 currents and altered their steady-state activation in HEK293 cells. Point mutations and specific antibodies against phosphorylated S481 or S488 demonstrated the importance of these residues for the PKC-dependent modulation of Kv2.2. In layer II pyramidal neurons in cortical slices, activation of PKC similarly regulated native Kv2.2 channels and simultaneously reduced the frequency of action potentials. In conclusion, this study provides the first evidence to our knowledge that PKC-induced phosphorylation of the Kv2.2 channel controls the excitability of cortical pyramidal neurons.


Asunto(s)
Proteína Quinasa C , Células Piramidales/enzimología , Canales de Potasio Shab , Potenciales de Acción , Células HEK293 , Humanos , Proteína Quinasa C/metabolismo , Canales de Potasio Shab/genética
5.
Neuroscience Bulletin ; (6): 135-148, 2022.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-922667

RESUMEN

The family of voltage-gated potassium Kv2 channels consists of the Kv2.1 and Kv2.2 subtypes. Kv2.1 is constitutively highly phosphorylated in neurons and its function relies on its phosphorylation state. Whether the function of Kv2.2 is also dependent on its phosphorylation state remains unknown. Here, we investigated whether Kv2.2 channels can be phosphorylated by protein kinase C (PKC) and examined the effects of PKC-induced phosphorylation on their activity and function. Activation of PKC inhibited Kv2.2 currents and altered their steady-state activation in HEK293 cells. Point mutations and specific antibodies against phosphorylated S481 or S488 demonstrated the importance of these residues for the PKC-dependent modulation of Kv2.2. In layer II pyramidal neurons in cortical slices, activation of PKC similarly regulated native Kv2.2 channels and simultaneously reduced the frequency of action potentials. In conclusion, this study provides the first evidence to our knowledge that PKC-induced phosphorylation of the Kv2.2 channel controls the excitability of cortical pyramidal neurons.


Asunto(s)
Humanos , Potenciales de Acción , Células HEK293 , Proteína Quinasa C/metabolismo , Células Piramidales/enzimología , Canales de Potasio Shab/genética
6.
Channels (Austin) ; 13(1): 88-101, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30712450

RESUMEN

The potassium channels Kv2.1 and Kv2.2 are widely expressed throughout the mammalian brain. Kv2.1 provides the majority of delayed rectifying current in rat hippocampus while both channels are differentially expressed in cortex. Particularly unusual is their neuronal surface localization pattern: while half the channel population is freely-diffusive on the plasma membrane as expected from the generalized Singer & Nicolson fluid mosaic model, the other half localizes into micron-sized clusters on the soma, dendrites, and axon initial segment. These clusters contain hundreds of channels, which for Kv2.1, are largely non-conducting. Competing theories of the mechanism underlying Kv2.1 clustering have included static tethering to being corralled by an actin fence. Now, recent work has demonstrated channel clustering is due to formation of endoplasmic reticulum/plasma membrane (ER/PM) junctions through interaction with ER-resident VAMP-associated proteins (VAPs). Interaction between surface Kv2 channels and ER VAPs groups channels together in clusters. ER/PM junctions play important roles in inter-organelle communication: they regulate ion flux, are involved in lipid transfer, and are sites of endo- and exocytosis. Kv2-induced ER/PM junctions are regulated through phosphorylation of the channel C-terminus which in turn regulates VAP binding, providing a rapid means to create or dismantle these microdomains. In addition, insults such as hypoxia or ischemia disrupt this interaction resulting in ER/PM junction disassembly. Kv2 channels are the only known plasma membrane protein to form regulated, injury sensitive junctions in this manner. Furthermore, it is likely that concentrated VAPs at these microdomains sequester additional interactors whose functions are not yet fully understood.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Canales de Potasio Shab/metabolismo , Animales , Humanos
7.
Proc Natl Acad Sci U S A ; 115(31): E7331-E7340, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-29941597

RESUMEN

Kv2.1 exhibits two distinct forms of localization patterns on the neuronal plasma membrane: One population is freely diffusive and regulates electrical activity via voltage-dependent K+ conductance while a second one localizes to micrometer-sized clusters that contain densely packed, but nonconducting, channels. We have previously established that these clusters represent endoplasmic reticulum/plasma membrane (ER/PM) junctions that function as membrane trafficking hubs and that Kv2.1 plays a structural role in forming these membrane contact sites in both primary neuronal cultures and transfected HEK cells. Clustering and the formation of ER/PM contacts are regulated by phosphorylation within the channel C terminus, offering cells fast, dynamic control over the physical relationship between the cortical ER and PM. The present study addresses the mechanisms by which Kv2.1 and the related Kv2.2 channel interact with the ER membrane. Using proximity-based biotinylation techniques in transfected HEK cells we identified ER VAMP-associated proteins (VAPs) as potential Kv2.1 interactors. Confirmation that Kv2.1 and -2.2 bind VAPA and VAPB employed colocalization/redistribution, siRNA knockdown, and Förster resonance energy transfer (FRET)-based assays. CD4 chimeras containing sequence from the Kv2.1 C terminus were used to identify a noncanonical VAP-binding motif. VAPs were first identified as proteins required for neurotransmitter release in Aplysia and are now known to be abundant scaffolding proteins involved in membrane contact site formation throughout the ER. The VAP interactome includes AKAPs, kinases, membrane trafficking machinery, and proteins regulating nonvesicular lipid transport from the ER to the PM. Therefore, the Kv2-induced VAP concentration at ER/PM contact sites is predicted to have wide-ranging effects on neuronal cell biology.


Asunto(s)
Membrana Celular/química , Retículo Endoplásmico/química , Canales de Potasio Shab/química , Proteínas de Transporte Vesicular/química , Animales , Biotinilación , Células HEK293 , Hipocampo/metabolismo , Humanos , Transporte de Proteínas , Ratas , Canales de Potasio Shab/fisiología , Proteínas de Transporte Vesicular/metabolismo
8.
Am J Physiol Cell Physiol ; 305(5): C547-57, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23804203

RESUMEN

Resveratrol (REV) is a naturally occurring phytoalexin that inhibits neuronal K⁺ channels; however, the molecular mechanisms behind the effects of REV and the relevant α-subunit are not well defined. With the use of patch-clamp technique, cultured cerebellar granule cells, and HEK-293 cells transfected with the K(v)2.1 and K(v)2.2 α-subunits, we investigated the effect of REV on K(v)2.1 and K(v)2.2 α-subunits. Our data demonstrated that REV significantly suppressed Kv2.2 but not Kv2.1 currents with a fast, reversible, and mildly concentration-dependent manner and shifted the activation or inactivation curve of Kv2.2 channels. Activating or inhibiting the cAMP/PKA pathway did not abolish the inhibition of K(v)2.2 current by REV. In contrast, activation of PKC with phorbol 12-myristate 13-acetate mimicked the inhibitory effect of REV on K(v)2.2 by modifying the activation or inactivation properties of Kv2.2 channels and eliminated any further inhibition by REV. PKC and PKC-α inhibitor completely eliminated the REV-induced inhibition of K(v)2.2. Moreover, the effect of REV on K(v)2.2 was reduced by preincubation with antagonists of GPR30 receptor and shRNA for GPR30 receptor. Western blotting results indicated that the levels of PKC-α and PKC-ß were significantly increased in response to REV application. Our data reveal, for the first time, that REV inhibited K(v)2.2 currents through PKC-dependent pathways and a nongenomic action of the oestrogen receptor GPR30.


Asunto(s)
Antioxidantes/farmacología , Neuronas/efectos de los fármacos , Proteína Quinasa C/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canales de Potasio Shab/antagonistas & inhibidores , Estilbenos/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Neuronas/citología , Neuronas/metabolismo , Técnicas de Placa-Clamp , Cultivo Primario de Células , Proteína Quinasa C/genética , Inhibidores de Proteínas Quinasas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/genética , Resveratrol , Canales de Potasio Shab/genética , Canales de Potasio Shab/metabolismo , Transducción de Señal , Acetato de Tetradecanoilforbol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA