Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38279278

RESUMEN

Fibrosis, characterized by excessive extracellular matrix accumulation, disrupts normal tissue architecture, causes organ dysfunction, and contributes to numerous chronic diseases. This review focuses on Krüppel-like factor 10 (KLF10), a transcription factor significantly induced by transforming growth factor-ß (TGF-ß), and its role in fibrosis pathogenesis and progression across various tissues. KLF10, initially identified as TGF-ß-inducible early gene-1 (TIEG1), is involved in key biological processes including cell proliferation, differentiation, apoptosis, and immune responses. Our analysis investigated KLF10 gene and protein structures, interaction partners, and context-dependent functions in fibrotic diseases. This review highlights recent findings that underscore KLF10 interaction with pivotal signaling pathways, such as TGF-ß, and the modulation of gene expression in fibrotic tissues. We examined the dual role of KLF10 in promoting and inhibiting fibrosis depending on tissue type and fibrotic context. This review also discusses the therapeutic potential of targeting KLF10 in fibrotic diseases, based on its regulatory role in key pathogenic mechanisms. By consolidating current research, this review aims to enhance the understanding of the multifaceted role of KLF10 in fibrosis and stimulate further research into its potential as a therapeutic target in combating fibrotic diseases.


Asunto(s)
Fibrosis , Factores de Transcripción de Tipo Kruppel , Humanos , Factores de Transcripción de la Respuesta de Crecimiento Precoz/genética , Fibrosis/metabolismo , Fibrosis/patología , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales
2.
Cancers (Basel) ; 15(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958386

RESUMEN

The prognosis of pancreatic adenocarcinoma (PDAC) remains poor, with a 5-year survival rate of 12%. Although radiotherapy is effective for the locoregional control of PDAC, it does not have survival benefits compared with systemic chemotherapy. Most patients with localized PDAC develop distant metastasis shortly after diagnosis. Upfront chemotherapy has been suggested so that patients with localized PDAC with early distant metastasis do not have to undergo radical local therapy. Several potential tissue markers have been identified for selecting patients who may benefit from local radiotherapy, thereby prolonging their survival. This review summarizes these biomarkers including SMAD4, which is significantly associated with PDAC failure patterns and survival. In particular, Krüppel-like factor 10 (KLF10) is an early response transcription factor of transforming growth factor (TGF)-ß. Unlike TGF-ß in advanced cancers, KLF10 loss in two-thirds of patients with PDAC was associated with rapid distant metastasis and radioresistance; thus, KLF10 can serve as a predictive and therapeutic marker for PDAC. For patients with resectable PDAC, a combination of KLF10 and SMAD4 expression in tumor tissues may help select those who may benefit the most from additional radiotherapy. Future trials should consider upfront systemic therapy or include molecular biomarker-enriched patients without early distant metastasis.

3.
J Biomed Sci ; 30(1): 39, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308977

RESUMEN

BACKGROUND: Pancreatic adenocarcinoma (PDAC) is well known for its rapid distant metastasis and local destructive behavior. Loss of Krüppel-like factor 10 (KLF10) contributes to distant migration of PDAC. The role of KLF10 in modulating tumorigenesis and stem cell phenotypes of PDAC is unclear. METHODS: Additional depletion of KLF10 in KC (LSL: KrasG12D; Pdx1-Cre) mice, a spontaneous murine PDAC model, was established to evaluate tumorigenesis. Tumor specimens of PDAC patients were immune-stained of KLF10 to correlate with local recurrence after curative resection. Conditional overexpressing KLF10 in MiaPaCa and stably depleting KLF10 in Panc-1 (Panc-1-pLKO-shKLF10) cells were established for evaluating sphere formation, stem cell markers expression and tumor growth. The signal pathways modulated by KLF10 for PDAC stem cell phenotypes were disclosed by microarray analysis and validated by western blot, qRT-PCR, luciferase reporter assay. Candidate targets to reverse PDAC tumor growth were demonstrated in murine model. RESULTS: KLF10, deficient in two-thirds of 105 patients with resected pancreatic PDAC, was associated with rapid local recurrence and large tumor size. Additional KLF10 depletion in KC mice accelerated progression from pancreatic intraepithelial neoplasia to PDAC. Increased sphere formation, expression of stem cell markers, and tumor growth were observed in Panc-1-pLKO-shKLF10 compared with vector control. Genetically or pharmacologically overexpression of KLF10 reversed the stem cell phenotypes induced by KLF10 depletion. Ingenuity pathway analysis and gene set enrichment analysis showed that Notch signaling molecules, including Notch receptors 3 and 4, were over-expressed in Panc-1-pLKO-shKLF10. KLF10 transcriptionally suppressed Notch-3 and -4 by competing with E74-like ETS transcription factor 3, a positive regulator, for promoter binding. Downregulation of Notch signaling, either genetically or pharmacologically, ameliorated the stem cell phenotypes of Panc-1-pLKO-shKLF10. The combination of metformin, which upregulated KLF10 expression via phosphorylating AMPK, and evodiamine, a non-toxic Notch-3 methylation stimulator, delayed tumor growth of PDAC with KLF10 deficiency in mice without prominent toxicity. CONCLUSIONS: These results demonstrated a novel signaling pathway by which KLF10 modulates stem cell phenotypes in PDAC through transcriptionally regulating Notch signaling pathway. The elevation of KLF10 and suppression of Notch signaling may jointly reduce PDAC tumorigenesis and malignant progression.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Animales , Ratones , Receptores Notch , Células Madre , Carcinogénesis , Factores de Transcripción , Transformación Celular Neoplásica , Factores de Transcripción de Tipo Kruppel , Neoplasias Pancreáticas
4.
Dev Reprod ; 26(2): 79-90, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35950165

RESUMEN

Krüppel-like factor 10 (KLF10) regulates various cellular functions, such as proliferation, differentiation and apoptosis, as well as the homeostasis of several types of tissue. In the present study, we attempted a loss-of-function analysis of zebrafish Klf11a and Klf11b, which constitute human KLF10 homologs. Embryos injected with klf11b-morpholino (MO) showed developmental retardation and cell death, whereas klf11a-MO-injected embryos showed normal development. In klf11b-MO-injected embryos, a dramatic increase in the amount of zebrafish p53 mRNA might be the cause of the increase in that of bax. The degree of apoptosis decreased in the klf11b-MO and p53-MO co-injected embryos. These findings imply that KLF10 is a negative regulator of p53-dependent transcription, suggesting that the KLF10/p53 complex may play an important role in apoptosis for maintenance of tissue homeostasis during embryonic development.

5.
Oncol Lett ; 23(6): 175, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35497935

RESUMEN

Malignant melanoma is a type of skin cancer caused by mutations in the DNA of melanocytes. Melanoma is relatively rare compared with other types of skin tumors, but has a highly aggressive biological behavior and consequently, a poorer prognosis. Therefore, the present study aimed to explore the role and mechanism of Kruppel-like factor 10 (KLF10) and acyl-CoA medium-chain synthetase 3 (ACSM3) in melanoma progression. KLF10 expression in melanoma tissues was predicted using Gene Expression Profiling Interactive Analysis (GEPIA). KLF10 expression in healthy and melanoma cells was also detected using reverse transcription-quantitative PCR and western blotting. Cell transfection was performed to overexpress KLF10 or silence ACSM3. Cell viability, proliferation, migration, invasion and apoptosis were detected using Cell Counting Kit-8, colony formation, wound healing, Transwell and TUNEL assays, respectively. The activity of the ACSM3 promoter was detected using a dual-luciferase reporter assay, and the relationship between KLF10 and ACSM3 was detected using the GEPIA database and chromatin immunoprecipitation (ChIP). The results demonstrated that KLF10 expression was significantly downregulated in melanoma cells, especially in A375 cells. Compared with the Ov-NC group, KLF10 overexpression significantly inhibited the proliferation, invasion and migration of melanoma cells and promoted their apoptosis. Similar to KLF10, ACSM3 was also downregulated in A375 cells compared with that in the HEM group, and the GEPIA database analysis and ChIP assay results demonstrated that KLF10 expression was positively associated with ACSM3 expression. Furthermore, silencing ACSM3 significantly reversed the effect of KLF10 overexpression on cell proliferation, invasion and migration, and ACSM3 knockdown increased the levels of phosphorylated (p)-PI3K and p-Akt compared with the levels in the Ov-KLF10 + sh-NC group. Overall, the present study suggested that KLF10 inhibited the proliferation, invasion and migration of melanoma cells by targeting ACSM3 via the PI3K/Akt signaling pathway.

6.
Circ Res ; 130(11): 1662-1681, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35440172

RESUMEN

BACKGROUND: Perivascular fibrosis, characterized by increased amount of connective tissue around vessels, is a hallmark for vascular disease. Ang II (angiotensin II) contributes to vascular disease and end-organ damage via promoting T-cell activation. Despite recent data suggesting the role of T cells in the progression of perivascular fibrosis, the underlying mechanisms are poorly understood. METHODS: TF (transcription factor) profiling was performed in peripheral blood mononuclear cells of hypertensive patients. CD4-targeted KLF10 (Kruppel like factor 10)-deficient (Klf10fl/flCD4Cre+; [TKO]) and CD4-Cre (Klf10+/+CD4Cre+; [Cre]) control mice were subjected to Ang II infusion. End point characterization included cardiac echocardiography, aortic imaging, multiorgan histology, flow cytometry, cytokine analysis, aorta and fibroblast transcriptomic analysis, and aortic single-cell RNA-sequencing. RESULTS: TF profiling identified increased KLF10 expression in hypertensive human subjects and in CD4+ T cells in Ang II-treated mice. TKO mice showed enhanced perivascular fibrosis, but not interstitial fibrosis, in aorta, heart, and kidney in response to Ang II, accompanied by alterations in global longitudinal strain, arterial stiffness, and kidney function compared with Cre control mice. However, blood pressure was unchanged between the 2 groups. Mechanistically, KLF10 bound to the IL (interleukin)-9 promoter and interacted with HDAC1 (histone deacetylase 1) inhibit IL-9 transcription. Increased IL-9 in TKO mice induced fibroblast intracellular calcium mobilization, fibroblast activation, and differentiation and increased production of collagen and extracellular matrix, thereby promoting the progression of perivascular fibrosis and impairing target organ function. Remarkably, injection of anti-IL9 antibodies reversed perivascular fibrosis in Ang II-infused TKO mice and C57BL/6 mice. Single-cell RNA-sequencing revealed fibroblast heterogeneity with activated signatures associated with robust ECM (extracellular matrix) and perivascular fibrosis in Ang II-treated TKO mice. CONCLUSIONS: CD4+ T cell deficiency of Klf10 exacerbated perivascular fibrosis and multi-organ dysfunction in response to Ang II via upregulation of IL-9. Klf10 or IL-9 in T cells might represent novel therapeutic targets for treatment of vascular or fibrotic diseases.


Asunto(s)
Linfocitos T CD4-Positivos , Hipertensión , Angiotensina II/farmacología , Animales , Linfocitos T CD4-Positivos/metabolismo , Factores de Transcripción de la Respuesta de Crecimiento Precoz , Fibrosis , Humanos , Interleucina-9 , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Leucocitos Mononucleares/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN
7.
Front Mol Biosci ; 8: 751938, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869587

RESUMEN

Krüppel-like factor 10 (KLF10) is a phospho-regulated transcriptional factor involved in many biological processes including lipogenesis; however, the transcriptional regulation on lipogenesis by KLF10 remains largely unclear. Lipogenesis is important in the development of nonalcoholic fatty liver disease (NAFLD) which was known regulated mainly by AMP-activated protein kinase (AMPK) and sterol regulatory element-binding protein (SREBP-1C). Interesting, our previous study using phosphorylated site prediction suggested a regulation of AMPK on KLF10. Therefore, we aimed to study the protein-protein interactions of AMPK on the regulation of KLF10, and to delineate the mechanisms of phosphorylated KLF10 in the regulation of NAFLD through SREBP-1C. We performed in vitro and in vivo assays that identified AMPK phosphorylates KLF10 at Thr189 and subsequently modulates the steady state level of KLF10. Meanwhile, a chromatin immunoprecipitation-chip assay revealed the novel target genes and signaling cascades of corresponding to phosphorylated KLF10. SREBP-1C was identified as a target gene suppressed by phosphorylated KLF10 through promoter binding. We further performed high-fat-diet-induced NAFLD models using hepatic-specific KLF10 knockout mice and wild-type mice and revealed that KLF10 knockout markedly led to more severe NAFLD than that in wild-type mice. Taken together, our findings revealed for the first time that AMPK activates and stabilizes the KLF10 protein via phosphorylation at Thr189, thereby repressing the expression of SREBP-1C and subsequent lipogenesis pathways along with metabolic disorders. We suggested that the targeted manipulation of liver metabolism, particularly through increased KLF10 expression, is a potential alternative solution for treating NAFLD.

8.
Radiother Oncol ; 158: 146-154, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33667587

RESUMEN

PURPOSE: Our previous studies have demonstrated that Krüppel-like factor 10 (Klf10) modulated tumor radiation resistance and helps to predict clinical outcomes of pancreatic adenocarcinoma (PDAC). This study aimed to evaluate whether the expression levels of Klf10, Smad4 and Runx3 can help predict the benefits of adjuvant chemoradiotherapy (CRT) in resected PDAC. METHODS AND MATERIALS: Tissue specimens were collected from 111 patients with curatively resected PDAC who were enrolled into a randomized trial comparing adjuvant gemcitabine with or without CRT. Immunohistochemical expression of biomarkers was quantified by pathologists blinded to patient outcomes through a grading system based on the extent and intensity of staining. The predictive value of biomarkers was analyzed using SAS statistical software. RESULTS: In total, 56 and 55 patients received adjuvant gemcitabine alone and additional CRT, respectively. The expression levels of Klf10, Smad4 and postoperative CA19-9 were significantly correlated with overall survival (OS) (p = 0.013, 0.045, and 0.047, respectively). Multivariable analysis showed that the expression level of postoperative serum CA19-9 and tumor tissue Klf10 expression level were significant predictors for OS (p = 0.038, and 0.028, respectively). Patients with high Klf10 or Smad4 (n = 55), had a significantly better local recurrence-free survival (∞ vs 19.8 months; p = 0.026) and a longer OS (33.0 vs 23.0 months; p = 0.12) if they received additional adjuvant CRT than gemcitabine only. The results were similar after adjusted by postoperative level of CA19-9. CONCLUSION: Patients with curatively resected PDAC and a high expression of either Klf10 or Smad4 have high chances of benefiting from adjuvant CRT. Combining Klf10 and Smad4 to predict the benefits of adjuvant CRT in resected PDAC deserves further validation.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Adenocarcinoma/terapia , Antígeno CA-19-9 , Quimioradioterapia Adyuvante , Quimioterapia Adyuvante , Humanos , Factores de Transcripción de Tipo Kruppel , Neoplasias Pancreáticas/terapia , Proteína Smad4
9.
Genes Genomics ; 43(4): 343-349, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33555508

RESUMEN

BACKGROUND: Krüppel-like factor 10 (KLF10) belongs to the Sp1-like transcription factor family, which plays an important role in many directions, e.g., cell proliferation, apoptosis, and differentiation. Its 5' upstream regions are conserved across mammalian species. However, the regulatory mechanism has not been elucidated yet. OBJECTIVE: Nonetheless the basal transcriptional regulation mechanisms of these regions are unknown. Here, we characterized it which is indispensable for the basal transcription of the Klf10 gene. METHODS: Seven deletions of 5' upstream DNA fragments from the 10 kb mKlf10 genomic DNA were produced by PCR and cloned into the upstream of the luciferase (Luc) reporter gene in the pGL3 basic plasmid. RESULT: The luciferase reporter assay showed that the DNA sequence at positions from -101 to +68 was required for a principle activity in the promoter of mKlf10 gene, in which transcriptional factor binding motifs, one JunB and two Sp1 sites, are included. Mutations at the sequence of JunB motif, but not at the two Sp1, abrogated the promoter activity completely, suggesting the indispensable role of JunB site for basal transcription of mKlf10 gene. Moreover, electrophoretic mobility and supershift assays (EMSA) uncovered that JunB protein bound to this region specifically. CONCLUSION: Taken together, our study revealed that the JunB but not Sp1 at mKlf10 promoter functions as a positive basic factor for the transcriptional activity of the gene.


Asunto(s)
Factores de Transcripción de la Respuesta de Crecimiento Precoz/genética , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción/metabolismo , Activación Transcripcional , Animales , Sitios de Unión , Células HEK293 , Humanos , Ratones , Células 3T3 NIH , Regiones Promotoras Genéticas
10.
Cell Mol Immunol ; 18(9): 2236-2248, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32895486

RESUMEN

Viral myocarditis (VMC) is a cardiac disease associated with myocardial inflammation and injury induced by virus infection. Cardiomyocytes have recently been regarded as key players in eliciting and modulating inflammation within the myocardium. Kruppel-like factor 10 (KLF10) is a crucial regulator of various pathological processes and plays different roles in a variety of diseases. However, its role in VMC induced by coxsackievirus B3 (CVB3) infection remains unknown. In this study, we report that cardiac KLF10 confers enhanced protection against viral myocarditis. We found that KLF10 expression was downregulated upon CVB3 infection. KLF10 deficiency enhanced cardiac viral replication and aggravated VMC progress. Bone marrow chimera experiments indicated that KLF10 expression in nonhematopoietic cells was involved in the pathogenesis of VMC. We further identified MCP-1 as a novel target of KLF10 in cardiomyocytes, and KLF10 cooperated with histone deacetylase 1 (HDAC1) to negatively regulate MCP-1 expression by binding its promoter, leading to activation of MCP-1 transcription and recruitment of Ly6Chigh monocytes/macrophages into the myocardium. This novel mechanism of MCP-1 regulation by KLF10 might provide new insights into the pathogenesis of VMC and a potential therapeutic target for VMC.


Asunto(s)
Infecciones por Coxsackievirus , Miocarditis , Animales , Infecciones por Coxsackievirus/metabolismo , Infecciones por Coxsackievirus/patología , Enterovirus Humano B/fisiología , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Endogámicos BALB C , Miocarditis/patología , Miocarditis/terapia , Miocardio/metabolismo , Miocardio/patología
11.
Medicina (Kaunas) ; 57(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379261

RESUMEN

BACKGROUND AND OBJECTIVES: Krüppel-like transcription factor 10 (KLF10) plays a vital role in regulating cell proliferation, including the anti-proliferative process, activation of apoptosis, and differentiation control. KLF10 may also act as a protective factor against oral cancer. We studied the impact of KLF10 expression on the clinical outcomes of oral cancer patients to identify its role as a prognostic factor in oral cancer. MATERIALS AND METHODS: KLF10 immunoreactivity was analyzed by immunohistochemical (IHC) stain analysis in 286 cancer specimens from primary oral cancer patients. The prognostic value of KLF10 on overall survival was determined by Kaplan-Meier analysis and the Cox proportional hazard model. RESULTS: High KLF10 expression was significantly associated with male gender and betel quid chewing. The 5-year survival rate was greater for patients with high KLF10 expression than for those with low KLF10 expression (62.5% vs. 51.3%, respectively; p = 0.005), and multivariate analyses showed that high KLF10 expression was the only independent factor correlated with greater overall patient survival. The significant correlation between high KLF10 expression and a higher 5-year survival rate was observed in certain subgroups of clinical parameters, including female gender, non-smokers, cancer stage T1, and cancer stage N0. CONCLUSIONS: KLF10 expression, detected by IHC staining, could be an independent prognostic marker for oral cancer patients.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Factores de Transcripción de la Respuesta de Crecimiento Precoz , Femenino , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Neoplasias de la Boca/genética , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello
12.
Br J Nutr ; 118(8): 580-588, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29056104

RESUMEN

A maternal high-fat, high-sucrose (HFS) diet alters offspring glucose and lipid homoeostasis through unknown mechanisms and may be modulated by folic acid. We investigated the effect of a maternal HFS diet on glucose homoeostasis, expression of genes and proteins associated with insulin signalling and lipid metabolism and the effect of prenatal folic acid supplementation (HFS/F) in male rat offspring. Pregnant Sprague-Dawley rats were randomly fed control (CON), HFS or HFS/F diets. Offspring were weaned on CON; at postnatal day 70, fasting plasma insulin and glucose and liver and skeletal muscle gene and protein expression were measured. Treatment effects were assessed by one-way ANOVA. Maternal HFS diet induced higher fasting glucose in offspring v. HFS/F (P=0·027) and down-regulation (P<0·05) of genes coding for v-Akt murine thymoma viral oncogene homolog 2, resistin and v-Raf-1 murine leukaemia viral oncogene homolog 1 (Raf1) in offspring skeletal muscle and acetyl-CoA carboxylase (Acaca), fatty acid synthase and phosphatidylinositol-4,5-biphosphate 3-kinase, catalytic subunit ß in offspring liver. Skeletal muscle neuropeptide Y and hepatic Kruppel-like factor 10 were up-regulated in HFS v. CON offspring (P<0·05). Compared with CON, Acaca and Raf1 protein expression levels were significantly lower in HFS offspring. Maternal HFS induced higher homoeostasis model of assessment index of insulin resistance v. CON (P=0·030) and HFS/F was associated with higher insulin (P=0·016) and lower glucose (P=0·025). Maternal HFS diet alters offspring insulin sensitivity and de novo hepatic lipogenesis via altered gene and protein expression, which appears to be potentiated by folate supplementation.


Asunto(s)
Dieta Alta en Grasa , Resistencia a la Insulina , Insulina/sangre , Metabolismo de los Lípidos , Fenómenos Fisiologicos Nutricionales Maternos , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Animales , Animales Recién Nacidos , Glucemia/metabolismo , Regulación hacia Abajo , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Femenino , Ácido Fólico/administración & dosificación , Hígado/metabolismo , Masculino , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo , Ratas , Ratas Sprague-Dawley , Resistina/genética , Resistina/metabolismo , Regulación hacia Arriba
13.
Oncol Lett ; 13(6): 4843-4848, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28599486

RESUMEN

The liver has marked regenerative capabilities, and numerous signaling pathways are involved in liver regeneration. The transforming growth factor-ß (TGF-ß)/Smad pathway, which is also involved in liver regeneration, regulates numerous biological processes. Krüppel-like factor 10 (KLF10) has been reported to activate the TGF-ß/Smad signaling pathway; however, the exact functions of KLF10 under various pathophysiological conditions remain unclear. In the present study, the role of KLF10 in liver regeneration following partial hepatectomy (PH) was investigated using KLF10-knockout (KO) mice. KLF10-KO mice exhibited lower liver/body weight ratios and 5-bromo-2-deoxy-uridine labeling indices compared with wild-type (WT) mice, and significant differences (P=0.028) were obtained at 72 h after PH. To understand the causes of the gross and histopathological findings, the expression levels of the components of the TGF-ß/Smad pathway were examined using reverse transcription-quantitative polymerase chain reaction and western blot analysis. The mRNA and protein levels of Smad3, p15, TGF-ß1 and TGF-ß receptor 1 were significantly increased, while those of cMyc and cyclin D1 (proliferation-associated genes) were significantly lower in the liver tissues of the KLF10-KO mice compared with those of the WT mice at 72 h post-PH. These results indicated that KLF10-KO may exhibit antiproliferative effects on liver regeneration following PH, through strengthening the TGF-ß/Smad signaling pathway in a delayed manner.

14.
Int J Biochem Cell Biol ; 79: 231-238, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27592451

RESUMEN

KLF10 is a transforming growth factor (TGF)-ß/Smad downstream regulated gene. KLF10 binds to the promoter of target genes and mimics the effects of TGF-ß as a transcriptional factor. In our laboratory, we noted that Klf10 deficiency in mice is associated with significant inflammation of the lungs. However, the precise mechanism of this association remains unknown. We previously identified NPRA as a target gene potentially regulated by KLF10 through direct binding; NPRA knockout have known that prevented lung inflammation in a mouse model of allergic asthma. Here, we further explored the regulatory association between KLF10 and NPRA on the basis of the aforementioned findings. Our results demonstrated that KLF10 acts as a transcriptional repressor of NPRA and that KLF10 binding reduces NPRA expression in vitro. Compared with wild-type mice, Klf10-deficient mice were more sensitive to lipopolysaccharide or ovalbumin challenge and showed more severe inflammatory histological changes in the lungs. Moreover, Klf10-deficient mice showed pulmonary neutrophil accumulation. These findings collectively reveal the precise site where KLF10 signaling affects pulmonary inflammation by attenuating NPRA expression. They also verify the importance of KLF10 and atrial natriuretic peptide/NPRA in exerting influences on chronic pulmonary disease pathogenesis.


Asunto(s)
Factores de Transcripción de la Respuesta de Crecimiento Precoz/deficiencia , Regulación de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/deficiencia , Neumonía/genética , Neumonía/metabolismo , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo , Animales , Permeabilidad Capilar , Humanos , Ratones , Ratones Endogámicos C57BL , Neutrófilos/citología , Neumonía/inmunología , Regiones Promotoras Genéticas/genética , Transcripción Genética
15.
Epigenetics ; 10(7): 574-80, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26023847

RESUMEN

Amphetamine and methamphetamine addiction is described by specific behavioral alterations, suggesting long-lasting changes in gene and protein expression within specific brain subregions involved in the reward circuitry. Given the persistence of the addiction phenotype at both behavioral and transcriptional levels, several studies have been conducted to elucidate the epigenetic landscape associated with persistent effects of drug use on the mammalian brain. This review discusses recent advances in our comprehension of epigenetic mechanisms underlying amphetamine- or methamphetamine-induced behavioral, transcriptional, and synaptic plasticity. Accumulating evidence demonstrated that drug exposure induces major epigenetic modifications-histone acetylation and methylation, DNA methylation-in a very complex manner. In rare instances, however, the regulation of a specific target gene can be correlated to both epigenetic alterations and behavioral abnormalities. Work is now needed to clarify and validate an epigenetic model of addiction to amphetamines. Investigations that include genome-wide approaches will accelerate the speed of discovery in the field of addiction.


Asunto(s)
Trastornos Relacionados con Anfetaminas/genética , Anfetamina/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Metanfetamina/farmacología , Acetilación/efectos de los fármacos , Trastornos Relacionados con Anfetaminas/fisiopatología , Animales , Conducta Animal , Encéfalo/citología , Encéfalo/metabolismo , Expresión Génica , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Metilación/efectos de los fármacos , Ratones , Plasticidad Neuronal , Proto-Oncogenes Mas , Ratas
16.
Biochim Biophys Acta ; 1833(12): 3035-3045, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23994618

RESUMEN

KLF10 is now classified as a member of the Krüppel-like transcription factor family and acts as a tumor suppressor. Although KLF10 is originally named as TGF-ß-inducible early gene-1 and mimicking the anti-proliferative effect of TGF-ß in various carcinoma cells, the transcriptional upregulatory function of KLF10 has been described for a variety of cytokines and in many diseases. Through in vivo and in vitro phosphorylation assays, we identified that KLF10 is a phosphorylated protein in cells. Using yeast-two hybrid screening and site direct mutagenesis, we also identified PIN1 as a novel KLF10 associated protein. PIN1 is a peptidyl-prolyl isomerase enzyme belonging to the parvulin family, which specifically recognizes phosphorylated Ser/Thr-Pro containing substrates. Through protein-protein interaction assays, we showed that the Pro-directed Ser/Thr-Pro motif at Thr-93 in the KLF10 N-terminal region is essential for the interaction between KLF10 and PIN1. More importantly, PIN1 interacts with KLF10 in a phosphorylation-dependent manner and this interaction promotes KLF10 protein degradation in cells. Therefore, KLF10 shows shorter protein stability compared with mutant KLF10 that lacks PIN1 binding ability after cycloheximide treatments. The reversely correlated expression profile between KLF10 and PIN1 as observed in cell lines was also shown in clinic pancreatic cancer specimen. Using in vitro kinase assays and depletion assays, we were able to show that RAF-1 phosphorylates the Thr-93 of KLF10 and affects the KLF10 expression level in cells. Thus these findings as a whole indicate that RAF-1 phosphorylation and PIN1 isomerization together regulate KLF10 stability and further affect the role of KLF10 in tumor progression.


Asunto(s)
Factores de Transcripción de la Respuesta de Crecimiento Precoz/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Fosfotreonina/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencias de Aminoácidos , Animales , Línea Celular Tumoral , Factores de Transcripción de la Respuesta de Crecimiento Precoz/química , Humanos , Factores de Transcripción de Tipo Kruppel/química , Ratones , Peptidilprolil Isomerasa de Interacción con NIMA , Fosforilación , Fosfoserina/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Proteolisis , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Supresoras de Tumor/química
17.
Arterioscler Thromb Vasc Biol ; 33(7): 1552-60, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23685559

RESUMEN

OBJECTIVE: The objective of this study was to investigate the role of Kruppel-like factor (KLF) 10, a zinc-finger transcription factor, in bone marrow (BM)-derived cell responses to arterial endothelial injury. Accumulating evidence indicates that BM-derived progenitors are recruited to sites of vascular injury and contribute to endothelial repair. APPROACH AND RESULTS: In response to carotid artery endothelial denudation, KLF10 mRNA expression was markedly increased in both BM and circulating lin(-) progenitor cells. To examine the specific role of KLF10 in arterial reendothelialization, we used 2 models of endothelial denudation (wire- and thermal-induced injury) of the carotid artery in wild-type (WT) and KLF10(-/-) mice. WT mice displayed higher areas of reendothelialization compared with KLF10(-/-) mice after endothelial injury using either method. BM transplant studies revealed that reconstitution of KLF10(-/-) mice with WT BM fully rescued the defect in reendothelialization and increased lin(-)CD34(+)kinase insert domain receptor(+) progenitors in the blood and injured carotid arteries. Conversely, reconstitution of WT mice with KLF10(-/-) BM recapitulated the defects in reendothelialization and peripheral cell progenitors. The media from cultured KLF10(-)/(-) BM progenitors was markedly inefficient in promoting endothelial cell growth and migration compared with the media from WT progenitors, indicative of defective paracrine trophic effects from KLF10(-)/(-) BM progenitors. Finally, BM-derived KLF10(-/-) lin(-) progenitors from reconstituted mice had reduced CXC-chemokine receptor 4 expression and impaired migratory responses. CONCLUSIONS: Collectively, these observations demonstrate a protective role for BM-derived KLF10 in paracrine and homing responses important for arterial endothelial injury and highlight KLF10 as a possible therapeutic target to promote endothelial repair in vascular disease states.


Asunto(s)
Células de la Médula Ósea/metabolismo , Traumatismos de las Arterias Carótidas/metabolismo , Proliferación Celular , Factores de Transcripción de la Respuesta de Crecimiento Precoz/metabolismo , Células Endoteliales/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Comunicación Paracrina , Células Madre/metabolismo , Lesiones del Sistema Vascular/metabolismo , Animales , Antígenos CD34/metabolismo , Biomarcadores/metabolismo , Trasplante de Médula Ósea , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/patología , Quimiotaxis , Medios de Cultivo Condicionados/metabolismo , Modelos Animales de Enfermedad , Factores de Transcripción de la Respuesta de Crecimiento Precoz/deficiencia , Factores de Transcripción de la Respuesta de Crecimiento Precoz/genética , Células Endoteliales/patología , Femenino , Regulación de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/deficiencia , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/metabolismo , Receptores CCR4/metabolismo , Transducción de Señal , Trasplante de Células Madre , Factores de Tiempo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA