Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39274981

RESUMEN

The control of metabolic networks is incompletely understood, even for glycolysis in highly studied model organisms. Direct real-time observations of metabolic pathways can be achieved in cellular systems with 13C NMR using dissolution Dynamic Nuclear Polarization (dDNP NMR). The method relies on a short-lived boost of NMR sensitivity using a redistribution of nuclear spin states to increase the alignment of the magnetic moments by more than four orders of magnitude. This temporary boost in sensitivity allows detection of metabolism with sub-second time resolution. Here, we hypothesized that dDNP NMR would be able to investigate molecular phenotypes that are not easily accessible with more conventional methods. The use of dDNP NMR allows real-time insight into carbohydrate metabolism in a Gram-positive bacterium (Lactoccocus lactis), and comparison to other bacterial, yeast and mammalian cells shows differences in the kinetic barriers of glycolysis across the kingdoms of life. Nevertheless, the accumulation of non-toxic precursors for biomass at kinetic barriers is found to be shared across the kingdoms of life. We further find that the visualization of glycolysis using dDNP NMR reveals kinetic characteristics in transgenic strains that are not evident when monitoring the overall glycolytic rate only. Finally, dDNP NMR reveals that resting Lactococcus lactis cells use the influx of carbohydrate substrate to produce acetoin rather than lactate during the start of glycolysis. This metabolic regime can be emulated using suitably designed substrate mixtures to enhance the formation of the C4 product acetoin more than 400-fold. Overall, we find that dDNP NMR provides analytical capabilities that may help to clarify the intertwined mechanistic determinants of metabolism and the optimal usage of biotechnologically important bacteria.


Asunto(s)
Glucólisis , Lactococcus lactis , Lactococcus lactis/metabolismo , Redes y Vías Metabólicas , Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Espectroscopía de Resonancia Magnética/métodos , Isótopos de Carbono
2.
Angew Chem Int Ed Engl ; : e202411361, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39073279

RESUMEN

Perovskite light-emitting diodes (PeLEDs) that can be air-processed promises the development of displaying optoelectronic device, while is challenged by technical difficulty on both the active layer and hole transport layer (HTL) caused by the unavoidable humidity interference. Here, we propose and validate that, planting the polymer brush with tailored functional groups in inorganic HTL, provides unique bilateral embedded anchoring that is capable of simultaneously addressing the n phases crystallization rates in the active layer as well as the deteriorated particulate surface defects in HTL. Exemplified by zwitterionic polyethyleneimine-sulfonate (PEIS) in present study, its implanting in NiOx HTL offers abundant nuclei sites of amino and sulfonate groups that balance the growth rate of different n phases in quasi-2D perovskite films. Moreover, the PEIS effectively nailed the interfacial contact between perovskite and NiOx, and reduced the particulate surface defects in HTL, leading to the enhanced PLQY and stability of large-area blue perovskite film in ambient air. By virtue of these merits, present work achieves the first demonstration of the air-processed blue PeLEDs in large emitting area of 1.0 cm2 with peak external quantum efficiency (EQE) of 2.09 %, which is comparable to the similar pure-bromide blue PeLEDs fabricated in glovebox.

3.
Chempluschem ; : e202400332, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38855862

RESUMEN

The solid-state synthesis and fast crystallization under kinetic control of poly-[n]-catenanes self-assembled of mechanically interlocked metal organic cages (MOCs) is virtually unexplored. This is in part, due to the lack of suitable crystals for single crystal X-ray diffraction (SC-XRD) analysis which limits their progress as advanced functional materials. Here we report the unprecedented inclusion of paracetamol in the cavities of amorphous materials constituted of M12L8, interlocked MOCs synthesized by mechanochemistry under kinetic control. Full structure determination of a low-crystallinity and low-resolution powders of the M12L8 poly-[n]-catenane including paracetamol has been carried out combining XRD data and Density Functional Theory (DFT) calculations using a multi-step approach. Each M12L8 cage contains six paracetamol guests which is confirmed by thermal analysis and NMR spectroscopy. The paracetamol loading has been also carried out by the instant synthesis method using a saturated paracetamol solution in which TPB and ZnI2 self-assemble immediately (i. e., 1-5 seconds) encapsulating ~7 paracetamol molecules in the M12L8 nanocages under kinetic control also giving a good selectivity. Benzaldehyde has been included in the M12L8 cages using amorphous M12L8 polycatenanes showing that the icosahedral cages can serve as potential nanoreactors for instance to study Henry reactions in the solid-state.

4.
Angew Chem Int Ed Engl ; 63(37): e202409109, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-38780121

RESUMEN

Two closely related yet distinctly different cationic clusters, [Dy52Ni44(HEIDA)36(OH)138(OAc)24(H2O)30]10+ (1) and [Dy112Ni76(HEIDA)44(EIDA)24(IDA)4(OH)268(OAc)48(H2O)44]4+ (2) (HEIDA=N-(2-hydroxyethyl)iminodiacetate), each featuring a multi-shell core of Platonic and Archimedean polyhedra, were obtained. Depending on the specific conditions used for the co-hydrolysis of Dy3+ and Ni2+, the product can be crystallized out as one particular type of cluster or as a mixture of 1 and 2. How the reaction process was affected by the amount of hydrolysis-facilitating base and/or by the reaction temperature and duration was investigated. It has been found that a reaction at a high temperature and/or for an extended period favors the formation of the compact and thermodynamically more stable 1, while a brief reaction with a large amount of the base is good for the kinetic product 2. By tuning these intertwining conditions, the reaction can be regulated toward a particular product.

5.
ACS Nano ; 18(4): 3043-3052, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252154

RESUMEN

Despite the substantial success of N-heterocyclic carbenes (NHCs) as stable and versatile surface modification ligands, their use in nanoscale applications beyond chemistry is still hampered by the failure to control the carbene binding mode, which complicates the fabrication of monolayers with the desired physicochemical properties. Here, we applied vibrational sum-frequency generation spectroscopy to conduct a pseudokinetic surface analysis of NHC monolayers on Au thin films under ambient conditions. We observe for two frequently used carbene structures that their binding mode is highly dynamic and changes with the adsorption time. In addition, we demonstrate that this transition can be accelerated or decelerated to adjust the binding mode of NHCs, which allows fabrication of tailored monolayers of NHCs simply by kinetic control.

6.
Angew Chem Int Ed Engl ; 62(50): e202312844, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37905561

RESUMEN

Multicomponent supramolecular block copolymers (BCPs) have attracted much attention due to their potential functionalities, but examples of three-component supramolecular BCPs are rare. Herein, we report the synthesis of three-component multiblock 1D supramolecular copolymers of Ir(III) complexes 1-3 by a sequential seeded supramolecular polymerization approach. Precise control over the kinetically trapped species via the pathway complexity of the monomers is the key to the successful synthesis of BCPs with up to 9 blocks. Furthermore, 5-block BCPs with different sequences could be synthesized by changing the addition order of the kinetic species during a sequentially seeded process. The corresponding heterogeneous nucleation-elongation process has been confirmed by the UV/Vis absorption spectra, and each segment of the multiblock copolymers could be characterized by both TEM and SEM. Interestingly, the energy transfer leads to weakened emission of 1-terminated and enhanced emission of 3-terminated BCPs. This study will be an important step in advancing the synthesis and properties of three-component BCPs.

7.
Angew Chem Int Ed Engl ; 62(40): e202310320, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37582683

RESUMEN

Axially chiral N-substituted quinazolinones are important bioactive molecules, which are presented in many synthetic drugs. However, most strategies toward their atroposelective synthesis are mainly limited to the axially chiral arylquinazolinone frameworks. The development of modular synthetic methods to access diverse quinazolinone-based atropisomers remains scarce and challenging. Herein, we report the regio- and atroposelective synthesis of axially chiral N-vinylquinazolinones via the strategy of asymmetric allylic substitution-isomerization. The catalysis system utilized both asymmetric transition-metal catalysis and organocatalysis to efficiently afford trisubstituted and tetrasubstituted N-vinylquinazolinone atropisomers, respectively. With the meticulous design of ß-substituted allylic substrates, both Z- and E-tetrasubstituted axially chiral N-vinylquinazolinones were obtained in good yields and high enantioselectivities.

8.
Chemistry ; 29(57): e202302100, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37461223

RESUMEN

Nanostructures intrinsically possessing two different structural or functional features, often called Janus nanoparticles, are emerging as a potential material for sensing, catalysis, and biomedical applications. Herein, we report the synthesis of plasmonic gold Janus nanostars (NSs) possessing a smooth concave pentagonal morphology with sharp tips and edges on one side and, contrastingly, a crumbled morphology on the other. The methodology reported herein for their synthesis - a single-step growth reaction - is different from any other Janus nanoparticle preparation involving either template-assisted growth or a masking technique. Interestingly, the coexistence of lower- and higher-index facets was found in these Janus NSs. The general paradigm for synthesizing gold Janus NSs was investigated by understanding the kinetic control mechanism with the combinatorial effect of all the reagents responsible for the structure. The optical properties of the Janus NSs were realized by corelating their extinction spectra with the simulated data. The size-dependent surface-enhanced Raman scattering (SERS) activity of these Janus NSs was studied with 1,4-BDT as the model analyte. Finite-difference time-domain simulations for differently sized particles revealed the distribution of electromagnetic hot-spots over the particles resulting in enhancement of the SERS signal in a size-dependent manner.

9.
Angew Chem Int Ed Engl ; 62(26): e202304303, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37130008

RESUMEN

One striking feature of enzyme is its controllable ability to trap substrates via synergistic or cooperative binding in the enzymatic pocket, which renders the shape-selectivity of product by the confined spatial environment. The success of shape-selective catalysis relies on the ability of enzyme to tune the thermodynamics and kinetics for chemical reactions. In emulation of enzyme's ability, we showcase herein a targeting strategy with the substrate being anchored on the internal pore wall of metal-organic frameworks (MOFs), taking full advantage of the sterically kinetic control to achieve shape-selectivity for the reactions. For this purpose, a series of binding site-accessible metal metalloporphyrin-frameworks (MMPFs) have been investigated to shed light on the nature of enzyme-mimic catalysis. They exhibit a different density of binding sites that are well arranged into the nanospace with corresponding distances of opposite binding sites. Such a structural specificity results in a facile switch in selectivity from an exclusive formation of the thermodynamically stable product to the kinetic product. Thus, the proposed targeting strategy, based on the combination of porous materials and binding events, paves a new way to develop highly efficient heterogeneous catalysts for shifting selectivity.


Asunto(s)
Metaloporfirinas , Metaloporfirinas/química , Espacios Confinados , Cinética , Sitios de Unión , Catálisis
10.
Angew Chem Int Ed Engl ; 62(25): e202300913, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-36894500

RESUMEN

We report the unique synthesis of chiral supramolecular tri- and penta-BCPs with controllable chirality using kinetically adjusted seeded supramolecular copolymerization in THF and DMSO (99 : 1, v/v). Tetraphenylethylene (d- and l-TPE) derivatives bearing d- and l-alanine side chains formed thermodynamically favored chiral products via a kinetically trapped in monomeric state with a long lag phase. In contrast, achiral TPE-G containing glycine moieties did not form a supramolecular polymer owing to the energy barrier in its kinetically trapped state. We show that the copolymerization of the metastable states of TPE-G not only enables the generation of supramolecular BCPs by the seeded living growth method, but also transfers chirality at the seed ends. This research demonstrates the generation of chiral supramolecular tri- and penta-BCPs with B-A-B, A-B-A-B-A, and C-B-A-B-C block patterns accompanying chirality transfer via seeded living polymerization.


Asunto(s)
Alanina , Tetranitrato de Pentaeritritol , Polimerizacion , Glicina
11.
Adv Sci (Weinh) ; 10(4): e2205595, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36377475

RESUMEN

Increasingly intricate in their multilevel multiscale microarchitecture, metamaterials with unique physical properties are challenging the inherent constraints of natural materials. Their applicability in the nanomedicine field still suffers because nanomedicine requires a maximum size of tens to hundreds of nanometers; however, this size scale has not been achieved in metamaterials. Therefore, "nano-metamaterials," a novel class of metamaterials, are introduced, which are rationally designed materials with multilevel microarchitectures and both characteristic sizes and whole sizes at the nanoscale, investing in themselves remarkably unique and significantly enhanced material properties as compared with conventional nanomaterials. Microarchitectural regulation through conventional thermodynamic strategy is limited since the thermodynamic process relies on the frequency-dependent effective temperature, Teff (ω), which limits the architectural regulation freedom degree. Here, a novel dual-kinetic control strategy is designed to fabricate nano-metamaterials by freezing a high-free energy state in a Teff (ω)-constant system, where two independent dynamic processes, non-solvent induced block copolymer (BCP) self-assembly and osmotically driven self-emulsification, are regulated simultaneously. Fe3+ -"onion-like core@porous corona" (Fe3+ -OCPCs) nanoparticles (the products) have not only architectural complexity, porous corona and an onion-like core but also compositional complexity, Fe3+ chelating BCP assemblies. Furthermore, by using Fe3+ -OCPCs as a model material, a microstructure-biological performance relationship is manifested in nano-metamaterials.

12.
Chemistry ; 29(13): e202203512, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36455150

RESUMEN

Olefins range amongst the most important motifs in organic chemistry. Hence, the development of novel olefin syntheses has remained a constant field of research in synthetic chemistry to date. Herein, we report the development of a modular olefination that converts aldehydes into olefins with thiols as reaction partners. The simple, transition metal-free protocol proceeds via an unsymmetrical bissulfone intermediate which is converted into the respective alkene in a Ramberg-Bäcklund-type process. Differently substituted olefins can be synthesized from readily available starting materials in typically good yields and stereoselectivities using basic laboratory chemicals exclusively. Complementary reaction conditions differing in the choice of solvent favor the E/Z-products respectively under kinetic control rendering this protocol an interesting economical addition to the family of olefin syntheses.

13.
Clin Exp Med ; 23(4): 1171-1180, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36495369

RESUMEN

The trajectory of B cell development goes through subsequent steps governed by complex genetic programs, strictly regulated by multiple transcription factors. Interferon regulatory factor 4 (IRF4) regulates key points from pre-B cell development and receptor editing to germinal center formation, class-switch recombination and plasma cell differentiation. The pleiotropic ability of IRF4 is mediated by its "kinetic control", allowing different IRF4 expression levels to activate distinct genetic programs due to modulation of IRF4 DNA-binding affinity. IRF4 is implicated in B cell malignancies, acting both as tumor suppressor and as tumor oncogene in different types of precursors and mature B cell neoplasia. Here, we summarize the complexity of IRF4 functions related to different DNA-binding affinity, multiple IRF4-specific target DNA motif, and interactions with transcriptional partners. Moreover, we describe the unique role of IRF4 in acute leukemias and B cell mature neoplasia, focusing on pathogenetic implications and possible therapeutic strategies in multiple myeloma and chronic lymphocytic leukemia.


Asunto(s)
Centro Germinal , Neoplasias , Humanos , Diferenciación Celular , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , ADN/metabolismo
14.
Beilstein J Org Chem ; 18: 972-978, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965858

RESUMEN

Terpene synthases are responsible for the biosynthesis of terpenes, the largest family of natural products. Hydropyrene synthase generates hydropyrene and hydropyrenol as its main products along with two byproducts, isoelisabethatrienes A and B. Fascinatingly, a single active site mutation (M75L) diverts the product distribution towards isoelisabethatrienes A and B. In the current work, we study the competing pathways leading to these products using quantum chemical calculations in the gas phase. We show that there is a great thermodynamic preference for hydropyrene and hydropyrenol formation, and hence most likely in the synthesis of the isoelisabethatriene products kinetic control is at play.

15.
Chem Asian J ; 17(20): e202200756, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-35999179

RESUMEN

Nanomaterials with hollow structures are expected to exhibit new functionalities for materials engineering. Here we report the fabrication of fullerene (C60 ) spheres having different hollow structures by using a kinetically controlled liquid-liquid interfacial precipitation (KC-LLIP) method. For this purpose, 1,2-ethylenediamine (EDA) was used as a covalent cross-linker of C60 molecules to form C60 -EDA shells, while in-situ generated EDA-sulfur (EDA-S) droplets were applied as 'yolks' being eliminated by washing following formation of the yolk-shell structure, leading to hollow structures. Porous spheres, string hollow spheres, hollow spheres, and open hollow spheres have been synthesized by controlling the kinetics of nucleation of C60 -EDA and the template EDA-S growth. Isopropanol was used as an additive to control the discrepancy in growth rates of C60 -EDA and EDA-S. This simple KC-LLIP preparation method is expected to facilitate the large-scale fabrication and application of structured C60 spheres in materials science and technology.

16.
ACS Nano ; 16(5): 8318-8328, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35544608

RESUMEN

The fast kinetics of all-inorganic CsPbX3 (X = Cl, Br, or I) nanocrystal growth entail that many synthetic strategies for structural control established in other semiconductor systems do not apply. Rather, products are often determined by thermodynamic factors, limiting the range of synthetic outcomes and functionality. In this study, we show how reaction kinetics are significantly slowed if nanocrystals are prepared using a dual injection strategy that moderates the crucial interaction between cesium and halide during nucleation and growth. The result is highly uniform nanorod or cuboid nanocrystals with a controllable size and aspect ratio across the quantum confinement regime, obtainable for both pure and mixed halide compositions. Further, the crystal lattice is continuously tunable between the tetragonal (I4/mcm) and orthorhombic (Pbnm) phases, independent of the overall nanorod morphology, enabling significantly more sophisticated structure-property relationships that can be tailored during this kinetically controlled synthesis.

17.
Int J Pharm ; 611: 121317, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34838624

RESUMEN

The preferable choice of sustained peptide delivery systems is generally polymer-based microspheres in which their large particle size, wide size distribution, low drug encapsulation efficacy, poor colloidal stability, and undesirable burst release eventually hinder their clinical translation. In this study, a nanoscale ternary Lixisenatide (Lix) sustained delivery system based on strong multivalent interactions (electrostatic and coordination complexation) among small molecular phytic acid (PA), Lix and Fe3+ was developed. Flash nanocomplexation (FNC) was utilized to facilitate the rapid and efficient mixing of the three components and kinetically control the assembly process that enabled dynamic balance of two competitive chemical reactions with different kinetic rates (slow chemical reaction of PA/Lix and fast chemical reaction of PA/Fe3+) to generate structural uniform ternary nanoparticles and avoid heterogeneous complexes. By tuning the mixing conditions (i.e., flow rate, mass ratio, concentration, pH value, etc.), the ternary PA/Lix/Fe3+ nanoparticles were assembled with reproducible production in a manner of high uniformity and scalability, achieving small size (∼50 nm), uniform composition (PDI: ∼0.12), favourable colloidal stability, high encapsulation efficiency (∼100%), and tunable drug release kinetics. The optimized formulation exhibited a minor Lix release (<20%) in the first day and extended peptide release period over 8 days. Unexpectedly, upon a single injection administration, the as-prepared formulation (600 µg/kg) rapidly brought the high BGL (∼30 mmol/L) back to normal range (<10 mmol/L) within the initial 6 h and achieved a 180 h glycemic control in T2D mouse model. Moreover, this sustained peptide delivery system demonstrated a repeatable hypoglycemic effects and significantly suppressed the pathological damage of major organs following multiple injection. This sustained peptide delivery system with aqueous, facile and reproducible preparation process possesses good biocompatibility, tunable release kinetics, and prolonged hypoglycemic effects, portending its great translational potential in the chronic disease treatment.


Asunto(s)
Nanopartículas , Ácido Fítico , Animales , Cinética , Ratones , Péptidos
18.
Adv Mater ; 34(1): e2102591, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34648198

RESUMEN

Bimetallic Janus nanocrystals have received considerable interest in recent years owing to their unique properties and niche applications. The side-by-side distribution of two distinct metals provides a flexible platform for tailoring the optical and catalytic properties of nanocrystals. First, a brief introduction to the structural features of bimetallic Janus nanocrystals, followed by an extensive discussion of the synthetic approaches, is given. The strategies and experimental controls for achieving the Janus structure, as well as the mechanistic understandings, are specifically discussed. Then, a number of intriguing properties and applications enabled by the Janus nanocrystals are highlighted. Finally, this article is concluded with future directions and outlooks with respect to both syntheses and applications of this new class of functional nanomaterials.

19.
Chemistry ; 27(67): 16735-16743, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34643972

RESUMEN

The fabrication of room-temperature organic phosphorescence and afterglow materials, as well as the transformation of their photophysical properties, has emerged as an important topic in the research field of luminescent materials. Here, we report the establishment of energy landscapes in dopant-matrix organic afterglow systems where the aggregation states of luminescent dopants can be controlled by doping concentrations in the matrices and the methods of preparing the materials. Through manipulation by thermodynamic and kinetic control, dopant-matrix afterglow materials with different aggregation states and diverse afterglow properties can be obtained. The conversion from metastable aggregation state to thermodynamic stable aggregation state of the dopant-matrix afterglow materials to leads to the emergence of intriguing afterglow transformation behavior triggered by thermal and solvent annealing. The thermodynamically unfavorable reversible afterglow transformation process can also be achieved by coupling the dopant-matrix afterglow system to mechanical forces.

20.
Chemistry ; 27(35): 8928-8939, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-33861488

RESUMEN

Supramolecular hydrogels are useful in many areas such as cell culturing, catalysis, sensing, tissue engineering, drug delivery, environmental remediation and optoelectronics. The gels need specific properties for each application. The properties arise from a fibrous network that forms the matrix. A common method to prepare hydrogels is to use a pH change. Most methods result in a sudden pH jump and often lead to gels that are hard to reproduce and control. The urease-urea reaction can be used to control hydrogel properties by a uniform and controlled pH increase as well as to set up pH cycles. The reaction involves hydrolysis of urea by urease and production of ammonia which increases the pH. The rate of ammonia production can be controlled which can be used to prepare gels with differing properties. Herein, we show how the urease-urea reaction can be used for the construction of next generation functional materials.


Asunto(s)
Urea , Ureasa , Hidrogeles , Concentración de Iones de Hidrógeno , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA