Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(17): e37333, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296032

RESUMEN

Casing wear is a persistent issue in oil and gas drilling facilities that call for innovative more wear-resistant materials to mitigate casing failures. The present work examines the tribological performance of a novel composite lining comprised of Kevlar honeycomb in a matrix of epoxy reinforced with Zirconia particles against hardband drillpipe tooljoint (DP-TJ). Three side loads (1000, 1200, and 1400 N) and three DP-TJ speeds (0.43, 0.76, and 1.02 m/s) were considered under dry sliding conditions. The results showed that the specific wear rate (K) increased with speed at all side loads. However, K value was found to reach a maximum, reaching 20.3*10-8 MPa-1 at 1200 N before dropping to about 8.5*10-8 MPa-1 when the load is increased to 1400 N. This decline in specific wear rate at the load of 1400 N was attributed to the growth of a double transfer layer through the alignment of zirconia particles in the lining. The scanning electron microscope (SEM) images of worn surfaces revealed that higher K values are associated with more adhesion, delamination, and fiber breakage. Energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis of the worn surface and the debris collected after the wear test reveals minimal wear of DP-TJ. The epoxy/Kevlar-honeycomb composite lining demonstrated appreciable wear resistance even under dry sliding conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA