Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 10(9)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36144372

RESUMEN

Green microalgae are important sources of natural products and are attractive cell factories for manufacturing high-value products such as recombinant proteins. Increasing scales of production must address the bottleneck of providing sufficient light energy for photosynthesis. Enhancing the photosynthetic action spectrum of green algae to improve the utilisation of yellow light would provide additional light energy for photosynthesis. Here, we evaluated the Katushka fluorescent protein, which converts yellow photons to red photons, to drive photosynthesis and growth when expressed in Chlamydomonas reinhardtii chloroplasts. Transplastomic algae expressing a codon-optimised Katushka gene accumulated the active Katushka protein, which was detected by excitation with yellow light. Removal of chlorophyll from cells, which captures red photons, led to increased Katushka fluorescence. In yellow light, emission of red photons by fluorescent Katushka increased oxygen evolution and photosynthetic growth. Utilisation of yellow photons increased photosynthetic growth of transplastomic cells expressing Katushka in light deficient in red photons. These results showed that Katushka was a simple and effective yellow light-capturing device that enhanced the photosynthetic action spectrum of C. reinhardtii.

2.
Pharmaceutics ; 14(1)2021 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-35056939

RESUMEN

The development of non-invasive photothermal therapy (PTT) methods utilizing nanoparticles as sensitizers is one of the most promising directions in modern oncology. Nanoparticles loaded with photothermal dyes are capable of delivering a sufficient amount of a therapeutic substance and releasing it with the desired kinetics in vivo. However, the effectiveness of oncotherapy methods, including PTT, is often limited due to poor penetration of sensitizers into the tumor, especially into solid tumors of epithelial origin characterized by tight cellular junctions. In this work, we synthesized 200 nm nanoparticles from the biocompatible copolymer of lactic and glycolic acid, PLGA, loaded with magnesium phthalocyanine, PLGA/Pht-Mg. The PLGA/Pht-Mg particles under the irradiation with NIR light (808 nm), heat the surrounding solution by 40 °C. The effectiveness of using such particles for cancer cells elimination was demonstrated in 2D culture in vitro and in our original 3D model with multicellular spheroids possessing tight cell contacts. It was shown that the mean inhibitory concentration of such nanoparticles upon light irradiation for 15 min worsens by more than an order of magnitude: IC50 increases from 3 µg/mL for 2D culture vs. 117 µg/mL for 3D culture. However, when using the JO-4 intercellular junction opener protein, which causes a short epithelial-mesenchymal transition and transiently opens intercellular junctions in epithelial cells, the efficiency of nanoparticles in 3D culture was comparable or even outperforming that for 2D (IC50 = 1.9 µg/mL with JO-4). Synergy in the co-administration of PTT nanosensitizers and JO-4 protein was found to retain in vivo using orthotopic tumors of BALB/c mice: we demonstrated that the efficiency in the delivery of such nanoparticles to the tumor is 2.5 times increased when PLGA/Pht-Mg nanoparticles are administered together with JO-4. Thus the targeting the tumor cell junctions can significantly increase the performance of PTT nanosensitizers.

3.
Dev Dyn ; 249(8): 983-997, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32145043

RESUMEN

BACKGROUND: Noncanonical NF-κB signaling through activation of the transcription factor RelB acts as key regulator of cell lineage determination and differentiation in various tissues including the immune system. To elucidate temporospatial aspects of Relb expression, we generated a BAC transgenic knock-in mouse expressing the fluorescent protein Katushka and the enzyme Cre recombinase under control of the murine Relb promoter (RelbCre-Kat mice). RESULTS: Co-expression of Katushka and Relb in fibroblast cultures and tissues of transgenic mice revealed highly specific reporter functions of the transgene. Crossing RelbCre-Kat mice with ROSA26R reporter mice that allow for Cre-mediated consecutive ß-galactosidase or YFP synthesis identified various Relb expression domains in perinatal and mature mice. Besides thymus and spleen, highly specific expression patterns were found in different neuronal domains, as well as in other nonimmune organs including skin, skeletal structures and kidney. De novo Relb expression in the mature brain was confirmed in conditional knockout mice with neuro-ectodermal Relb deletion. CONCLUSION: Our results demonstrate the usability of RelbCre-Kat reporter mice for the detection of de novo and temporarily restricted Relb expression including cell and lineage tracing of Relb expressing cells. Relb expression during mouse embryogenesis and at adulthood suggests, beyond immunity, important functions of this transcription factor in neurodevelopment and CNS function.


Asunto(s)
Encéfalo/metabolismo , Integrasas/genética , Factor de Transcripción ReIB/genética , Animales , Proteínas Bacterianas/metabolismo , Linaje de la Célula , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Genes Reporteros , Genotipo , Integrasas/metabolismo , Sustancias Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Regiones Promotoras Genéticas , Factor de Transcripción ReIB/metabolismo , Transgenes , beta-Galactosidasa/metabolismo
4.
BMC Microbiol ; 19(1): 167, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31319790

RESUMEN

BACKGROUND: The human gastrointestinal (GI) tract microbiota has been a subject of intense research throughout the 3rd Millennium. Now that a general picture about microbiota composition in health and disease is emerging, questions about factors determining development of microbiotas with specific community structures will be addressed. To this end, usage of murine models for colonization studies remains crucial. Optical in vivo imaging of either bioluminescent or fluorescent bacteria is the basis for non-invasive detection of intestinal colonization of bacteria. Although recent advances in in vivo fluorescence imaging have overcome many limitations encountered in bioluminescent imaging of intestinal bacteria, such as requirement for live cells, high signal attenuation and 2D imaging, the method is still restricted to bacteria for which molecular cloning tools are available. RESULTS: Here, we present usage of a lipophilic fluorescent dye together with Katushka far-red fluorescent protein to establish a dual-color in vivo imaging system to monitor GI transit of different bacterial strains, suitable also for strains resistant to genetic labeling. Using this system, we were able to distinguish two different E. coli strains simultaneously and show their unique transit patterns. Combined with fluorescence molecular tomography, these distinct strains could be spatially and temporally resolved and quantified in 3D. CONCLUSIONS: Developed novel method for labeling microbes and identify their passage both temporally and spatially in vivo makes now possible to monitor all culturable bacterial strains, also those that are resistant to conventional genetic labeling.


Asunto(s)
Tracto Gastrointestinal/microbiología , Microscopía Fluorescente/métodos , Coloración y Etiquetado/métodos , Animales , Escherichia coli/metabolismo , Colorantes Fluorescentes/metabolismo , Microbioma Gastrointestinal , Microscopía Intravital/métodos , Proteínas Luminiscentes/metabolismo , Lípidos de la Membrana/metabolismo , Ratones , Tomografía Óptica , Proteína Fluorescente Roja
5.
J Orthop Res ; 37(5): 1192-1201, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30839125

RESUMEN

Attempts have been made to visualize tumor cells intraoperatively with fluorescence guidance. However, the clear demarcation and complete tumor resection have always been a challenging task. To address this, we have developed a novel fluorescence bioimaging system with vesicular stomatitis virus (VSV) incorporating Katushka, near-infrared fluorescent protein. VSV is tumor-specific owing to the deficiency of antiviral interferon signaling pathways in tumor cells. We aimed to evaluate the tumor specificity of the recombinant VSV-Katushka (rVSV-K) in osteosarcoma cells and to assess the feasibility of complete tumor resection by the rVSV-K fluorescence guidance. In in vitro experiments, mouse and human osteosarcoma cell lines and normal human mesenchymal stem cells were infected with rVSV-K and observed by fluorescence microscopy. Near-infrared fluorescence was observed only in osteosarcoma cells, even at a low-concentration of virus infections. In in vivo experiments, mouse osteosarcoma (LM8) cells were transplanted subcutaneously into the back of immune-competent mice to produce an osteosarcoma, which was then injected with rVSV-K. The areas emitting fluorescence were resected using a bioimaging system. The distance between the surgical and tumor margins of the fluorescence-guided resection with rVSV-K group was significantly larger than that of the non-guided resection groups. The local recurrence rate was significantly lower in the fluorescence-guided resection with rVSV-K group than in the non-guided resection groups. The distant metastasis rate and average survival rate were not significantly different between all groups. These results suggest that the rVSV-K is specific to osteosarcoma cells and enables complete tumor resection of osteosarcomas in mice. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.


Asunto(s)
Colorantes Fluorescentes , Neoplasias Experimentales/cirugía , Osteosarcoma/cirugía , Vesiculovirus , Animales , Humanos , Masculino , Ratones Endogámicos C3H , Recurrencia Local de Neoplasia , Neoplasias Experimentales/mortalidad , Osteosarcoma/mortalidad
6.
Bull Exp Biol Med ; 164(1): 99-101, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29124539

RESUMEN

Stable red fluorescing line of human ovarian epithelial cancer cells SK-OV-3ip-red was generated expressing gene coding for protein TurboFP635 (Katushka) fluorescing in the far-red spectrum region with excitation and emission peaks at 588 and 635 nm, respectively. Fluorescence of SK-OV-3ip-red line remained high during long-term cell culturing and after cryogenic freezing. The obtained cell line SK-OV-3ip-red can serve a basis for a model of a scattered tumor with numerous/extended metastases and used both for testing anticancer drugs inhibiting metastasis growth and for non-invasive monitoring of the growth dynamics with high precision.


Asunto(s)
Proteínas Luminiscentes/biosíntesis , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/patología , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Clonación Molecular , Femenino , Expresión Génica , Humanos , Proteínas Luminiscentes/genética , Transfección , Proteína Fluorescente Roja
7.
Cytometry A ; 91(7): 721-729, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28375558

RESUMEN

Flow cytometry is a powerful multiparametric technology, widely used for the identification, quantification, and isolation of defined populations of cells based on the expression of target proteins. It also allows for the use of surrogate reporters, either enzymatic or fluorescent, to indirectly monitor the expression of these target proteins. In this work, we optimised the dissociation protocol for the detection of the enzymatic reporter LacZ using the FACS-Gal detection system with the fluorogenic substrate FDG to compare cis- versus trans-positioned reporters efficiency. Particularly, for the FACS-Gal optimization, we studied lung and haematopoietic tissues, focusing on cell recovery, viability, FDG loading conditions and distribution of cellular populations. Reporter genes such as LacZ can be placed together with the gene of interest in the same polycistronic mRNA (in cis), or in independent alleles (in trans), which can strongly affect the correlation with the reporter readout. To address this issue, we generated a mouse model containing both types of reporters for the same gene, and compared them. Our results clearly indicate that trans-positioned reporters can be misleading, and that using a reporter gene in cis rather than trans is a much more specific method to sort for cells undergoing Cre-mediated recombination. © 2017 International Society for Advancement of Cytometry.


Asunto(s)
Citometría de Flujo , Expresión Génica/fisiología , Genes Reporteros/fisiología , Animales , Citometría de Flujo/métodos , Colorantes Fluorescentes/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Supresoras de la Señalización de Citocinas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA