Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oncoimmunology ; 11(1): 2037216, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35154909

RESUMEN

Antibody-drug conjugates (ADCs) are used to target cancer cells by means of antibodies directed to tumor-associated antigens, causing the incorporation of a cytotoxic payload into target cells. Here, we characterized the mode of action of ADC costing of a TWEAKR-specific monoclonal antibody conjugated to a small molecule kinesin spindle protein (KSP) inhibitor (KSPi). These TWEAKR-KSPi-ADCs showed strong efficacy in a TWEAKR expressing CT26 colon cancer model in mice. TWEAKR-KSPi-ADCs controlled the growth of CT26 colon cancers in immunodeficient as well as in immunocompetent mice. However, when treated with suboptimal doses, TWEAKR-KSPi-ADCs were still active in immunocompetent but not in immunodeficient mice, indicating that TWEAKR-KSPi-ADCs act - in addition to the cytotoxic mode of action - through an immunological mechanism. Indeed, in vitro experiments performed with a cell-permeable small molecule KSPi closely related to the active payload released from the TWEAKR-KSPi-ADCs revealed that KSPi was capable of stimulating several hallmarks of immunogenic cell death (ICD) on three different human cancer cell lines: cellular release of adenosine triphosphate (ATP) and high mobility group B1 protein (HMGB1), exposure of calreticulin on the cell surface as well as a transcriptional type-I interferon response. Further, in vivo experiments confirmed that treatment with TWEAKR-KSPi-ADCs activated immune responses via enhancing the infiltration of CD4+ and CD8+ T lymphocytes in tumors and the local production of interferon-γ, interleukin-2, and tumor necrosis factor-α. In conclusion, the antineoplastic effects of TWEAKR-KSPi-ADCs can partly be attributed to its ICD-stimulatory properties.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/farmacología , Inmunoconjugados/metabolismo , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Cinesinas , Ratones , Neoplasias/tratamiento farmacológico , Receptor de TWEAK
2.
J Biomol Struct Dyn ; 36(14): 3687-3704, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29064326

RESUMEN

Kinesin spindle protein (KSP) belongs to the kinesin superfamily of microtubule-based motor proteins. KSP is responsible for the establishment of the bipolar mitotic spindle which mediates cell division. Inhibition of KSP expedites the blockade of the normal cell cycle during mitosis through the generation of monoastral MT arrays that finally cause apoptotic cell death. As KSP is highly expressed in proliferating/cancer cells, it has gained considerable attention as a potential drug target for cancer chemotherapy. Therefore, this study envisaged to design novel KSP inhibitors by employing computational techniques/tools such as pharmacophore modelling, virtual database screening, molecular docking and molecular dynamics. Initially, the pharmacophore models were generated from the data-set of highly potent KSP inhibitors and the pharmacophore models were validated against in house test set ligands. The validated pharmacophore model was then taken for database screening (Maybridge and ChemBridge) to yield hits, which were further filtered for their drug-likeliness. The potential hits retrieved from virtual database screening were docked using CDOCKER to identify the ligand binding landscape. The top-ranked hits obtained from molecular docking were progressed to molecular dynamics (AMBER) simulations to deduce the ligand binding affinity. This study identified MB-41570 and CB-10358 as potential hits and evaluated these experimentally using in vitro KSP ATPase inhibition assays.


Asunto(s)
Antineoplásicos/química , Cinesinas/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Antineoplásicos/farmacología , Sitios de Unión , Humanos , Cinesinas/antagonistas & inhibidores , Ligandos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad Cuantitativa , Reproducibilidad de los Resultados
3.
Anticancer Res ; 33(10): 4463-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24123016

RESUMEN

BACKGROUND/AIM: Despite recent progress in glioblastoma treatment, prognosis is still poor. Monastrol is a kinesin spindle protein (KSP) inhibitor and anticancer effects for this molecule have been reported. Here we describe the effect of LaSOM 65, a monastrol derivated compound, against glioma cell lines. MATERIALS AND METHODS: Cell counting, viability assay, lactate dehydrogenase (LDH) activity, cell-cycle analysis, immunofluorescence and organotypic hippocampal slice cultures were performed. RESULTS: LaSOM 65 reduced cell number and cell viability of gliomas cells, but did not cause arrest in the cell cycle at the G2/M phase. Measurement of LDH activity showed that LaSOM 65 induces necrosis after 48 h of treatment. CONCLUSION: LaSOM 65 appears to a be promising new molecule to treat glioblastoma since it promotes a decrease of cell growth and cell viability of glioma cells in vitro and does not induces the neurotoxic characteristics of the anti-mitotic drugs currently used.


Asunto(s)
Antineoplásicos/farmacología , Pirimidinas/farmacología , Tionas/farmacología , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Glioblastoma , Hipocampo/efectos de los fármacos , Humanos , L-Lactato Deshidrogenasa/metabolismo , Necrosis , Ratas , Técnicas de Cultivo de Tejidos , Tubulina (Proteína)/metabolismo
4.
ChemMedChem ; 8(11): 1736-49, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23964020

RESUMEN

A diverse group of proteins, the activities of which are precisely orchestrated during mitosis, have emerged as targets for cancer therapeutics; these include the Aurora kinases (AKs), Polo-like kinases (PLKs), and the kinesin spindle protein (KSP). KSP is essential for the proper separation of spindle poles during mitosis. Agents that target KSP selectively act on cells undergoing cell division, which means that KSP inhibitors are mitosis-specific drugs, and have demonstrated remarkable activities in vitro. However, a significant obstacle to the success of KSP inhibitors is that these compounds, with tremendous efficacy in vitro, have demonstrated little or even no antitumor activity in vivo. Accumulated data suggest that a combination of KSP inhibitors with various cytostatic drugs will result in a more powerful tumor-killing effect than monotherapy. Combination therapies might predominate and represent the next frontier in the discovery research of KSP inhibitors as potential anticancer drugs. Few published studies have reviewed combination therapy using KSP inhibitors. Herein we provide a comprehensive review of the literature on KSP inhibitor monotherapy and therapeutic combinations. The current state and problems are also discussed.


Asunto(s)
Antineoplásicos/uso terapéutico , Cinesinas/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Antraciclinas/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Humanos , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA