Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 480
Filtrar
1.
Sci Rep ; 14(1): 21289, 2024 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266667

RESUMEN

The worldwide exploration of the ethanolysis protocol (EP) has decreased despite the multifaceted benefits of ethanol, such as lower toxicity, higher oxygen content, higher renewability, and fewer emission tail compared to methanol, and the enhanced fuel properties with improved engine characteristics of multiple-oily feedstocks (MOFs) compared to single-oily feedstocks. The study first proposed a strategy for the optimisation of ethylic biodiesel synthesis from MOFs: neem, animal fat, and jatropha oil (NFJO) on a batch reactor. The project's goals were to ensure environmental benignity and encourage the use of totally biobased products. This was made possible by the introduction of novel population based algorithms such as Driving Training-Based Optimization (DTBO) and Election-Based Optimization (EBOA), which were compared with the widely used Grey Wolf Optimizer (GWO) combined with Response Surface Methodology (RSM). The yield of NFJO ethyl ester (NFJOEE) was predicted using the RSM technique, and the ideal transesterification conditions were determined using the DTBO, EBOA, and GWO algorithms. Reaction time showed a strong linear relationship with ethylic biodiesel yield, while ethanol-to-NFJO molar ratio, catalyst dosage, and reaction temperature showed nonlinear effects. Reaction time was the most significant contributor to NFJOEE yield.The important fundamental characteristics of the fuel categories were investigated using the ASTM test procedures. The maximum NFJOEE yield (86.3%) was obtained at an ethanol/NFJO molar ratio of 5.99, KOH content of 0.915 wt.%, ethylic duration of 67.43 min, and reaction temperature of 61.55 °C. EBOA outperforms DTBO and GWO regarding iteration and computation time, converging towards a global fitness value equal to 7 for 4 s, 20 for 5 s and 985 for 34 s. The key fuel properties conformed to the standards outlined by ASTMD6751 and EN 14,214 specifications. The NFJOEE fuel processing cost is 0.9328 USD, and is comparatively lesser than that of conventional diesel. The new postulated population based algorithm models can be a prospective approach for enhancing biodiesel production from numerous MOFs and ensuring a balanced ecosystem and fulfilling enviromental benignity when adopted.


Asunto(s)
Algoritmos , Biocombustibles , Jatropha , Biocombustibles/análisis , Jatropha/química , Animales , Esterificación , Aceites de Plantas/química
2.
Heliyon ; 10(17): e33422, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39281546

RESUMEN

Introduction: The growing problem of antimicrobial resistance on a global scale has highlighted the need to investigate alternative antimicrobial agents with reduced side effects. Plant-derived secondary metabolites have emerged as potential contenders in tackling this challenge. Jatropha curcas, a perennial plant, has traditionally been utilized for the treatment of gum boils, toothaches, and infections. This plant exhibits a wide range of pharmacological properties. However, its potential as an antimicrobial agent against oral microorganisms has yet to be investigated. Hence, the objective of this study was to investigate the antimicrobial properties of Jatropha curcas extracts against selected bacteria and fungi commonly present in the oral cavity. Methodology: Jatropha curcas samples were collected from Bagan Datuk, Perak, Malaysia, and subsequently identified at Universiti Malaya. The ethanolic extract of the leaves (ELJC) and the stem bark latex (LJC) of Jatropha curcas were tested against six species of oral microorganism: Streptococcus sanguinis , Streptococcus mutans, Streptococcus mitis, Lactobacillus helveticus, Candida albicans , Candida tropicalis, and a mixture of these microorganisms. The methods employed in this study were well diffusion assay, minimum inhibitory concentration, minimum bacterial concentration, live-dead assay, field emission scanning electron microscopy, and liquid chromatography with tandem mass spectrometry. Results: ELJC and LJC demonstrated significant antimicrobial effects (p < 0.05). Treatment with ELJC and LJC resulted in morphological changes and increased death rates in the targeted microorganisms. ELJC was found to contain more than 300 bioactive compounds, with isovitexin, being the most abundant. In contrast, LJC exhibited over 1000 bioactive compounds with 2-hexyl-decanoic acid and 2,4,6-trihydroxybenzoic acid being the predominant constituents. Conclusion: These findings suggest that the antimicrobial effects observed in ELJC and LJC against S. sanguinis and S. mutans can be primarily attributed to isovitexin, 2-hexyl-decanoic acid, and trihydroxybenzoic acid. However, further research and investigation are necessary to elucidate the mechanisms by which these constituents exert their antimicrobial effects on the microorganisms.

3.
Heliyon ; 10(15): e35861, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170246

RESUMEN

The issue of non-renewable energy scarcity has persisted over an extended period, primarily due to the depletion of fossil fuel reserves and the adverse effects of their utilization. This scarcity stems from the finite nature of fossil energy resources. The development of oil energy or biofuels aims to utilize oil-producing plants such as Jatropha curcas to develop alternative energy resources. However, metabolomic studies in Jatropha curcas are limited and need more investigations. Therefore, this research was essential to find biomarkers of metabolites among the fruit, leaf, and stem of Jatropha curcas using the GC-MS technique. We tested the metabolite profile with the R program, especially the metaboanalystR package, to determine fold change metabolite and pathway analysis. We found that 54 metabolites were detected in both fruit, leaf, and stem tissues of Jatropha curcas L, of which 19 metabolites were upregulated in the fruit, 20 metabolites in the leaf, and 15 up-regulated metabolites in the stem. The metabolites found formed three clusters based on correlation and networking metabolites analysis. The three clusters showed a relationship with the lipid biosynthesis pathway. In this study, provisional information was obtained that there was a different pattern of expression of metabolites between fruit, leaf, and stem tissues in Jatropha curcas, which was thought to be related to the critical metabolites of oleic acid and methylcyclohexane carboxylate in the biosynthetic pathway of fatty acids and unsaturated fatty acids. This information is essential as an initial reference for genetic engineering Jatropha curcas so that it can be used to transform plants, especially lipid-producing plants, as a source of oil.

4.
Plant Dis ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207340

RESUMEN

Jatropha curcas L. (Euphorbiaceae), is a valuable multi-purpose crop, previously used for disease treatment and environmental restoration, recently is attention to use jatropha oil for produce biodiese. In June 2023, the leaf disease of approximately 60% of J. curcas was observed in Mazhang, Zhanjiang, Guangdong Province (E110°27'26.8'' N22°6'14.7''). Diseased leaves showed typical anthracnose symptoms of chlorotic regions with brownish sunken necrotic lesions (Figure 1). Sections from the junction of disease were surface disinfected in 75% ethanol and 3% hydrogen peroxide solution for 1 minute each. Four small pieces of infected tissue were removed from the lesion and placed on potato dextrose agar (PDA), and incubated at 25 to 28℃ in the dark. Hyphal tips from the inoculated tissues were subcultured on PDA and two isolates were purified by single spore method. The colonies on PDA were 7.8 cm diam after 10 d at 25 to 28 ℃, covered with dense, cottony, grayish-white aerial mycelium and small dark-based acervuli with orange ooze and dark brown straight setae. Conidia were hyaline, smooth-walled, aseptate, the apex and base rounded, slightly constricted near centre, 12.9 - 13.8 × 3.9 - 4.6 um (av.13.6 × 4.3 µm, n = 50). Appressoria were variable in shape, mostly simple, subglobose or irregular lobes, 5.8-9.6 × 5.7-11.2 um (Figure 2). Perithecia were not observed. These characteristics were consistent with Colletotrichum sp. (Weir, B. S., et al. 2012). Sequences of isolates ACCC 35630 and ACCC 35631 stored in Agricultural Culture Collection of China including internal transcribed spacer (ITS), actin (ACT), beta-tubulin (tub2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and chitin synthase (chs). were amplified (Weir et al, 2012), sequenced and submitted to GenBank (ITS: PP474979 and PP474984; ACT: PP505487 and PP505488; TUB: PP505493 and PP505494; GAPDH: PP505491 and PP505492; CHS: PP505489 and PP505490). The amplicon sizes of ITS, ACT, TUB, GAPDH, and CHS were 550, 652, 500, 264, and 301 bp, respectively. Phylogenetic analyses showed that Isolates 35630 & 35631 were clustered closely association with RHCOL1 and RHCOL3. Phylogenetic analysis with MEGA 7 using the combined ITS-ACT-CHS-GAPDH-TUB2 sequences showed that the two isolates clustered with C. queenslandicum (Figure 3). To test the pathogenicity, ten healthy leaves on plants in the field were wiped with 75% alcohol and sterile water, punctured with a sterile needle and inoculated by adding 10 uL of spore suspension (1 × 105 conidia/ml) to the wounded sites. And two other leaves were added sterile water as controls. Symptoms of anthracnose were observed on leaves similar to the disease described above after 7 days of inoculation, whereas the leaves from the controls remained asymptomatic. C. queenslandicum was reisolated from the inoculated leaves. C. queenslandicum has been reported as a pathogen causing leaf and fruit anthracnose on papaya, coffee, rambutan, avocado and Persian lime etc. in tropical and temperate regions (Kunta, M., et al. 2018), and this is the first report on J. curcas in China as well as worldwide. This disease may have a significant negative impact on J. curcas cultivation.

5.
Molecules ; 29(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38999040

RESUMEN

The Jatropha curcas cake, a protein-rich by-product of biofuel production, was the subject of our study. We identified and quantified the ACE inhibitory, antioxidant, and antidiabetic activities of bioactive peptides from a Jatropha curcas L. var Sevangel protein isolate. The protein isolate (20.44% recovered dry matter, 38.75% protein content, and 34.98% protein yield) was subjected to two enzyme systems for hydrolysis: alcalase (PEJA) and flavourzyme (PEJF), recording every 2 h until 8 h had passed. The highest proteolytic capacity in PEJA was reached at 2 h (4041.38 ± 50.89), while in PEJF, it was reached at 6 h (3435.16 ± 59.31). Gel electrophoresis of the PEJA and PEJF samples showed bands corresponding to peptides smaller than 10 kDa in both systems studied. The highest values for the antioxidant capacity (DPPH) were obtained at 4 h for PEJA (56.17 ± 1.14), while they were obtained at 6 h for PEJF (26.64 ± 0.52). The highest values for the antihypertensive capacity were recorded at 6 h (86.46 ± 1.85) in PEJF. The highest antidiabetic capacity obtained for PEJA and PEJF was observed at 6 h, 68.86 ± 8.27 and 52.75 ± 2.23, respectively. This is the first report of their antidiabetic activity. Notably, alcalase hydrolysate outperformed flavourzyme hydrolysate and the cereals reported in other studies, confirming its better multi-bioactivity.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Antioxidantes , Hipoglucemiantes , Jatropha , Proteínas de Plantas , Jatropha/química , Hidrólisis , Antioxidantes/química , Antioxidantes/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Subtilisinas/metabolismo , Subtilisinas/química , Endopeptidasas
6.
Environ Res ; 260: 119626, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39019143

RESUMEN

The utilization of bio-oil derived from biomass presents a promising alternative to fossil fuels, though it faces challenges when directly applied in diesel engines. Microemulsification has emerged as a viable strategy to enhance bio-oil properties, facilitating its use in hybrid fuels. This study explores the microemulsification of Jatropha bio-oil with ethanol, aided by a surfactant, to formulate a hybrid liquid fuel. Additionally, a bio-nano CaO heterogeneous catalyst synthesized from eggshells is employed to catalyse the production of Jatropha biodiesel from the microemulsified fuel using microwave irradiation. The catalyst is characterized through UV-Vis, XRD, and SEM analysis. The investigation reveals a significant reduction in CO, CO2, and NOX emissions with the utilization of microemulsion-based biodiesel blends. Various blends of conventional diesel, Jatropha biodiesel, and ethanol are prepared with different ethanol concentrations (5, 10, and 20 wt%). Engine performance parameters, including fuel consumption, NOX emission, and brake specific fuel consumption, are analyzed. Results indicate that the conventional diesel/Jatropha biodiesel/ethanol (10 wt%) blend exhibits superior performance compared to conventional diesel, Jatropha biodiesel, and other blends. The fuel consumption of the conventional diesel/Jatropha biodiesel/ethanol (10 wt%) blend is measured at 554.6 g/h, surpassing that of conventional diesel and other biodiesel blends. The presence of water (0.14 %) in the blend reduces the heating value, consequently increasing the energy requirement. CO and CO2 emissions for the conventional diesel/Jatropha biodiesel/ethanol (10 wt%) blend are notably lower compared to conventional C-18 hydrocarbons and various biodiesel blends. These findings accentuate the efficacy of the microemulsion process in enhancing fuel characteristics and reducing emissions. Further investigations could explore optimizing the emulsifying agents and their impact on engine performance and emission characteristics, contributing to the advancement of sustainable fuel technologies.


Asunto(s)
Biocombustibles , Cáscara de Huevo , Jatropha , Óxidos , Biocombustibles/análisis , Cáscara de Huevo/química , Jatropha/química , Catálisis , Óxidos/química , Animales , Emulsiones , Compuestos de Calcio/química , Etanol/química , Emisiones de Vehículos/análisis
7.
Environ Res ; 258: 119474, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38914253

RESUMEN

In this study, we studied the conversion of Jatropha curcas oil to biodiesel by using three distinct reactor systems: microchannel, fixed bed, and microwave reactors. ZSM-5 was used as the catalyst for this conversion and was thoroughly characterized. X-ray diffraction was used to identify the crystalline structure, Brunauer-Emmett-Teller analysis to determine surface area, and temperature-programmed desorption to evaluate thermal stability and acidic properties. These characterizations provided crucial insights into the catalyst's structural integrity and performance under reaction conditions. The microchannel reactor exhibited superior biodiesel yield compared to the fixed bed and microwave reactors, and achieved peak efficiency at 60 °C, delivering high FAEE yield (99.7%) and conversion rates (99.92%). Ethanol catalyst volume at 1% was optimal, while varying flow rates exhibited trade-offs, emphasizing the need for nuanced control. Comparative studies against microwave and fixed-bed reactors consistently favored the microchannel reactor, emphasizing its remarkable FAME percentages, high conversion rates, and adaptability to diverse operating conditions. The zig-zag configuration enhances its efficiency, making it the optimal choice for biodiesel production and showcasing promising prospects for advancing sustainable biofuel synthesis technologies.


Asunto(s)
Biocombustibles , Jatropha , Microondas , Aceites de Plantas , Biocombustibles/análisis , Jatropha/química , Aceites de Plantas/química , Catálisis , Zeolitas/química , Difracción de Rayos X , Reciclaje
8.
Food Chem Toxicol ; 190: 114794, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38849046

RESUMEN

Phytochemical analysis of the methanolic extracts of Jatropha podagrica stalks and roots using liquid chromatography-mass spectrometry (LC-MS) led to the isolation of six compounds: corchoionoside C (1), isobiflorin (2), fraxin (3), hovetrichoside C (4), fraxetin (5), and corillagin (6). The isolated compounds (1-6) were tested for their cytotoxicity against MDA-MB-231 human breast cancer cells. Remarkably, compound 4 (hovetrichoside C) exhibited robust cytotoxicity against MDA-MB-231 cells, displaying an IC50 value of 50.26 ± 1.22 µM, along with an apoptotic cell death rate of 24.21 ± 2.08% at 100 µM. Treatment involving compound 4 amplified protein levels of cleaved caspase-8, -9, -3, -7, BH3-interacting domain death agonist (Bid), Bcl-2-associated X protein (Bax), and cleaved poly (ADP-ribose) polymerase (cleaved PARP), while concurrently reducing B-cell lymphoma 2 (Bcl-2) levels. In totality, these findings underscore that hovetrichoside C (4) possesses anti-breast cancer activity that revolves around apoptosis induction via both extrinsic and intrinsic signaling pathways.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Jatropha , Humanos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Jatropha/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Femenino , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
9.
Artículo en Inglés | MEDLINE | ID: mdl-38648292

RESUMEN

Given the escalating global crisis in feed protein availability, Jatropha curcas L. cake has attracted significant interest as a viable alternative protein source in animal feed. This experiment was conducted to investigate the effects of fermented Jatropha curcas L. cake (FJCC) as a protein feed in the diet of pigs. A total of 96 growing pigs with an average weight of 27.60 ± 1.59 kg were divided into three dietary groups with varying FJCC inclusion levels (0, 2.5, and 5%) for a 28 d trial. Results showed that the diet with 5% FJCC (FJCC5) demonstrated significant improvements in average daily gain (p = 0.009), feed-to-gain ratio (p = 0.036), nutrient digestibility, and intestinal morphology. Furthermore, the FJCC5 diet resulted in a decrease in pH values in different gut sections (jejunum p = 0.045, cecum p = 0.001, colon p = 0.012), and favorably altered the profile of short-chain fatty acids (SCFAs) with increased butyric acid content (p = 0.005) and total SCFAs (p = 0.019). Additionally, this diet notably decreased IL-6 levels in the jejunum (p = 0.008) and colon (=0.047), significantly reduced IL-1 levels in the hypothalamus (p < 0.001), and lowered IL-1, IL-6, and IL-10 levels in plasma (p < 0.05). Microbiota and metabolite profile analysis revealed an elevated abundance of beneficial microbes (p < 0.05) and key metabolites such as 4-aminobutyric acid (GABA) (p = 0.003) and serotonin (5-HT) (p = 0.022), linked to neuroactive ligand-receptor interaction. Moreover, FJCC5 significantly boosted circulating neurotransmitter levels of 5-HT (p = 0.006) and GABA (p = 0.002) in plasma and hypothalamus, with corresponding increases in precursor amino acids (p < 0.05). These findings suggest that FJCC, particularly at a 5% inclusion rate, can be an effective substitute for traditional protein sources like soybean meal, offering benefits beyond growth enhancement to gut health and potentially impacting the gut-brain axis. This research underscores FJCC's potential as a valuable component in sustainable animal nutrition strategies.

10.
Sci Rep ; 14(1): 9683, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678121

RESUMEN

Surface integrity is one of the key elements used to judge the quality of machined surfaces, and surface roughness is one such quality parameter that determines the pass level of the machined product. In the present study, AISI D2 steel was machined with electric discharge at different process parameters using Jatropha and EDM oil. Titanium dioxide (TiO2) nanopowder was added to the dielectric to improve surface integrity. Experiments were performed using the one variable at a time (OVAT) approach for EDM oil and Jatropha oil as dielectric media. From the experimental results, it was observed that response trends of surface roughness (SR) using Jatropha oil are similar to those of commercially available EDM oil, which proves that Jatropha oil is a technically and operationally feasible dielectric and can be efficiently replaced as dielectric fluid in the EDM process. The lowest value of S.R. (i.e., 4.5 microns) for EDM and Jatropha oil was achieved at current = 9 A, Ton = 30 µs, Toff = 12 µs, and Gap voltage = 50 V. As the values of current and pulse on time increase, the S.R. also increases. Current and pulse-on-time were the most significant parameters affecting S.R. Machine learning methods like linear regression, decision trees, and random forests were used to predict the surface roughness. Random forest modeling is highly accurate, with an R2 value of 0.89 and an MSE of 1.36% among all methods. Random forest models have better predictive capabilities and may be one of the best options for modeling complex EDM processes.

11.
Biomed Pharmacother ; 173: 116290, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458010

RESUMEN

Jatropha mollissima (Pohl) Baill. (Euphorbiaceae) is widely used in traditional medicine to treat inflammatory disorders. So, a topical gel containing the hydroethanolic extract of its leaves was developed and evaluated for its anti-inflammatory, wound healing, and antiophidic properties in mice. First, the chemical profile of different parts of the plant was characterized by liquid chromatography coupled to mass spectrometry (LC-MS) using molecular networking. In the leaf extract, 11 compounds were characterized, with a particular emphasis on the identification of flavonoids. The gel efficiently inhibited carrageenan-induced paw edema, as well as acute and chronic croton oil-induced ear edema models, thereby reducing inflammatory and oxidative parameters in inflamed tissues. Besides anti-inflammatory activity, the herbal gel showed significant wound healing activity. The edematogenic, hemorrhagic and dermonecrotic activities induced by Bothrops jararaca snake venom were effectively inhibited by the treatment with J. mollissima gel. The association with the herbal gel improved in up to 90% the efficacy of commercial snake antivenom in reduce venom-induced edema. Additionally, while antivenom was not able to inhibit venom-induced dermonecrosis, treatment with herbal gel reduced in 55% the dermonocrotic halo produced. These results demonstrate the pharmacological potential of the herbal gel containing J. mollissima extract, which could be a strong candidate for the development of herbal products that can be used to complement the current antivenom therapy against snake venom local toxicity.


Asunto(s)
Venenos de Crotálidos , Euphorbiaceae , Jatropha , Mordeduras de Serpientes , Animales , Ratones , Euphorbiaceae/química , Antivenenos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Jatropha/química , Composición de Medicamentos , Mordeduras de Serpientes/tratamiento farmacológico , Edema/inducido químicamente , Edema/tratamiento farmacológico , Antiinflamatorios/efectos adversos , Veneno de Bothrops Jararaca , Cicatrización de Heridas
12.
Sci Rep ; 14(1): 4846, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418513

RESUMEN

Jatropha variegata and Jatropha spinosa (family: Euphorbiaceae) are utilized in Yemeni traditional medicine to treat respiratory tract infection and in different skin conditions such as wound healing, as antibacterial and hemostatic. In this study, we evaluated the cytotoxicity and the antiviral activities of the methanolic J. variegata (leaves: Ext-1, stems: Ext-2, and roots: Ext-3), and J. spinosa extracts (aerial parts: Ext-4 and roots: Ext-5), in addition to their methylene chloride fractions of roots extracts (F-6 and F-7, respectively). All samples were tested against three human cancer cell lines in vitro (MCF-7, HepG2, and A549) and two viruses (HSV-2 and H1N1). Both plants showed significant cytotoxicity, among them, the methylene chloride fractions of roots of J. variegata (F-6) and J. spinosa roots (F-7) showed the highest activity on MCF-7 (IC50 = 1.4 and 1 µg/mL), HepG2 (IC50 = 0.64 and 0.24 µg/mL), and A549 (IC50 = 0.7 and 0.5 µg/mL), respectively, whereas the IC50 values of the standard doxorubicin were (3.83, 4.73, and 4.57 µg/mL) against MCF-7, HepG2, and A549, respectively. These results revealed that the roots of both plants are potential targets for cytotoxic activities. The in vitro results revealed potential antiviral activity for each of Ext-3, Ext-5, F-6, and F-7 against HVS-2 with IC50 of 101.23, 68.83, 4.88, 3.24 µg/mL and against H1N1 with IC50 of 51.29, 27.92, 4.24, and 3.06 µg/mL respectively, whereas the IC50 value of the standard acyclovir against HVS-2 was 83.19 µg/mL and IC50 value of the standard ribavirin against H1N1 was 52.40 µg/mL .The methanol extracts of the roots (Ext-3 and Ext-5) of both plants were characterized using UPLC/MS. A total of 73 metabolites were annotated, including fourteen diterpenoids, eleven flavonoids, ten phenolic acid conjugates, twelve fatty acids and their conjugates, five triterpenes and steroids, two sesquiterpenes, and six coumarins. The cytotoxicity and antiviral activities determined in the present work are explained by the existence of flavonoids, coumarins and diterpenes with commonly known cytotoxicity and antiviral activities.


Asunto(s)
Antineoplásicos , Subtipo H1N1 del Virus de la Influenza A , Jatropha , Humanos , Extractos Vegetales/farmacología , Cloruro de Metileno , Flavonoides , Cumarinas , Antivirales/farmacología
13.
Data Brief ; 53: 110096, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38361976

RESUMEN

The study involves a collection of data from the published article titled "Active sites engineered biomass-carbon as a catalyst for biodiesel production: Process optimization using RSM and life cycle assessment "Energy Conversion Management" journal. Here, the activated biochar was functionalized using 4-diazoniobenzenesulfonate to obtain sulfonic acid functionalized activated biochar. The catalyst was comprehensively characterized using XRD, FTIR, TGA, NH3-TPD, SEM-EDS, TEM, BET, and XPS analysis. Further, the obtained catalyst was applied for the transesterification of Jatropha curcas oil (JCO) to produce biodiesel. An experimental matrix was conducted using the RSM-CCD approach and the resulting data were analyzed using multiple regressions to fit a quadratic equation, where the maximum biodiesel yield achieved was 97.1 ± 0.4%, under specific reaction conditions: a reaction time of 50.3 min, a molar ratio of 22.9:1, a reaction temperature of 96.2 °C, and a catalyst loading of 7.7 wt.%. The obtained product biodiesel was analyzed using NMR and GC-MS analyzed and is reported in the above-mentioned article.

14.
Environ Monit Assess ; 196(2): 145, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214830

RESUMEN

Nutrients are vital ingredients to boost plant health. The availability of nutrients is limited in fly ash (FA) waste to properly implement phytoremediation. The research explored the integration of microbes and treated wastewater irrigation in phytoremediation to provide the necessary nutrients for plant growth in fly ash-amended soils. The Box-Behnken method was used to design the experimental layout for the pot study. Response surface methodology (RSM) was applied as the optimization approach to model predictions for nutrient accumulation. The implemented pot study attained the highest morphological indicators with a plastochron index of 33.40, an absolute growth rate of 2.63 cm/day, and a leaf area of 2681.68 cm2 and attained maximum biomass of 24.91 g for the treatments that included a mid-range of the variables. The combination of FA 14.98%, microbial dose 4.07 mL, and treated wastewater as the irrigation source was found to be the optimized combination for nitrogen and phosphorus accumulation of 212.4 and 8.867 mg/L.


Asunto(s)
Ceniza del Carbón , Contaminantes del Suelo , Ceniza del Carbón/análisis , Biodegradación Ambiental , Aguas Residuales , Suelo , Contaminantes del Suelo/análisis , Monitoreo del Ambiente , Nutrientes
15.
Plants (Basel) ; 12(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068579

RESUMEN

Jatropha podagrica holds a longstanding place in traditional herbal medicine, primarily utilized for addressing skin infections, acting as antipyretics, diuretics, and purgatives. In this study, our primary objective was to investigate the secondary metabolites present in J. podagrica leaves, with the aim of pinpointing natural compounds exhibiting potential antiviral activities. Five secondary metabolites (1-5), including an auronol glycoside (1), two coumarins (2 and 3), a chromane (4) and a gallotannin (5), were isolated from J. podagrica leaves. Compound 1 presented as an amalgamation of unseparated mixtures, yet its intricate composition was adroitly unraveled through the strategic deployment of a chiral HPLC column. This tactic yielded the isolation of epimers (+)-1 and (-)-1, ascertained as unreported auronol glycosides. The structures of these novel compounds, (+)-1 and (-)-1, were elucidated to be (2S)-hovetrichoside C [(+)-1] and (2R)-hovetrichoside C [(-)-1] through NMR data and HR-ESIMS analyses, enzymatic hydrolysis, and comparison of optical rotation values. Cytotoxicity and antiviral effects were assessed for the isolated compounds ((+)-1, (-)-1 and 2-5), along with compound 1a (the aglycone of 1), in the A549 human alveolar basal epithelial cell line. Each compound demonstrated a cell viability of approximately 80% or higher, confirming their non-toxic nature. In the group of compounds, compounds 3-5 demonstrated antiviral effects based on RT-qPCR results, with individual enhancements ranging from approximately 28 to 38%. Remarkably, compound 4 exhibited the most substantial antiviral effect. Utilization of compound 4 to assess immune boosting and anti-inflammatory effects revealed increased levels of STING, RIG-I, NLRP3, and IL-10 along with a decrease in TNF-α and IL-6. Therefore, these findings underscore the potential of these active compounds 3-5 not only as therapeutic agents for SARS-CoV-2 but also as new contenders for upcoming pandemics.

16.
Plants (Basel) ; 12(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37960136

RESUMEN

Medicines for chronic inflammation can cause gastric ulcers and hepatic and renal issues. An alternative treatment for chronic inflammation is that of natural bioactive compounds, which present low side effects. Extracts of Jatropha cordata (Ortega) Müll. Arg. have been evaluated for their cytotoxicity and anti-inflammatory activity; however, testing pure compounds would be of greater interest. Campesteryl palmitate, n-heptyl ferulate, palmitic acid, and a mixture of sterols, i.e., brassicasterol, campesterol, ß-sitosterol, and stigmasterol, were obtained from an ethyl acetate extract from J. cordata (Ortega) Müll. Arg. bark using column chromatography. The toxicity and in vitro anti-inflammatory activities were evaluated using RAW 264.7 murine macrophage cells. None of the products assessed exhibited toxicity. The sterol mixture exhibited greater anti-inflammatory activity than the positive control, and nitric oxide (NO) inhibition percentages were 37.97% and 41.68% at 22.5 µg/mL and 30 µg/mL, respectively. In addition, n-heptyl ferulate decreased NO by 30.61% at 30 µg/mL, while campesteryl palmitate did not show anti-inflammatory activity greater than the positive control. The mixture and n-heptyl ferulate showed NO inhibition; hence, we may conclude that these compounds have anti-inflammatory potential. Additionally, further research and clinical trials are needed to fully explore the therapeutic potential of these bioactive compounds and their efficacy in treating chronic inflammation.

17.
Curr Ther Res Clin Exp ; 99: 100716, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869400

RESUMEN

Background: Acetaminophen-induced liver injury remains a significant public health problem because available treatments are limited due to their adverse effects. Medicinal plants, which are an important source of bioactive molecules, could be an alternative treatment for liver disease. Objective: This study was designed to investigate the curative effect of aqueous extracts of Cissus quadrangularis (Vitaceae) and Jatropha gossypiifolia (Euphorbiaceae) on acetaminophen-induced liver injury in mice. Methods: Mice were divided into groups and treated with distilled water, silymarin (50 mg/kg), a reference hepatoprotective agent, and aqueous extracts of C quadrangularis and J gossypiifolia (50 and 100 mg/kg, PO, respectively). These substances were given as a single daily dose 4 hours after acetaminophen administration (300 mg/kg, PO) for 2 days. Mice were humanely put to death 24 hours after the last dose and serum alanine aminotransferase and aspartate aminotransferase activities, total bilirubin and protein levels, reduced glutathione, superoxide dismutase, malondialdehyde, catalase, and nitrite tissue levels were assessed. Histology of the livers of the mice was performed by hematoxylin and eosin staining. Results: Acetaminophen administration induced a significant (P < 0.05) mean (SEM) body weight loss (-14.45% [5.92%]), a significant elevation of alanine aminotransferase activity (15.08%), total protein and bilirubin levels (25.80%), and a significant (P < 0.05) increase in liver superoxide dismutase (67.71%), catalase (63.00%), glutathione (40.29%), malondialdehyde (30.67%), and nitrite levels compared with the control group. In curative treatment, C quadrangularis and J gossypiifolia (50 and 100 mg/kg) significantly (P < 0.05) reduced mean (SEM) body weight loss (16.67% [7.16%] and 1.25% [0.51%], respectively), serum alanine aminotransferase activity (17.62% and 11.14%, respectively), bilirubin level (29.62% and 49.14%, respectively) compared with acetaminophen group, and J gossypiifolia normalized serum total protein level. Both extracts significantly (P < 0.05) reduced the levels of glutathione and malondialdehyde and normalized that of nitrite, superoxide dismutase, and catalase compared with the acetaminophen group. Hepatocyte necrosis and inflammatory cell infiltration were remarkably reduced by the plant extracts. Conclusions: The results obtained are evidence in favor of the development of a formulation based on the extracts of these plants against liver diseases.

18.
Artículo en Inglés | MEDLINE | ID: mdl-37817655

RESUMEN

BACKGROUND: Diabetes mellitus (DM) is a metabolic disorder known to impair many physiological functions via reactive oxygen species (ROS). Aldose reductase, sorbitol dehydrogenase, dipeptidyl peptidase IV, α-amylase and α-glucosidase are pharmacotherapeutic protein targetsin type-2 diabetes mellitus (T2DM). Inhibitors of these enzymes constitute a new class of drugs used in the management and treatment of T2DM. Some reports have claimed that medicinal plant extracts that serves as food (and as an antioxidant source) can reduce these alterations by eliminating ROS caused by DM. Ethnobotanical survey claims Jatropha gossypifolia commonly called "fig-nut" and "Lapa- lapa" in the Yoruba land of South-western Nigeria, to be used for the treatment and management of diabetes, in addition to its nutritive value. OBJECTIVE: The nutritional composition and in-silico antidiabetic potential of the bioactive constituents of J. gossypifolia leaf extracts were investigated. METHODS: Proximate, minerals and gas chromatography-mass spectroscopy (GC-MS) analysis were carried out using standard procedures. Phytocompounds present in J. gossypifolia methanol (JGM) and ethyl acetate (JGE) leaf extracts were tested as potential antagonists of selected protein targets via in-silico techniques. Drug-likeness, pharmacokinetic properties and toxicity of the promising docked ligands were also predicted. RESULTS: Proximate, minerals and gas chromatography­mass spectroscopy (GC-MS) analysis were carried out using standard procedures. Phytocompounds present in J. gossypifolia methanol (JGM) and ethyl acetate (JGE) leaf extracts were tested for their potential antagonistic effects on selected protein targets via in-silico techniques. Drug-likeness, pharmacokinetic properties and toxicity of the promising docked ligands were also predicted. Results: The proximate and mineral analysis revealed CONCLUSION: Benzene-1,2,4,5-tetramethyl from JGE extracts exhibited the most promising antidia- betic potential in-silico, suggesting its candidature as diabetes-target-protein inhibitor which may be developed for the treatment of type-2 diabetes mellitus.

19.
Poult Sci ; 102(12): 103072, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37801915

RESUMEN

Jatropha is a large, multipurpose, drought-tolerant plant with many traits and great potential as a biofuel crop. It originates from Central America but is now distributed throughout the tropics, including Africa and Asia. The study determines whether the dietary inclusion of raw Jatropha cucas meal (RJM, 3.5%) had negative impacts on the reproductive and productive performances of male Japanese quail as well as whether these impacts could be mitigated by heating the jatropha meal at 100°C for 24 or 48 h (JH24 or JH48 respectively). One hundred twenty healthy mature male quails at the age of 12 wk were assigned randomly to 4 treatments. Every treatment had 6 replicates, with 5 birds per replicate. The RJM caused a considerable decline in fertility and a high mortality rate in quail, whereas heat-treated jatropha meal (JH24 or JH48) decreased these unwanted effects. The RJM significantly increased triglycerides, aspartate aminotransferase (AST), and alanine aminotransferase (ALT), while reducing total protein and albumin. These values returned to normal in the JH24 and JH48 groups. The RJM significantly reduced the testosterone and increased estradiol and hepatic content of vitellogenin (Vtg) and estrogen receptor alpha (ERα) while they were normal in JH48 group. Superoxide dismutase (SOD) and catalase (CAT) activities, and the reduced glutathione (GSH) content in testicular tissues were significantly reduced in the RJM group when compared to control. Protein carbonyl (PC), malondialdehyde (MDA), and 8-hydroxy 2 deoxyguanosine (8-OHdG) levels were significantly increased in the RJM group when compared to control. Heating of JM for 48 h reduced the 8-OHdG and MDA levels toward the control level better than JH24 and restored PC to normal. Based on the obtained results, The toxic components in JM could be eliminated through heat treatment, and extending the treatment duration to 48 h is recommended for transforming the potentially harmful jatropha meal into an alternative protein source for livestock nutrition.


Asunto(s)
Jatropha , Codorniz , Animales , Coturnix , Calor , Pollos , Dieta/veterinaria , Antioxidantes , Alimentación Animal/análisis
20.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37685991

RESUMEN

The Flowering locus T (FT) gene encodes the florigen protein, which primarily regulates the flowering time in plants. Recent studies have shown that FT genes also significantly affect plant growth and development. The FT gene overexpression in plants promotes flowering and suppresses leaf and stem development. This study aimed to conduct a transcriptome analysis to investigate the multiple effects of Jatropha curcas L. homolog (JcFT) overexpression on leaf growth in tobacco plants. The findings revealed that JcFT overexpression affected various biological processes during leaf development, including plant hormone levels and signal transduction, lipid oxidation metabolism, terpenoid metabolism, and the jasmonic-acid-mediated signaling pathway. These results suggested that the effects of FT overexpression in plants were complex and multifaceted, and the combination of these factors might contribute to a reduction in the leaf size. This study comprehensively analyzed the effects of JcFT on leaf development at the transcriptome level and provided new insights into the function of FT and its homologous genes.


Asunto(s)
Jatropha , Jatropha/genética , Nicotiana/genética , Perfilación de la Expresión Génica , Transcriptoma , Hojas de la Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA