Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 635
Filtrar
1.
Virol J ; 21(1): 217, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277738

RESUMEN

Japanese encephalitis is an acute infectious disease of the central nervous system caused by neurotropic Japanese encephalitis virus (JEV). As a member of TAM (Tyro3, Axl and Mertk) family, Mertk has involved in multiple biological processes by engaging with its bridging ligands Gas6 and Protein S, including invasion of pathogens, phagocytosis of apoptotic cells, inflammatory response regulation, and the maintenance of blood brain barrier (BBB) integrity. However, its role in encephalitis caused by JEV infection has not been studied in detail. Here, we found that Mertk-/- mice exhibited higher mortality and more rapid disease progression than wild-type mice after JEV challenge. There were no significant differences in viral load and cytokines expression level in peripheral tissues between Wild type and Mertk-/- mice. Furthermore, the absence of Mertk had little effect on the inflammatory response and immunopathological damage while it can cause an increased viral load in the brain. For the in vitro model of BBB, Mertk was shown to maintain the integrity of the BBB. In vivo, Mertk-/- mice exhibited higher BBB permeability and lower BBB integrity. Taken together, our findings demonstrate that Mertk acts as a protective factor in the development of encephalitis induced by JEV infection, which is mainly associated with its beneficial effect on BBB integrity, rather than its regulation of inflammatory response.


Asunto(s)
Barrera Hematoencefálica , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Ratones Noqueados , Tirosina Quinasa c-Mer , Animales , Tirosina Quinasa c-Mer/metabolismo , Tirosina Quinasa c-Mer/genética , Barrera Hematoencefálica/metabolismo , Ratones , Encefalitis Japonesa/virología , Virus de la Encefalitis Japonesa (Especie)/fisiología , Modelos Animales de Enfermedad , Carga Viral , Citocinas/metabolismo , Encéfalo/virología , Encéfalo/patología , Ratones Endogámicos C57BL
2.
Vet Microbiol ; 297: 110199, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39096789

RESUMEN

Japanese encephalitis virus (JEV) is a mosquito-borne, zoonotic orthoflavivirus causing human encephalitis and reproductive disorders in pigs. Cell-intrinsic antiviral restriction factors are the first line of defense that prevent a virus from establishing a productive infection, while the molecular mechanism of the virus-host interaction is still not fully understood. Our in vitro experiments demonstrated that the Solute Carrier Family 25 Member 12 (SLC25A12) interacted with the JEV nonstructural protein 1 (NS1) and inhibited JEV replication. Furthermore, we showed that knockdown or knockout of SLC25A12 promoted JEV replication, while overexpression of SLC25A12 repressed viral replication. Finally, we demonstrated that SLC25A12 increased IRF7 mRNA levels, which promoted IFN-ß expression and subsequently induced antiviral effects. Collectively, our study revealed that SLC25A12 interacted with NS1, inhibiting viral RNA synthesis and transcription and enhancing type I interferon induction for antiviral effects.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Interferón Tipo I , Proteínas no Estructurales Virales , Replicación Viral , Virus de la Encefalitis Japonesa (Especie)/fisiología , Virus de la Encefalitis Japonesa (Especie)/inmunología , Virus de la Encefalitis Japonesa (Especie)/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Interferón Tipo I/genética , Animales , Humanos , Porcinos , Línea Celular , Células HEK293 , Encefalitis Japonesa/virología , Encefalitis Japonesa/inmunología , Interferón beta/genética , Interferón beta/metabolismo , Interferón beta/inmunología , Interacciones Huésped-Patógeno
3.
Vet World ; 17(7): 1555-1561, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39185059

RESUMEN

Background and Aim: Some Culex mosquitoes are competent vectors for Japanese encephalitis virus (JEV) and Zika virus (ZIKV), which cause public health problems worldwide, especially in South-east Asia. Xenosurveillance of Culex mosquitoes remains limited compared with other common mosquito-borne diseases. This study aimed to identify JEV and ZIKV in field-caught Culex mosquitoes collected from Ubon Ratchathani province. Materials and Methods: We investigated the presence of JEV and ZIKV in Culex mosquitoes from two districts in Ubon Ratchathani province, Thailand, and examined their role in viral interepidemic circulation. Female Culex mosquitoes (5,587) were collected using a mechanical aspirator from indoors and outdoors. The consensus sequences of the E and NS1 genes of JEV and the E gene of ZIKV were identified using real-time reverse transcription-polymerase chain reaction. Results: From 335 sample pools that contain a total of 5587 adult female Culex mosquitoes collected from Don Yung, Mueang district (4,406) and Phon Duan, Det Udom district (1,181), none of the collected mosquitoes tested positive for either JEV or ZIKV. Conclusion: This study did not find JEV and ZIKV in Culex mosquitoes collected from the area of collection, which may be due to the low circulating amount of the virus in the vectors in the area, making it undetectable, or it may be because Culex mosquitoes are not suitable vector for the virus being tested. However, further xenosurveillance study of JEV and ZIKV in mosquito is suggested to prepare for the next outbreak.

4.
J Virol ; 98(9): e0063524, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39158346

RESUMEN

Flavivirus infection capitalizes on cellular lipid metabolism to remodel the cellular intima, creating a specialized lipid environment conducive to viral replication, assembly, and release. The Japanese encephalitis virus (JEV), a member of the Flavivirus genus, is responsible for significant morbidity and mortality in both humans and animals. Currently, there are no effective antiviral drugs available to combat JEV infection. In this study, we embarked on a quest to identify anti-JEV compounds within a lipid compound library. Our research led to the discovery of two novel compounds, isobavachalcone (IBC) and corosolic acid (CA), which exhibit dose-dependent inhibition of JEV proliferation. Time-of-addition assays indicated that IBC and CA predominantly target the late stage of the viral replication cycle. Mechanistically, JEV nonstructural proteins 1 and 2A (NS1 and NS2A) impede 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activation by obstructing the liver kinase B1 (LKB1)-AMPK interaction, resulting in decreased p-AMPK expression and a consequent upsurge in lipid synthesis. In contrast, IBC and CA may stimulate AMPK by binding to its active allosteric site, thereby inhibiting lipid synthesis essential for JEV replication and ultimately curtailing viral infection. Most importantly, in vivo experiments demonstrated that IBC and CA protected mice from JEV-induced mortality, significantly reducing viral loads in the brain and mitigating histopathological alterations. Overall, IBC and CA demonstrate significant potential as effective anti-JEV agents by precisely targeting AMPK-associated signaling pathways. These findings open new therapeutic avenues for addressing infections caused by Flaviviruses. IMPORTANCE: This study is the inaugural utilization of a lipid compound library in antiviral drug screening. Two lipid compounds, isobavachalcone (IBC) and corosolic acid (CA), emerged from the screening, exhibiting substantial inhibitory effects on the Japanese encephalitis virus (JEV) proliferation in vitro. In vivo experiments underscored their efficacy, with IBC and CA reducing viral loads in the brain and mitigating JEV-induced histopathological changes, effectively shielding mice from fatal JEV infection. Intriguingly, IBC and CA may activate 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) by binding to its active site, curtailing the synthesis of lipid substances, and thus suppressing JEV proliferation. This indicates AMPK as a potential antiviral target. Remarkably, IBC and CA demonstrated suppression of multiple viruses, including Flaviviruses (JEV and Zika virus), porcine herpesvirus (pseudorabies virus), and coronaviruses (porcine deltacoronavirus and porcine epidemic diarrhea virus), suggesting their potential as broad-spectrum antiviral agents. These findings shed new light on the potential applications of these compounds in antiviral research.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Antivirales , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Metabolismo de los Lípidos , Replicación Viral , Animales , Metabolismo de los Lípidos/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Virus de la Encefalitis Japonesa (Especie)/efectos de los fármacos , Virus de la Encefalitis Japonesa (Especie)/fisiología , Ratones , Antivirales/farmacología , Humanos , Encefalitis Japonesa/tratamiento farmacológico , Encefalitis Japonesa/virología , Proteínas Quinasas Activadas por AMP/metabolismo , Chalconas/farmacología , Triterpenos/farmacología , Proteínas no Estructurales Virales/metabolismo , Infecciones por Flavivirus/tratamiento farmacológico , Infecciones por Flavivirus/virología , Infecciones por Flavivirus/metabolismo , Flavivirus/efectos de los fármacos , Línea Celular
5.
Pharmaceuticals (Basel) ; 17(8)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39204093

RESUMEN

Zika virus (ZIKV) and Japanese encephalitis virus (JEV) can cause permanent neurological damage and death, yet no approved drugs exist for these infections. Rhodiola crenulate, an herb used in traditional Chinese medicine for its antioxidation and antifatigue properties, was studied for its antiviral activity against ZIKV and JEV in vitro. The cytotoxicity of Rhodiola crenulata extract (RCE) was evaluated using the CCK-8 reagent. Antiviral effects of RCE were assessed in ZIKV-infected or JEV-infected Vero cells via quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blotting, fluorescent focus assay (FFA), and immunofluorescence assay (IFA). The cell-free antiviral effects of RCE were evaluated using an inactivation assay. To determine the stage of the viral life cycle affected by RCE, time-of-addition, binding, and entry assays were conducted. Three bioactive constituents of RCE (salidroside, tyrosol, and gallic acid) were tested for antiviral activity. RCE exhibited dose-dependent anti-ZIKV and anti-JEV activities at non-cytotoxic concentrations, which were likely achieved by disrupting viral binding and stability. Gallic acid exhibited antiviral activity against ZIKV and JEV. Our findings indicate that RCE disrupts viral binding and stability, presenting a potential strategy to treat ZIKV and JEV infections.

6.
RNA Biol ; 21(1): 1-10, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39183472

RESUMEN

One of the most recent advances in the analysis of viral RNA-cellular protein interactions is the Comprehensive Identification of RNA-binding Proteins by Mass Spectrometry (ChIRP-MS). Here, we used ChIRP-MS in mock-infected and Zika-infected wild-type cells and cells knockout for the zinc finger CCCH-type antiviral protein 1 (ZAP). We characterized 'ZAP-independent' and 'ZAP-dependent' cellular protein interactomes associated with flavivirus RNA and found that ZAP affects cellular proteins associated with Zika virus RNA. The ZAP-dependent interactome identified with ChIRP-MS provides potential ZAP co-factors for antiviral activity against Zika virus and possibly other viruses. Identifying the full spectrum of ZAP co-factors and mechanisms of how they act will be critical to understanding the ZAP antiviral system and may contribute to the development of antivirals.


Asunto(s)
ARN Viral , Proteínas de Unión al ARN , Infección por el Virus Zika , Virus Zika , Virus Zika/genética , Virus Zika/fisiología , Virus Zika/metabolismo , Humanos , ARN Viral/metabolismo , ARN Viral/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Infección por el Virus Zika/virología , Infección por el Virus Zika/metabolismo , Unión Proteica , Interacciones Huésped-Patógeno/genética , Espectrometría de Masas , Células HEK293
7.
Biomed Environ Sci ; 37(7): 716-725, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39198236

RESUMEN

Objective: Genotypes (G) 1, 3, and 5 of the Japanese encephalitis virus (JEV) have been isolated in China, but the dominant genotype circulating in Chinese coastal areas remains unknown. We searched for G5 JEV-infected cases and attempted to elucidate which JEV genotype was most closely related to human Japanese encephalitis (JE) in the coastal provinces of China. Methods: In this study, we collected serum specimens from patients with JE in three coastal provinces of China (Guangdong, Zhejiang, and Shandong) from 2018 to 2020 and conducted JEV cross-neutralization tests against G1, G3, and G5. Results: Acute serum specimens from clinically reported JE cases were obtained for laboratory confirmation from hospitals in Shandong (92 patients), Zhejiang (192 patients), and Guangdong (77 patients), China, from 2018 to 2020. Seventy of the 361 serum specimens were laboratory-confirmed to be infected with JEV. Two cases were confirmed to be infected with G1 JEV, 32 with G3 JEV, and two with G5 JEV. Conclusion: G3 was the primary infection genotype among JE cases with a definite infection genotype, and the infection caused by G5 JEV was confirmed serologically in China.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Genotipo , Humanos , Encefalitis Japonesa/epidemiología , Encefalitis Japonesa/virología , China/epidemiología , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Virus de la Encefalitis Japonesa (Especie)/inmunología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Adulto Joven , Adolescente , Niño , Preescolar , Anciano , Anticuerpos Antivirales/sangre
8.
Viruses ; 16(8)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39205176

RESUMEN

The common house mosquito (Culex pipiens) is a native vector for West Nile virus (WNV). Invasive species like the tiger mosquito (Aedes albopictus) and Asian bush mosquito (Aedes japonicus) are rapidly spreading through Europe, posing a major threat as vectors for dengue, chikungunya (CHIKV), and Japanese encephalitis virus (JEV). These mosquitoes share a similar ecological niche as larvae, but the carry-over effects of aquatic larval interactions to the terrestrial adult stage remain largely unknown and their medical relevance requires further investigation. This study examines the context dependency of larval interactions among Aedes albopictus, Aedes japonicus, and Culex pipiens. The survival, development time, growth, and energetic storage were measured in different European populations within density-response (intraspecific) experiments and replacement (interspecific) experiments at 20 °C and 26 °C. Overall, Ae. japonicus was the weakest competitor, while competition between Ae. albopictus and Cx. pipiens varied with temperature. Adults emerging from this larval competition were infected as follows: Culex pipiens with WNV, Ae. albopictus with CHIKV, and Ae. japonicus with JEV. While no JEV infection was observed, mosquitoes experiencing interspecific interactions during their larval stages exhibited higher infection rates and viral RNA titers for CHIKV and WNV. This increased susceptibility to viral infection after larval competition suggests a higher risk of arbovirus transmission in co-occurring populations.


Asunto(s)
Aedes , Culex , Larva , Mosquitos Vectores , Animales , Culex/virología , Culex/crecimiento & desarrollo , Aedes/virología , Aedes/crecimiento & desarrollo , Aedes/fisiología , Larva/virología , Mosquitos Vectores/virología , Mosquitos Vectores/crecimiento & desarrollo , Infecciones por Arbovirus/transmisión , Infecciones por Arbovirus/virología , Arbovirus/fisiología , Virus del Nilo Occidental/fisiología , Femenino , Virus Chikungunya/fisiología , Virus de la Encefalitis Japonesa (Especie)/fisiología
9.
J Microbiol Biotechnol ; 34(8): 1592-1598, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39081248

RESUMEN

Genotype V (GV) Japanese encephalitis virus (JEV) has been predominantly reported in the Republic of Korea (ROK) since 2010. GV JEV exhibits higher virulence and distinct antigenicity compared to other genotypes, which results in reduced efficacy of existing vaccines. Research on GV JEV is essential to minimize its clinical impact, but the only available clinical strain in the ROK is K15P38, isolated from the cerebrospinal fluid of a patient in 2015. We obtained this virus from National Culture Collection for Pathogens (NCCP) and isolated a variant forming small plaques during our research. We identified that this variant has one amino acid substitution each in the PrM and NS5 proteins compared to the reported K15P38. Additionally, we confirmed that this virus exhibits delayed propagation in vitro and an attenuated phenotype in mice. The isolation of this variant is a critical reference for researchers intending to study K15P38 obtained from NCCP, and the mutations in the small plaque-forming virus are expected to be useful for studying the pathology of GV JEV.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Genotipo , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Virus de la Encefalitis Japonesa (Especie)/clasificación , Encefalitis Japonesa/virología , Animales , Humanos , Ratones , República de Corea , Virulencia , Ensayo de Placa Viral , Sustitución de Aminoácidos , Femenino , Mutación , Línea Celular , Ratones Endogámicos BALB C , Replicación Viral
10.
Heliyon ; 10(13): e33142, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39040327

RESUMEN

Japanese encephalitis virus (JEV) is a pathogen responsible for high mortality and morbidity rates among children with encephalitis. Since JEV genotype 1 (GI) is the most prevalent strain in South Korea these days, corresponding research and vaccine development is urgently required. Molecular genetic studies on JEV vaccines can be boosted by obtaining genetically stable full-length infectious JEV complementary DNA (cDNA) clones. Furthermore, the significance of the reverse genetics system in facilitating molecular biological analyses of JEV properties has been demonstrated. This study constructed a recombinant JEV-GI strain using a reverse genetics system based on a Korean wild-type GI isolate (K05GS). RNA extracted from JEV-GI was used to synthesize cDNA, a recombinant full-length JEV clone, pTRE-JEVGI, was generated from the DNA fragment, and the virus was rescued. We performed in vitro and in vivo experiments to analyze the rescued JEV-GI virus. The rescued JEV-GI exhibited similar characteristics to wild-type JEV. These results suggest that our reverse genetics system can generate full-length infectious clones that can be used to analyze molecular biological factors that influence viral properties and immunogenicity. Additionally, it may be useful as a heterologous gene expression vector and help develop new strains for JEV vaccines.

11.
BMC Genomics ; 25(1): 673, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969975

RESUMEN

BACKGROUND: Culex tritaeniorhynchus is widely distributed in China, from Hainan Island in the south to Heilongjiang in the north, covering tropical, subtropical, and temperate climate zones. Culex tritaeniorhynchus carries 19 types of arboviruses. It is the main vector of the Japanese encephalitis virus (JEV), posing a serious threat to human health. Understanding the effects of environmental factors on Culex tritaeniorhynchus can provide important insights into its population structure or isolation patterns, which is currently unclear. RESULTS: In total, 138 COI haplotypes were detected in the 552 amplified sequences, and the haplotype diversity (Hd) value increased from temperate (0.534) to tropical (0.979) regions. The haplotype phylogeny analysis revealed that the haplotypes were divided into two high-support evolutionary branches. Temperate populations were predominantly distributed in evolutionary branch II, showing some genetic isolation from tropical/subtropical populations and less gene flow between groups. The neutral test results of HNQH (Qionghai) and HNHK(Haikou) populations were negative (P < 0.05), indicating many low-frequency mutations in the populations and that the populations might be in the process of expansion. Moreover, Wolbachia infection was detected only in SDJN (Jining) (2.24%), and all Wolbachia genotypes belonged to supergroup B. To understand the influence of environmental factors on mosquito-borne viruses, we examined the prevalence of Culex tritaeniorhynchus infection in three ecological environments in Shandong Province. We discovered that the incidence of JEV infection was notably greater in Culex tritaeniorhynchus from lotus ponds compared to those from irrigation canal regions. In this study, the overall JEV infection rate was 15.27 per 1000, suggesting the current risk of Japanese encephalitis outbreaks in Shandong Province. CONCLUSIONS: Tropical and subtropical populations of Culex tritaeniorhynchus showed higher genetic diversity and those climatic conditions provide great advantages for the establishment and expansion of Culex tritaeniorhynchus. There are differences in JEV infection rates in wild populations of Culex tritaeniorhynchus under different ecological conditions. Our results suggest a complex interplay of genetic differentiation, population structure, and environmental factors in shaping the dynamics of Culex tritaeniorhynchus. The low prevalence of Wolbachia in wild populations may reflect the recent presence of Wolbachia invasion in Culex tritaeniorhynchus.


Asunto(s)
Culex , Haplotipos , Filogenia , Culex/genética , Culex/virología , Culex/microbiología , Animales , China , Clima , Variación Genética , Genética de Población , Wolbachia/genética , Mosquitos Vectores/genética , Mosquitos Vectores/virología , Mosquitos Vectores/microbiología , Complejo IV de Transporte de Electrones/genética
12.
Eur J Neurosci ; 60(5): 4843-4860, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39049535

RESUMEN

Skeletal muscle wasting is a clinically proven pathology associated with Japanese encephalitis virus (JEV) infection; however, underlying factors that govern skeletal muscle damage are yet to be explored. The current study aims to investigate the pathobiology of skeletal muscle damage using a mouse model of JEV infection. Our study reveals a significant increment in viral copy number in skeletal muscle post-JEV infection, which is associated with enhanced skeletal muscle cell death. Molecular and biochemical analysis confirms NOX2-dependent generation of reactive oxygen species, leading to autophagy flux inhibition and cell apoptosis. Along with this, an alteration in mitochondrial dynamics (change in fusion and fission process) and a decrease in the total number of mitochondria copies were found during JEV disease progression. The study represents the initial evidence of skeletal muscle damage caused by JEV and provides insights into potential avenues for therapeutic advancement.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Dinámicas Mitocondriales , Músculo Esquelético , Especies Reactivas de Oxígeno , Animales , Especies Reactivas de Oxígeno/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/virología , Ratones , Encefalitis Japonesa/metabolismo , Dinámicas Mitocondriales/fisiología , Apoptosis/fisiología , NADPH Oxidasa 2/metabolismo , NADPH Oxidasa 2/genética , Autofagia/fisiología , Modelos Animales de Enfermedad
13.
Int J Biol Macromol ; 277(Pt 1): 134151, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39059534

RESUMEN

Japanese encephalitis (JE), a mosquito-borne zoonotic disease caused by the Japanese encephalitis virus (JEV), poses a serious threat to global public health. The low viremia levels typical in JEV infections make RNA detection challenging, necessitating early and rapid diagnostic methods for effective control and prevention. This study introduces a novel one-pot detection method that combines recombinant enzyme polymerase isothermal amplification (RPA) with CRISPR/EsCas13d targeting, providing visual fluorescence and lateral flow assay (LFA) results. Our portable one-pot RPA-EsCas13d platform can detect as few as two copies of JEV nucleic acid within 1 h, without cross-reactivity with other pathogens. Validation against clinical samples showed 100 % concordance with real-time PCR results, underscoring the method's simplicity, sensitivity, and specificity. This efficacy confirms the platform's suitability as a novel point-of-care testing (POCT) solution for detecting and monitoring the JE virus in clinical and vector samples, especially valuable in remote and resource-limited settings.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Técnicas de Amplificación de Ácido Nucleico , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Virus de la Encefalitis Japonesa (Especie)/genética , Animales , Técnicas de Amplificación de Ácido Nucleico/métodos , Encefalitis Japonesa/diagnóstico , Encefalitis Japonesa/virología , Técnicas de Diagnóstico Molecular/métodos , Porcinos , Sistemas CRISPR-Cas , Sensibilidad y Especificidad , ARN Viral/genética , ARN Viral/análisis
14.
Vaccines (Basel) ; 12(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38932326

RESUMEN

Japanese encephalitis virus (JEV), a flavivirus transmitted by mosquitoes, has caused epidemics and severe neurological diseases in Asian countries. In this study, we developed a cDNA infectious clone, pBAC JYJEV3, of the JEV genotype 3 strain (EF571853.1) using a bacterial artificial chromosome (BAC) vector. The constructed infectious clone was transfected into Vero cells, where it exhibited infectivity and induced cytopathic effects akin to those of the parent virus. Confocal microscopy confirmed the expression of the JEV envelope protein. Comparative analysis of growth kinetics revealed similar replication dynamics between the parental and recombinant viruses, with peak titers observed 72 h post-infection (hpi). Furthermore, plaque assays demonstrated comparable plaque sizes and morphologies between the viruses. Cryo-electron microscopy confirmed the production of recombinant virus particles with a morphology identical to that of the parent virus. Immunization studies in mice using inactivated parental and recombinant viruses revealed robust IgG responses, with neutralizing antibody production increasing over time. These results showcase the successful generation and characterization of a recombinant JEV3 virus and provide a platform for further investigations into JEV pathogenesis and vaccine development.

15.
Virulence ; 15(1): 2367671, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38910312

RESUMEN

Viral diseases are among the main threats to public health. Understanding the factors affecting viral invasion is important for antiviral research. Until now, it was known that most viruses have very low plaque-forming unit (PFU)-to-particle ratios. However, further investigation is required to determine the underlying factors. Here, using quantitative single-particle analysis methods, the invasion of Semliki Forest virus (SFV), Japanese encephalitis virus (JEV), and influenza A virus (IAV) containing attachment to the cell surface, entry into the cell, transport towards the cell interior, and fusion with endosomes to release nucleocapsids were quantitatively analysed in parallel. It was found that for SFV with an PFU-to-particle ratio of approximately 1:2, an entry efficiency of approximately 31% limited infection. For JEV, whose PFU-to-particle ratio was approximately 1:310, an attachment efficiency of approximately 27% and an entry efficiency of 10% were the main factors limiting its infection. Meanwhile, for IAV with PFU-to-particle ratios of 1:8100, 5% attachment efficiency, 9% entry efficiency, and 53% fusion efficiency significantly limited its infection. These results suggest that viruses with different infectivities have different limited steps in the invasion process. Moreover, there are significant differences in attachment efficiencies among viruses, emphasizing the pivotal role of attachment in viral invasion. The influence of the virus purification method on virus invasion was also investigated. This study, for the first time, reports the efficiencies of different stages of virus invasion, leading to a better understanding of virus invasion and providing a protocol to quantitatively analyse the virus invasion efficiency.


Asunto(s)
Virus de la Influenza A , Virus de los Bosques Semliki , Internalización del Virus , Virus de la Influenza A/fisiología , Animales , Virus de los Bosques Semliki/fisiología , Humanos , Virus de la Encefalitis Japonesa (Especie)/fisiología , Línea Celular , Acoplamiento Viral , Endosomas/virología
16.
Virol J ; 21(1): 128, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840203

RESUMEN

The envelope (E) protein of the Japanese encephalitis virus (JEV) is a key protein for virus infection and adsorption of host cells, which determines the virulence of the virus and regulates the intensity of inflammatory response. The mutation of multiple aa residues in the E protein plays a critical role in the attenuated strain of JEV. This study demonstrated that the Asp to Gly, Ser, and His mutation of the E389 site, respectively, the replication ability of the viruses in cells was significantly reduced, and the viral neuroinvasiveness was attenuated to different degrees. Among them, the mutation at E389 site enhanced the E protein flexibility contributed to the attenuation of neuroinvasiveness. In contrast, less flexibility of E protein enhanced the neuroinvasiveness of the strain. Our results indicate that the mechanism of attenuation of E389 aa mutation attenuates neuroinvasiveness is related to increased flexibility of the E protein. In addition, the increased flexibility of E protein enhanced the viral sensitivity to heparin inhibition in vitro, which may lead to a decrease in the viral load entering brain. These results suggest that E389 residue is a potential site affecting JEV virulence, and the flexibility of the E protein of aa at this site plays an important role in the determination of neuroinvasiveness.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Proteínas del Envoltorio Viral , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/fisiología , Virus de la Encefalitis Japonesa (Especie)/efectos de los fármacos , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/química , Animales , Línea Celular , Virulencia , Replicación Viral , Encefalitis Japonesa/virología , Humanos , Heparina/farmacología , Sustitución de Aminoácidos , Mutación Missense , Ratones , Mutación , Factores de Virulencia/genética , Glicoproteínas de Membrana
17.
APMIS ; 132(9): 638-645, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38837462

RESUMEN

Acute encephalitis syndrome (AES) is a major public health concern in India as the aetiology remains unknown in the majority of cases with the current testing algorithm. We aimed to study the incidence of Japanese encephalitis (JE) and determine the aetiology of non-JE AES cases to develop an evidence-based testing algorithm. Cerebrospinal fluid (CSF) samples were tested for Japanese encephalitis virus by ELISA and polymerase chain reaction (PCR). Multiplex real-time PCR was done for Dengue, Chikungunya, West Nile, Zika, Enterovirus, Epstein Barr Virus, Herpes Simplex Virus, Adenovirus, Cytomegalovirus, Herpesvirus 6, Parechovirus, Parvovirus B19, Varicella Zoster Virus, Scrub typhus, Rickettsia species, Leptospira, Salmonella species, Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Plasmodium species and by ELISA for Mumps and Measles virus. Of the 3173 CSF samples, 461 (14.5%) were positive for JE. Of the 334 non-JE AES cases, 66.2% viz. Scrub typhus (25.7%), Mumps (19.5%), Measles (4.2%), Parvovirus B19 (3.9%) Plasmodium (2.7%), HSV 1 and 2 (2.4%), EBV and Streptococcus pneumoniae (2.1% each), Salmonella and HHV 6 (1.2% each) were predominant. Hence, an improved surveillance system and our suggested expanded testing algorithm can improve the diagnosis of potentially treatable infectious agents of AES in India.


Asunto(s)
Encefalopatía Aguda Febril , Humanos , India/epidemiología , Masculino , Adolescente , Femenino , Preescolar , Niño , Adulto Joven , Adulto , Encefalopatía Aguda Febril/epidemiología , Encefalopatía Aguda Febril/diagnóstico , Encefalopatía Aguda Febril/etiología , Encefalopatía Aguda Febril/virología , Lactante , Incidencia , Persona de Mediana Edad , Encefalitis Japonesa/epidemiología , Encefalitis Japonesa/diagnóstico , Encefalitis Japonesa/virología , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Ensayo de Inmunoadsorción Enzimática , Anciano , Tifus por Ácaros/epidemiología , Tifus por Ácaros/diagnóstico , Tifus por Ácaros/microbiología
18.
Trop Med Infect Dis ; 9(5)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38787050

RESUMEN

Japanese encephalitis virus (JEV) has a positive-sense single-stranded RNA genome and belongs to the genus Flavivirus of the family Flaviviridae. Persistent JEV infection was previously shown in pig blood cells, which act as a natural reservoir of this virus. We aimed to determine the pathogenicity factors involved in persistent JEV infection by analyzing the pathogenicity and genome sequences of a virus isolated from a persistent infection model. We established persistent JEV infections in cells by inoculating mouse fetus primary cell cultures with the Beijing-1 strain of JEV and then performing repeated infected cell passages, harvesting viruses after each passage while monitoring the plaque size over 100 generations. The virus growth rate was compared among Vero, C6/36, and Neuro-2a cells. The pathogenicity was examined in female ICR mice at several ages. Additionally, we determined the whole-genome sequences. The 134th Beijing-1-derived persistent virus (ME134) grew in Vero cells at a similar rate to the parent strain but did not grow well in C6/36 or Neuro-2a cells. No differences were observed in pathogenicity after intracerebral inoculation in mice of different ages, but the survival time was extended in older mice. Mutations in the persistent virus genomes were found across all regions but were mainly focused in the NS3, NS4b, and 3'NCR regions, with a 34-base-pair deletion found in the variable region. The short deletion in the 3'NCR region appeared to be responsible for the reduced pathogenicity and growth efficiency.

19.
Vet Sci ; 11(5)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38787188

RESUMEN

The Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, has a wide host range, extending from pigs and ardeid birds to opportunistic dead-end hosts, such as humans and horses. However, JEV encephalitis infections in aquatic mammals are rare, with only two cases in seals reported to date. Here, we report a lethal case of JEV and Schizophyllum commune co-infection in an aquarium-housed harbor seal in Japan. We isolated JEV from the brain of the dead seal and characterized its phylogeny and pathogenicity in mice. The virus isolate from the seal was classified as genotype GIb, which aligns with recent Japanese human and mosquito isolates as well as other seal viruses detected in China and Korea, and does not exhibit a unique sequence trait distinct from that of human and mosquito strains. We demonstrated that the seal isolate is pathogenic to mice and causes neuronal symptoms. These data suggest that seals should be considered a susceptible dead-end host for circulating JEV in natural settings.

20.
Emerg Microbes Infect ; 13(1): 2362392, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38808613

RESUMEN

Japanese encephalitis (JE), caused by the Japanese encephalitis virus (JEV) infection, continues to pose significant public health challenges worldwide despite efficient vaccines. The virus is classified into five genotypes, among which genotype V (GV) was not detected for a long period after its initial isolation in 1952, until reports emerged from China and the Republic of Korea (ROK) since 2009. The characteristics of the virus are crucial in estimating its potential epidemiological impact. However, characterization of GV JEVs has so far been limited to two strains: Muar, the original isolate, and XZ0934, isolated in China. Two additional ROK GV JEV isolates, NCCP 43279 and NCCP 43413, are currently available, but their characteristics have not been explored. Our phylogenetic analysis revealed that GV virus sequences from the ROK segregate into two clades. NCCP 43279 and NCCP 43413 belong to different clades and exhibit distinct in vitro phenotypes. NCCP 43279 forms larger plaques but demonstrates inefficient propagation in cell culture compared to NCCP 43413. In vivo, NCCP 43279 induces higher morbidity and mortality in mice than NCCP 43413. Notably, NCCP 43279 shows more severe blood-brain barrier damage, suggesting superior brain invasion capabilities. Consistent with its higher virulence, NCCP 43279 displays more pronounced histopathological and immunopathological outcomes. In conclusion, our study confirms that the two ROK isolates are not only classified into different clades but also exhibit distinct in vitro and in vivo characteristics.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Genotipo , Filogenia , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/aislamiento & purificación , Virus de la Encefalitis Japonesa (Especie)/clasificación , Animales , República de Corea/epidemiología , Encefalitis Japonesa/virología , Encefalitis Japonesa/veterinaria , Encefalitis Japonesa/epidemiología , Ratones , Humanos , Virulencia , Línea Celular , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA