Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmacol Res ; : 107420, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293586

RESUMEN

Endometrial cancer (EC) is one of the most common gynecologic malignancies, which lacking effective drugs for intractable conditions or patients unsuitable for surgeries. Recently, the patient-derived organoids (PDOs) are found feasible for cancer research and drug discoveries. Here, we established a series of PDOs from EC and performed drug repurposing screening and mechanism analysis for cancer treatment. We confirmed that the regulatory ß subunit of methionine adenosyltransferase (MAT2B) is highly correlated with malignant progression in endometrial cancer. Through drug screening on PDOs, we identify JX24120, chlorpromazine derivative, as a specific inhibitor for MAT2B, which directly binds to MAT2B (Kd = 4.724µM) and inhibits the viability of EC PDOs and canonical cell lines. Correspondingly, gene editing assessment demonstrates that JX24120 suppresses tumor growth depending on the presence of MAT2B in vivo and in vitro. Mechanistically, JX24120 induces inhibition of S-adenosylmethionine (SAMe) synthesis, leading to suppressed mTORC1 signaling, abnormal energy metabolism and protein synthesis, and eventually apoptosis. Taken together, our study offers a novel approach for drug discovery and efficacy assessment by using the PDOs model. These findings suggested that JX24120 may be a potent MAT2B inhibitor and will hopefully serve as a prospective compound for endometrial cancer therapy.

2.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3548-3551, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39041126

RESUMEN

An OSMAC strategy was used to study secondary metabolites and anti-inflammatory activities of the endophytic fungus Penicillium herquei JX4 hosted in Ceriops tagal. The PDB ferment of fungus P. herquei JX4 was isolated, purified, and identified by using silica gel column chromatography, gel column chromatography, octadecylsilyl(ODS) column chromatography, and semi-preparative high-performance liquid chromatography. Two new pinophol derivatives, pinophol H(1) and pinophol I(2) were isolated and identified, and they were evaluated in terms of the inhibitory activities against the nitric oxide(NO) production induced by lipopolysaccharide(LPS) in mouse macrophage RAW264.7 cells. The results showed that compound 1 had significant inhibitory activity on NO production, with an IC_(50) value of 8.12 µmol·L~(-1).


Asunto(s)
Óxido Nítrico , Penicillium , Penicillium/química , Ratones , Animales , Células RAW 264.7 , Macrófagos/efectos de los fármacos , Endófitos/química , Estructura Molecular , Antiinflamatorios/farmacología , Antiinflamatorios/química
3.
Liver Cancer ; 13(3): 248-264, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38756145

RESUMEN

Introduction: Intratumoral administration of pexa-vec (pexastimogene devacirepvec), an oncolytic and immunotherapeutic vaccinia virus, given to patients with hepatocellular carcinoma (HCC), is associated with both local and distant tumor responses. We hypothesized subsequent treatment with sorafenib could demonstrate superior efficacy. Methods: This random phase III open-label study evaluated the sequential treatment with pexa-vec followed by sorafenib compared to sorafenib in patients with advanced HCC and no prior systemic treatment. The primary endpoint is overall survival (OS). Key secondary endpoints included time to progression (TTP), progression-free survival, overall response rate (ORR), and disease control rate (DCR). Safety was assessed in all patients who received ≥1 dose of study treatment. Results: The study was conducted at 142 sites in 16 countries. From December 30, 2015, to the interim analysis on August 2, 2019, 459 patients were randomly assigned (pexa-vec plus sorafenib: 234, sorafenib: 225). At the interim analysis, the median OS was 12.7 months (95% CI: 9.89, 14.95) in the pexa-vec plus sorafenib arm and 14.0 months (95% CI: 11.01, 18.00) in the sorafenib arm. This led to the early termination of the study. The median TTP was 2.0 months (95% CI: 1.77, 2.96) and 4.2 months (95% CI: 2.92, 4.63); ORR was 19.2% (45 patients) and 20.9% (47 patients); and DCR was 50.0% (117 patients) and 57.3% (129 patients) in the pexa-vec plus sorafenib and sorafenib arms, respectively. Serious adverse events were reported in 117 (53.7%) patients in the pexa-vec plus sorafenib and 77 (35.5%) patients in the sorafenib arm. Liver failure was the most frequently reported in both groups. Conclusion: Sequential pexa-vec plus sorafenib treatment did not demonstrate increased clinical benefit in advanced HCC and fared worse compared to sorafenib alone. The advent of the added value of checkpoint inhibitors should direct any further development of oncolytic virus therapy strategies.

4.
Mol Cancer ; 23(1): 38, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378555

RESUMEN

Most soft-tissue sarcomas (STS) exhibit an immunosuppressive tumor microenvironment (TME), leading to resistance against immune checkpoint inhibitors (ICIs) and limited therapeutic response. Preclinical data suggest that oncolytic viral therapy can remodel the TME, facilitating T cell accumulation and enhancing the immunogenicity of these tumors.We conducted the METROMAJX, a phase II clinical trial, to investigate the combination of JX-594, an oncolytic vaccinia virus engineered for selective tumor cell replication, with metronomic cyclophosphamide and the PD-L1 inhibitor avelumab in patients with advanced, 'cold' STS, characterized by an absence of tertiary lymphoid structures. The trial employed a two-stage Simon design. JX-594 was administered intratumorally at a dose of 1.109 pfu every 2 weeks for up to 4 intra-tumoral administrations. Cyclophosphamide was given orally at 50 mg twice daily in a week-on, week-off schedule, and avelumab was administered at 10 mg/kg biweekly. The primary endpoint was the 6-month non-progression rate.Fifteen patients were enrolled, with the most frequent toxicities being grade 1 fatigue and fever. Fourteen patients were assessable for efficacy analysis. At 6 months, only one patient remained progression-free, indicating that the trial did not meet the first stage endpoint of Simon's design. Analysis of sequential tissue biopsies and plasma samples revealed an increase in CD8 density and upregulation of immune-related protein biomarkers, including CXCL10.Intra-tumoral administration of JX-594 in combination with cyclophosphamide and avelumab is safe and capable of modulating the TME in cold STS. However, the limited efficacy observed warrants further research to define the therapeutic potential of oncolytic viruses, particularly in relation to specific histological subtypes of STS.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Viroterapia Oncolítica , Virus Oncolíticos , Sarcoma , Humanos , Microambiente Tumoral , Viroterapia Oncolítica/efectos adversos , Virus Oncolíticos/genética , Virus Oncolíticos/metabolismo , Sarcoma/terapia , Ciclofosfamida/uso terapéutico , Ciclofosfamida/metabolismo
5.
Expert Opin Investig Drugs ; 33(1): 51-61, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38054696

RESUMEN

BACKGROUND: JX11502MA is a potent partial agonist of dopamine D2 and D3 receptors, with a preferential binding profile for D3 receptors in vitro, potentially for treating schizophrenia. METHODS: A first-in-human, randomized, double-blind, placebo-controlled, single ascending dose clinical trial was designed. The subjects were randomly assigned to receive JX11502MA and placebo capsules with seven ascending dose groups: 0.25 mg, 0.5 mg, 1 mg, 2 mg, 3 mg, 6 mg, and 8 mg. The PK profiles of JX11502MA and its metabolites were evaluated, along with a safety and tolerability assessment. RESULTS: Considering the safety of participants, the dose escalation was halted at 3 mg. Following single-dose administration, JX11502MA exhibited rapid absorption with a median Tmax ranging from 1 to 1.75 h. The terminal half-life of JX11502MA ranged from 73.62 to 276.85 h. The most common treatment-emergent adverse events (TEAEs) for subjects receiving JX11502MA were somnolence (56.3%), dizziness (18.8%), nausea (21.9%), vomiting (18.8%), and hiccups (18.8%). CONCLUSIONS: JX11502MA was generally well tolerated at a single dose of 0.25 to 3 mg. The PK profiles and safety characteristics in this study indicated that JX11502MA has the potential to be a favorable treatment option for patients with schizophrenia. TRIAL REGISTRATION: https://clinicaltrials.gov (identifier: NCT05233657).


Asunto(s)
Receptores de Dopamina D2 , Receptores de Dopamina D3 , Humanos , Área Bajo la Curva , China , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Voluntarios Sanos , Pueblos del Este de Asia , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D3/agonistas
6.
Exp Hematol Oncol ; 11(1): 104, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36474303

RESUMEN

Breast cancer is one the most common cause of cancer death in women worldwide. We report here the first phase II study investigating a virus genetically engineered for tumor-selective replication in patients with breast cancer. Ten patients were treated with a combination of low-dose oral cyclophosphamide and intra-venous JX-594, a thymidine kinase gene-inactivated oncolytic vaccinia virus engineered for the expression of transgenes encoding human granulocyte-macrophage colony-stimulating factor (GM-CSF) and ß-galactosidase. Best response as per RECIST criteria was stable disease for 2 patients and progressive disease for 8 patients. Median progression-free and overall survival were 1.6 months (95% CI: [1.1-1.9]) and 14.4 months (95% CI: [2.0 - NA]) respectively. High throughput analysis of sequential plasma samples revealed an upregulation of protein biomarkers reflecting immune induction such as IFN gamma. Whether the combination of JX-594 with an immune checkpoint inhibitor is associated with meaningful clinical activity is therefore worth to investigate.

7.
J Hematol Oncol ; 15(1): 149, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271420

RESUMEN

JX-594 is an oncolytic vaccinia virus genetically modified to replicate selectively in tumor cells. Metronomic chemotherapy has shown preclinical synergy with oncolytic viruses. We report here the results of the METROMAJX which is a randomized phase II clinical trial investigating the combination of JX-594 combined with metronomic cyclophosphamide (arm 1) or metronomic cyclophosphamide (arm 2) in patients with advanced STS. A two-stage Simon design was used. JX-594 was administered intra-venously at the dose 1.109 every 2 weeks for the first 3 injections and then every 3 weeks. Cyclophosphamide was given orally at the dose of 50 mg BID 1 week on 1 week off. The primary endpoint was the 6-month non progression rate. 20 patients were included (arm 1:15, arm 2:5). The two most frequent toxicities were grade 1 fatigue and fever and grade 2 fatigue and grade 2 lymphopenia in arms 1 and 2, respectively. In arm 1, 12 patients were assessable for the efficacy analysis. None of them were progression-free at 6 months indicating that the first stage of the Simon's design was not satisfied. One patient out 4 assessable for efficacy was progression-free at 6 months in arm 2. High throughput analysis of sequential plasma samples revealed an upregulation of protein biomarkers reflecting immune induction such as CXCL10 and soluble CD8 antigen in arm 1. Systemic treatment with JX-594 is safe in patients with advanced STS. Further investigations are needed to improve immune response to oncolytic viruses and define their therapeutic potential in patients with STS.


Asunto(s)
Virus Oncolíticos , Sarcoma , Humanos , Antígenos CD8/metabolismo , Resultado del Tratamiento , Ciclofosfamida , Sarcoma/tratamiento farmacológico , Fatiga/inducido químicamente , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
8.
Biochem Biophys Res Commun ; 587: 153-159, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34875534

RESUMEN

Pyruvate dehydrogenase kinase 1 (PDK1) is a Ser/Thr kinase that inactivates mitochondrial pyruvate dehydrogenase (PDH), leading to switch of glucose metabolism from mitochondrial oxidation to aerobic glycolysis. We previously reported that PDK1 inhibition is a potent therapeutic strategy in multiple myeloma (MM). However, availability of PDK1 inhibitors, which are effective at low concentrations, are limited at present, making PDK1 inhibition difficult to apply in the clinic. In the present study, we examined the efficacy and mechanism of action of JX06, a novel PDK1 inhibitor, against MM cells. We confirmed that PDK1 is highly expressed in normal plasma cells and MM cells using publicly available gene expression datasets. JX06 suppressed cell growth and induced apoptosis against MM cells from approximately 0.5 µM JX06 treatment reduced PDH phosphorylation, suggesting that JX06 is indeed inhibiting PDK1. Intracellular metabolite analysis revealed that JX06 treatment reduced metabolites associated with glucose metabolism of MM cells. Additionally, JX06 in combination with a well-known proteasome inhibitor, bortezomib, significantly increased MM cell death, which raises the possibility of combination use of JX06 with proteasome inhibitors in the clinic. These findings demonstrate that PDK1 can be potentially targeted by JX06 in MM through glycolysis inhibition, leading to a novel therapeutic strategy in MM.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Disulfiram/análogos & derivados , Inhibidores Enzimáticos/farmacología , Glucólisis/efectos de los fármacos , Morfolinas/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptosis/genética , Bortezomib/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Conjuntos de Datos como Asunto , Disulfiram/farmacología , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica , Glucólisis/genética , Humanos , Cetona Oxidorreductasas/genética , Cetona Oxidorreductasas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/patología , Terapia Molecular Dirigida , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/enzimología , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Fosforilación/efectos de los fármacos , Células Plasmáticas/efectos de los fármacos , Células Plasmáticas/enzimología , Células Plasmáticas/patología , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/antagonistas & inhibidores , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo
9.
Prep Biochem Biotechnol ; 52(3): 344-350, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34289781

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) infections are a major global health problem, and novel and effective antimicrobial drugs are urgently required to combat this life-threatening pathogen. Prodigiosin (PG) is a bacterial secondary metabolite with excellent anticancer and antibacterial properties. However, little is known about the antibacterial function of PG against MRSA. Therefore, the antibacterial efficacy of PG alone and PG in combination with different metal ions against clinic isolates of MRSA and methicillin-sensitive S. aureus (MSSA) strain was evaluated in the present study. The minimum inhibitory concentration of PG against both MRSA and MSSA was 0.25 µg/mL. However, 0.1 µg/mL PG showed a stronger inhibitory effect on MSSA cell growth (47.12%) than on MRSA cell growth (35.87%). Surprisingly, we observed a significant difference (p < 0.01) in membrane integrity between PG-treated MRSA and MSSA using the propidium iodide staining assay. Further, we found that in combination with PG, Zn2+, Al3+, and Cu2+ showed synergistic antibacterial effects against MRSA and MSSA. Our results could increase the current knowledge regarding the efficacy of PG in inhibiting the growth of different types of S. aureus clinical isolates and also offer a novel strategy for developing efficient antibacterial agents.


Asunto(s)
Antibacterianos/farmacología , Metales/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Prodigiosina/farmacología , Serratia marcescens/química , Sinergismo Farmacológico , Pruebas de Sensibilidad Microbiana
10.
J Liver Cancer ; 20(2): 177-182, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37384323

RESUMEN

JX-594 is a modified oncolytic poxvirus designed to selectively replicate in and destroy cancer cells. In a pilot study, JX-594 injection followed by sorafenib was well-tolerated in three patients and associated with objective tumor responses. In this study, we report a case in which a patient with advanced hepatocellular carcinoma and portal vein thrombosis was treated with a combination of JX-594 and sorafenib.

11.
BMC Plant Biol ; 19(1): 313, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31307374

RESUMEN

BACKGROUND: Essential oils (EOs) of Lavandula angustifolia, mainly consist of monoterpenoids and sesquiterpenoids, are of great commercial value. The multi-flower spiciform thyrse of lavender not only determines the output of EOs but also reflects an environmental adaption strategy. With the flower development and blossom in turn, the fluctuation of the volatile terpenoids displayed a regular change at each axis. However, the molecular mechanism underlying the regulation of volatile terpenoids during the process of flowering is poorly understood in lavender. Here, we combine metabolite and RNA-Seq analyses of flowers of five developmental stages at first- and second-axis (FFDSFSA) and initial flower bud (FB0) to discover the active terpenoid biosynthesis as well as flowering-related genes. RESULTS: A total of 56 mono- and sesquiterpenoids were identified in the EOs of L. angustifolia 'JX-2'. FB0' EO consists of 55 compounds and the two highest compounds, ß-trans-ocimene (20.57%) and (+)-R-limonene (17.00%), can get rid of 74.71 and 78.41% aphids in Y-tube olfactometer experiments, respectively. With sequential and successive blossoms, temporally regulated volatiles were linked to pollinator attraction in field and olfaction bioassays. In three characteristic compounds of FFDSFSA' EOs, linalyl acetate (72.73%) and lavandulyl acetate (72.09%) attracted more bees than linalool (45.35%). Many transcripts related to flowering time and volatile terpenoid metabolism expressed differently during the flower development. Similar metabolic and transcriptomic profiles were observed when florets from the two axes were maintained at the same maturity grade. Besides both compounds and differentially expressed genes were rich in FB0, most volatile compounds were significantly correlated with FB0-specific gene module. Most key regulators related to flowering and terpenoid metabolism were interconnected in the subnetwork of FB0-specific module, suggesting the cross-talk between the two biological processes to some degree. CONCLUSIONS: Characteristic compounds and gene expression profile of FB0 exhibit ecological value in pest control. The precise control of each-axis flowering and regular emissions at transcriptional and metabolic level are important to pollinators attraction for lavender. Our study sheds new light on lavender maximizes its fitness from "gene-volatile terpenoid-insect" three layers.


Asunto(s)
Flores/genética , Redes Reguladoras de Genes , Lavandula/genética , Terpenos/metabolismo , Acetatos/metabolismo , Animales , Ecosistema , Flores/crecimiento & desarrollo , Flores/metabolismo , Perfilación de la Expresión Génica , Insectos , Lavandula/crecimiento & desarrollo , Lavandula/metabolismo , Monoterpenos/metabolismo , Odorantes , Aceites Volátiles/metabolismo , Aceites de Plantas/metabolismo , Polinización , ARN de Planta , Análisis de Secuencia de ARN
12.
Expert Opin Biol Ther ; 18(12): 1199-1207, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30392405

RESUMEN

INTRODUCTION: Melanoma treatments have evolved rapidly in the past decade and have included the use of intratumoral injections of engineered oncolytic viruses. One such oncolytic virus is talimogene laherparepvec (T-VEC), which is the first approved therapy of its kind for use in recurrent, unresectable stage IIIB-IVM1a melanoma. Additional oncolytic viruses and their uses in combination with other interventions are currently under investigation. AREAS COVERED: Oncolytic viruses are being evaluated as immunotherapies for a variety of advanced malignancies. In this article, we review T-VEC, the only FDA-approved engineered oncolytic virus, in addition to ongoing research regarding other oncolytic viruses for the treatment of advanced melanomas. Finally, we discuss opportunities to improve these therapies through viral, host, and tumor-related modifications. EXPERT OPINION: Engineered and naturally oncolytic viruses have demonstrable local and systemic efficacy as immunotherapies in cancer. T-VEC leads the way with improved survival outcomes for unresectable, stage IIIB-IVM1a melanoma as a monotherapy, and is demonstrating superior results in combination with systemic checkpoint inhibitors. Additional viral vectors show acceptable safety profiles and varying degrees of efficacy in targeting melanoma. The indications for use of oncolytic viruses will expand as their efficacy and appropriate usage is better understood in coming years.


Asunto(s)
Bioingeniería , Inmunoterapia , Melanoma/terapia , Viroterapia Oncolítica , Virus Oncolíticos/fisiología , Animales , Bioingeniería/métodos , Bioingeniería/tendencias , Vectores Genéticos , Humanos , Inmunoterapia/métodos , Inmunoterapia/tendencias , Melanoma/patología , Viroterapia Oncolítica/métodos , Viroterapia Oncolítica/tendencias , Virus Oncolíticos/genética , Recurrencia , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/terapia , Melanoma Cutáneo Maligno
13.
Oncoimmunology ; 5(2): e1117740, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27057469

RESUMEN

Oncolytic virotherapy relies on the administration of non-pathogenic viral strains that selectively infect and kill malignant cells while favoring the elicitation of a therapeutically relevant tumor-targeting immune response. During the past few years, great efforts have been dedicated to the development of oncolytic viruses with improved specificity and potency. Such an intense wave of investigation has culminated this year in the regulatory approval by the US Food and Drug Administration (FDA) of a genetically engineered oncolytic viral strain for use in melanoma patients. Here, we summarize recent preclinical and clinical advances in oncolytic virotherapy.

14.
Mitochondrial DNA B Resour ; 1(1): 656-657, 2016 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-33473585

RESUMEN

Sclerotinia sclerotiorum is one of the most devastating necrotrophic fungal plant pathogens in agriculture causing diseases in over 400 species of plants including important crops and numerous weeds. In this work, the mitochondrial sequence of S. sclerotiorum with different strain obtained from the infected stems of Brassica campestris L. in Wangjiang County, Anhui Province, China is presented. The mt DNA codes for 14 proteins of the respiratory chain, 1 ribosomal protein, 2 homing endonucleases, 2 rRNAs, 25 tRNAs, and 5 hypothetical proteins ORFs. Phylogenetic analysis with protein-coding gene sequences of reported Ascomycota mt genomes revealed the close relationship of JX-21 with the family of Sclerotiniaceae.

15.
World J Microbiol Biotechnol ; 31(10): 1605-18, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26265360

RESUMEN

The establishment of safe and effective methods for controlling fungal disease is an urgent issue in agriculture and forestry. Microbiological control of plant disease is expected to achieve better results than use of chemically derived fungicides. This study aimed to establish Brevibacillus laterosporus JX-5 as a potential microbiological control agent of poplar canker. The bacterium was isolated from the poplar rhizosphere and demonstrated significant growth inhibition of several pathogenic fungi in vitro. The antifungal components of Br. laterosporus JX-5 were isolated and identified. The fermentation broth of Br. laterosporus JX-5 and its main antifungal component, designated as component B, reduced Botryosphaeria dothidea associated canker of the excised poplar branch by 70 and 90%, respectively. Component B is considerably heat-stable, adaptable to a broad pH range, and UV-resistant. It could inhibit Bo. dothidea by permeating the fungal membrane, fracturing the nuclei, damaging the cell wall, and eventually killing the pathogenic fungus. The antifungal activity exhibited by Br. laterosporus JX-5 and its bioactive metabolic products indicate its feasibility as a potential biocontrol agent for plant diseases.


Asunto(s)
Antibiosis , Antifúngicos/metabolismo , Ascomicetos/efectos de los fármacos , Brevibacillus/fisiología , Antifúngicos/aislamiento & purificación , Ascomicetos/crecimiento & desarrollo , Brevibacillus/clasificación , Brevibacillus/aislamiento & purificación , Brevibacillus/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/fisiología , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Viabilidad Microbiana/efectos de los fármacos , Datos de Secuencia Molecular , Permeabilidad/efectos de los fármacos , Filogenia , Enfermedades de las Plantas/microbiología , Populus/microbiología , ARN Ribosómico 16S/genética , Rizosfera , Análisis de Secuencia de ADN , Microbiología del Suelo
16.
Oncolytic Virother ; 4: 25-31, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27512667

RESUMEN

Oncolytic immunotherapeutics (OIs) are viruses designed to preferentially replicate in and lyse cancer cells, thereby triggering antitumor immunity. Numerous oncolytic platforms are currently in clinical development. Here we review preclinical and clinical experience with Pexa-Vec (pexastimogene devacirepvec, JX-594). Pexa-Vec is derived from a vaccinia vaccine strain that has been engineered to target cancer cells and express the therapeutic transgene granulocyte macrophage colony-stimulating factor (GM-CSF) in order to stimulate antitumor immunity. Key to its ability to target metastatic disease is the evolution of unique vaccinia virus characteristics that allow for effective systemic dissemination. Multiple mechanisms of action (MOA) for Pexa-Vec have been demonstrated in preclinical models and patients: 1) tumor cell infection and lysis, 2) antitumor immune response induction, and 3) tumor vascular disruption. This review will summarize data on the Pexa-Vec MOA as well as provide an overview of the Pexa-Vec clinical development program from multiple Phase I studies, Phase II studies in renal cell cancer and colorectal cancer, through Phase IIb clinical testing in patients with advanced hepatocellular carcinoma (primary liver cancer).

17.
Front Oncol ; 4: 92, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24822170

RESUMEN

Human tumors develop multiple strategies to evade recognition and efficient suppression by the immune system. Therefore, a variety of immunotherapeutic strategies have been developed to reactivate and reorganize the human immune system. The recent development of new antibodies against immune check points may help to overcome the immune silencing induced by human tumors. Some of these antibodies have already been approved for treatment of various solid tumor entities. Interestingly, targeting antibodies may be combined with standard chemotherapy or radiation protocols. Furthermore, recent evidence indicates that intratumoral or intravenous injections of replicative oncolytic viruses such as herpes simplex-, pox-, parvo-, or adenoviruses may also reactivate the human immune system. By generating tumor cell lysates in situ, oncolytic viruses overcome cellular tumor resistance mechanisms and induce immunogenic tumor cell death resulting in the recognition of newly released tumor antigens. This is in particular the case of the oncolytic parvovirus H-1 (H-1PV), which is able to kill human tumor cells and stimulate an anti-tumor immune response through increased presentation of tumor-associated antigens, maturation of dendritic cells, and release of pro-inflammatory cytokines. Current research and clinical studies aim to assess the potential of oncolytic virotherapy and its combination with immunotherapeutic agents or conventional treatments to further induce effective antitumoral immune responses.

18.
Surgeon ; 12(4): 210-20, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24502935

RESUMEN

BACKGROUND: Despite mankind's many achievements, we are yet to find a cure for cancer. We are now approaching a new era which recognises the promise of harnessing the immune system for anti-cancer therapy. Pathogens have been implicated for decades as potential anti-cancer agents, but implementation into clinical therapy has been plagued with significant drawbacks. Newer 'designer' agents have addressed some of these concerns, in particular, a new breed of oncolytic virus: JX-594, a genetically engineered pox virus, is showing promise. OBJECTIVE: To review the current literature on the use of oncolytic viruses in the treatment of cancer; both by direct oncolysis and stimulation of the immune system. The review will provide a background and historical progression for the surgeon on tumour immunology, and the interplay between oncolytic viruses, immune cells, inflammation on tumourigenesis. METHODS: A literature review was performed using the Medline database. CONCLUSIONS: Viral therapeutics hold promise as a novel treatment modality for the treatment of disseminated malignancy. It provides a multi-pronged attack against tumour burden; direct tumour cell lysis, exposure of tumour-associated antigens (TAA), induction of immune danger signals, and recognition by immune effector cells.


Asunto(s)
Vacunas contra el Cáncer/uso terapéutico , Inmunidad Celular , Neoplasias/terapia , Virus Oncolíticos/inmunología , Vacunación/métodos , Humanos , Neoplasias/inmunología
19.
Gene ; 536(2): 385-92, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24333857

RESUMEN

Forkhead box A2 (Foxa2) has been recognized as one of the most potent transcriptional activators that is implicated in the control of feeding behavior and energy homeostasis. However, similar researches about the effects of genetic variations of Foxa2 gene on growth traits are lacking. Therefore, this study detected Foxa2 gene polymorphisms by DNA pool sequencing, PCR-RFLP and PCR-ACRS methods in 822 individuals from three Chinese cattle breeds. The results showed that four sequence variants (SVs) were screened, including two mutations (SV1, g. 7005 C>T and SV2, g. 7044 C>G) in intron 4, one mutation (SV3, g. 8449 A>G) in exon 5 and one mutation (SV4, g. 8537 T>C) in the 3'UTR. Notably, association analysis of the single mutations with growth traits in total individuals (at 24months) revealed that significant statistical difference was found in four SVs, and SV4 locus was highly significantly associated with growth traits throughout all three breeds (P<0.05 or P<0.01). Meanwhile, haplotype combination CCCCAGTC also indicated remarkably associated to better chest girth and body weight in Jiaxian Red cattle (P<0.05). We herein described a comprehensive study on the variability of bovine Foxa2 gene that was predictive of molecular markers in cattle breeding for the first time.


Asunto(s)
Haplotipos/genética , Factor Nuclear 3-beta del Hepatocito/genética , Polimorfismo de Nucleótido Simple/genética , Animales , Peso Corporal/genética , Cruzamiento , Bovinos , Exones/genética , Femenino , Intrones/genética , Desequilibrio de Ligamiento/genética , Análisis de Secuencia de ADN
20.
Gene ; 532(1): 108-13, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24076131

RESUMEN

As a signaling molecule, bone morphogenetic protein 8B (BMP8B) plays an essential role in bone metabolism and is able to regulate thermogenesis and energy balance, which suggests that BMP8B gene may be a new candidate for growth traits. Here, to characterize the effects of BMP8B gene on growth traits, we first used three Chinese indigenous cattle breeds (n=845) to detect single nucleotide polymorphisms (SNPs). Five novel SNPs of BMP8B gene (g.-242C>T, g.2164C>T, g.2639T>C, g.2900C>G and g.10817C>T) were identified by DNA pool sequencing and forced PCR-RFLP. And then we associated the five SNPs with four growth traits (body weight, body length, heart girth, and hucklebone width). Results from association analysis showed that the SNPs 1, 2, and 3 affected growth trait(s) markedly (P<0.05). Further, 6 combined haplotypes were constructed to guarantee the reliability of analysis results. There were also significant differences in body length, heart girth and body weight between the 6 combined haplotypes (P<0.05), but not in hucklebone width (P>0.05). Collectively, our results suggest a modulatory role of BMP8B gene in cattle growth and development, and 3 SNPs could be used as molecular markers in early marker assisted selection (MAS) in beef cattle breeding program.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Bovinos/crecimiento & desarrollo , Bovinos/genética , Polimorfismo de Nucleótido Simple , Animales , Peso Corporal/genética , Cruzamiento , China , Variación Genética , Haplotipos , Desequilibrio de Ligamiento , Carácter Cuantitativo Heredable
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA