Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Expert Rev Anticancer Ther ; : 1-12, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254227

RESUMEN

BACKGROUND: This study aimed to investigate the role of Jumonji AT Rich Interacting Domain 2 (JARID2) in regulating triple-negative breast cancer (TNBC) stemness and its mechanism. RESEARCH DESIGN AND METHODS: Bioinformatics analysis examined JARID2 expression, prognosis, and transcription factors. Quantitative polymerase chain reaction, western blot, and immunohistochemistry detected expression. Dual luciferase reporter gene and chromatin immunoprecipitation assays verified binding. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assay detected viability and proliferation. Sphere formation assay detected the sphere formation efficiency. Flow cytometry detected CD44+/CD24- -marked stem cells. A xenograft tumor model verified the effect of JARID2 in vivo. RESULTS: JARID2 and nuclear transcription factor Y subunit α (NFYA) were upregulated in TNBC tissues and positively correlated. Knockdown of JARID2 or NFYA inhibited cell stemness by inhibiting the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway. Enforced JARID2 expression rescued the suppressive effect of NFYA knockdown on the PI3K/AKT signaling pathway and cell stemness. Knockdown of JARID2 inhibited tumor growth and cell stemness in mice but was alleviated by concurrent overexpression of NFYA. CONCLUSIONS: NFYA promotes TNBC cell stemness by upregulating JARID2 expression and regulating the PI3K/AKT signaling pathway, suggesting JARID2 as a potential target for innovating drugs that target TNBC stem cells.

2.
BMC Cancer ; 24(1): 793, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961353

RESUMEN

BACKGROUND: Accurate regulation of gene expression is crucial for normal development and function of cells. The prognostic significance and potential carcinogenic mechanisms of the related gene JARID2 in OSCC are not yet clear, but existing research has indicated a significant association between the two. METHODS AND MATERIALS: The relationship between the expression of the JARID2 gene in tumor samples of OSCC patients and clinical pathological factors was analyzed using immunohistochemistry experiments and RT-qPCR analysis. Based on the clinical pathological data of patients, bioinformatics analysis was conducted using public databases to determine the function of JARID2 in OSCC. Knockdown OSCC cell lines were constructed, and the impact of JARID2 on the biological behavior of OSCC cell lines was assessed through CCK-8, wound healing assay, and transwell analysis. RESULTS: Immunohistochemistry experiments confirmed the correlation between JARID2 and the prognosis of OSCC patients, while RT-qPCR experiments demonstrated its expression levels in tissue and cells. CKK-8 experiments, wound healing assays, and Transwell experiments indicated that knocking down JARID2 had a negative impact on the proliferation, invasion, and migration of OSCC cells. Bioinformatics analysis results showed that the expression of JARID2 in OSCC is closely associated with patient gene co-expression, gene function enrichment, immune infiltration, and drug sensitivity. CONCLUSION: Our study indicates that JARID2 is a novel prognostic biomarker and potential therapeutic target for OSCC.


Asunto(s)
Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Boca , Invasividad Neoplásica , Complejo Represivo Polycomb 2 , Humanos , Neoplasias de la Boca/patología , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Movimiento Celular/genética , Pronóstico , Línea Celular Tumoral , Femenino , Masculino , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Técnicas de Silenciamiento del Gen
3.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 174-183, 2024 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273784

RESUMEN

The most frequent primary brain tumor in adults is glioma, yet no effective curative treatments are currently available. Our previous study demonstrated the enhancing effects of JARID2 on glioma sensitivity to TMZ treatment. In this study, miR-155 is predicted to target JARID2. miR-155 is overexpressed in clinical glioma specimens and cell lines. miR-155 overexpression in glioma cells enhances cell viability and represses cell apoptosis. Through targeting, miR-155 inhibits JARID2 expression. miR-155 inhibition inhibits glioma cell viability and enhances cell apoptosis, whereas JARID2 knockdown enhances cell viability and inhibits cell apoptosis; JARID2 knockdown partially reverses miR-155 inhibition effects on glioma phenotypes. miR-155 inhibition reduces but knockdown of JARID2 promotes the tumor formation ability of glioma cells in vivo. Valproic acid (VPA) upregulates JARID2 expression, inhibits glioma cell viability and enhances cell apoptosis. VPA downregulates the expression level of miR-155 by increasing the methylation level of the miR-155 promoter, suggesting that the miR-155/JARID2 axis is implicated in VPA inhibition of glioma cell viability and enhancement of glioma cell apoptosis. This study demonstrates a new mechanism of VPA treatment of gliomas by affecting the miR-155/JARID2 axis, which could be regarded as a new strategy for the prevention and treatment of glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , MicroARNs , Humanos , Ácido Valproico/farmacología , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , MicroARNs/metabolismo , Metilación , Proliferación Celular/genética , Apoptosis/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Regulación Neoplásica de la Expresión Génica
4.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37762546

RESUMEN

JARID2 (Jumonji, AT-rich interactive domain 2) haploinsufficiency is associated with a clinically distinct neurodevelopmental syndrome. It is characterized by intellectual disability, developmental delay, autistic features, behavior abnormalities, cognitive impairment, hypotonia, and dysmorphic features. JARID2 acts as a transcriptional repressor protein that is involved in the regulation of histone methyltransferase complexes. JARID2 plays a role in the epigenetic machinery, and the associated syndrome has an identified DNA methylation episignature derived from sequence variants and intragenic deletions involving JARID2. For this study, our aim was to determine whether patients with larger deletions spanning beyond JARID2 present a similar DNA methylation episignature and to define the critical region involved in aberrant DNA methylation in 6p22-p24 microdeletions. We examined the DNA methylation profiles of peripheral blood from 56 control subjects, 13 patients with (likely) pathogenic JARID2 variants or patients carrying copy number variants, and three patients with JARID2 VUS variants. The analysis showed a distinct and strong differentiation between patients with (likely) pathogenic variants, both sequence and copy number, and controls. Using the identified episignature, we developed a binary model to classify patients with the JARID2-neurodevelopmental syndrome. DNA methylation analysis indicated that JARID2 is the driver gene for aberrant DNA methylation observed in 6p22-p24 microdeletions. In addition, we performed analysis of functional correlation of the JARID2 genome-wide methylation profile with the DNA methylation profiles of 56 additional neurodevelopmental disorders. To conclude, we refined the critical region for the presence of the JARID2 episignature in 6p22-p24 microdeletions and provide insight into the functional changes in the epigenome observed when regulation by JARID2 is lost.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Genómica , Trastornos del Neurodesarrollo/genética , Epigenoma , Discapacidad Intelectual/genética , Epigenómica , Complejo Represivo Polycomb 2/genética
5.
Cancer Commun (Lond) ; 43(10): 1117-1142, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37658635

RESUMEN

BACKGROUND: Proteins containing the Jumonji C (JmjC) domain participated in tumorigenesis and cancer progression. However, the mechanisms underlying this effect are still poorly understood. Our objective was to investigate the role of Jumonji and the AT-rich interaction domain-containing 2 (JARID2) - a JmjC family protein - in breast cancer, as well as its latent association with obesity. METHODS: Immunohistochemistry, The Cancer Genome Atlas, Gene Expression Omnibus, and other databases were used to analyze the expression of JARID2 in breast cancer cells. Growth curve, 5-ethynyl-2-deoxyuridine (EdU), colony formation, and cell invasion experiments were used to detect whether JARID2 affected breast cancer cell proliferation and invasion. Spheroidization-based experiments and xenotumor transplantation in NOD/SCID mice were used to examine the association between JARID2 and breast cancer stemness. RNA-sequencing, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis were used to identify the cell processes in which JARID2 participates. Immunoaffinity purification and silver staining mass spectrometry were conducted to search for proteins that might interact with JARID2. The results were further verified using co-immunoprecipitation and glutathione S-transferase (GST) pull-down experiments. Using chromatin immunoprecipitation (ChIP) sequencing, we sought the target genes that JARID2 and metastasis-associated protein 1 (MTA1) jointly regulated; the results were validated by ChIP-PCR, quantitative ChIP (qChIP) and ChIP-reChIP assays. A coculture experiment was used to explore the interactions between breast cancer cells and adipocytes. RESULTS: In this study, we found that JARID2 was highly expressed in multiple types of cancer including breast cancer. JARID2 promoted glycolysis, lipid metabolism, proliferation, invasion, and stemness of breast cancer cells. Furthermore, JARID2 physically interacted with the nucleosome remodeling and deacetylase (NuRD) complex, transcriptionally repressing a series of tumor suppressor genes such as BRCA2 DNA repair associated (BRCA2), RB transcriptional corepressor 1 (RB1), and inositol polyphosphate-4-phosphatase type II B (INPP4B). Additionally, JARID2 expression was regulated by the obesity-associated adipokine leptin via Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway in the breast cancer microenvironment. Analysis of various online databases also indicated that JARID2/MTA1 was associated with a poor prognosis of breast cancer. CONCLUSION: Our data indicated that JARID2 promoted breast tumorigenesis and development, confirming JARID2 as a target for cancer treatment.

6.
Epigenomics ; 15(8): 487-505, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37309591

RESUMEN

Aim: To develop novel prognostic markers for early detection and prognosis of ovarian cancer (OC). Materials & methods: We utilized bioinformatics analysis to identify and construct a prognostic model consisting of lncRNAs centered around JARID2 and explored the potential ceRNA network in OC. Cell functional experiments were conducted to validate the reliability of the ceRNA network and investigate the functional role of JARID2 in OC. Results: We constructed a nomogram composed of ten lncRNAs and identified the PKD1P6/miR-424-5p/JARID2 axis. Furthermore, our findings indicated that JARID2 promotes the proliferation of SKOV3 cells, suggesting its oncogenic role in OC. Conclusion: JARID2, potentially regulated by the PKD1P6/miR-424-5p/JARID2 axis, represents a potential novel biomarker for OC.


In this study, we aimed to find new markers that can help detect and diagnose ovarian cancer (OC) at an early stage. To achieve this, we used advanced computer analysis to identify a specific gene called JARID2 and its associated lncRNAs. We also explored how these molecules interact with each other in OC cells. Through our experiments, we developed a model called a nomogram that includes ten lncRNAs. We discovered a specific pathway involving the PKD1P6 gene, a molecule called miR-424-5p and the JARID2 gene. This pathway appears to play a role in promoting the growth of OC cells. Based on our findings, JARID2, possibly regulated by the PKD1P6/miR-424-5p/JARID2 pathway, shows promise as a new biomarker for OC. This research may contribute to early detection and prognosis of the disease.


Asunto(s)
MicroARNs , Neoplasias Ováricas , ARN Largo no Codificante , Humanos , Femenino , MicroARNs/genética , ARN Largo no Codificante/genética , Reproducibilidad de los Resultados , Proliferación Celular/genética , Neoplasias Ováricas/genética , Biología Computacional , Complejo Represivo Polycomb 2
7.
Gene ; 879: 147584, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37353042

RESUMEN

Cancer has become a prominent cause of death, accounting for approximately 10 million deaths worldwide as per the World Health Organization report 2020. Epigenetics deal with the alterations of heritable phenotypes, except for DNA alterations. Currently, we are trying to comprehend the role of utmost significant epigenetic genes involved in the burgeoning of human cancer. A sundry of studies have reported the Enhancer of Zeste Homologue2 (EZH2) as a prime catalytic subunit of Polycomb Repressive Complex2, which is involved in several pivotal activities, including embryogenesis. In addition, EZH2 has detrimental effects leading to the onset and metastasis of several cancers. Jumonji AT Rich Interacting Domain2 (JARID2), an undebated crucial nuclear factor, has strong coordination with the PRC2 family. In this review, we discuss various epigenetic entities, primarily focusing on the possible role and mechanism of EZH2 and the significant contribution of JARID2 in human cancers.


Asunto(s)
Neoplasias , Complejo Represivo Polycomb 2 , Humanos , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Neoplasias/genética , Proteínas del Grupo Polycomb/genética , Epigénesis Genética
8.
Mol Cell ; 83(9): 1393-1411.e7, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37030288

RESUMEN

Polycomb repressive complex 2 (PRC2) mediates H3K27me3 deposition, which is thought to recruit canonical PRC1 (cPRC1) via chromodomain-containing CBX proteins to promote stable repression of developmental genes. PRC2 forms two major subcomplexes, PRC2.1 and PRC2.2, but their specific roles remain unclear. Through genetic knockout (KO) and replacement of PRC2 subcomplex-specific subunits in naïve and primed pluripotent cells, we uncover distinct roles for PRC2.1 and PRC2.2 in mediating the recruitment of different forms of cPRC1. PRC2.1 catalyzes the majority of H3K27me3 at Polycomb target genes and is sufficient to promote recruitment of CBX2/4-cPRC1 but not CBX7-cPRC1. Conversely, while PRC2.2 is poor at catalyzing H3K27me3, we find that its accessory protein JARID2 is essential for recruitment of CBX7-cPRC1 and the consequent 3D chromatin interactions at Polycomb target genes. We therefore define distinct contributions of PRC2.1- and PRC2.2-specific accessory proteins to Polycomb-mediated repression and uncover a new mechanism for cPRC1 recruitment.


Asunto(s)
Histonas , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Histonas/genética , Histonas/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Cromatina/genética
9.
Cell Rep ; 42(3): 112237, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36924502

RESUMEN

Transitions in competence underlie the ability of CNS progenitors to generate a diversity of neurons and glia. Retinal progenitor cells in mouse generate early-born cell types embryonically and late-born cell types largely postnatally. We find that the transition from early to late progenitor competence is regulated by Jarid2. Loss of Jarid2 results in extended production of early cell types and extended expression of early progenitor genes. Jarid2 can regulate histone modifications, and we find reduction of repressive mark H3K27me3 on a subset of early progenitor genes with loss of Jarid2, most notably Foxp1. We show that Foxp1 regulates the competence to generate early-born retinal cell types, promotes early and represses late progenitor gene expression, and is required for extending early retinal cell production after loss of Jarid2. We conclude that Jarid2 facilitates progression of retinal progenitor temporal identity by repressing Foxp1, which is a primary regulator of early temporal patterning.


Asunto(s)
Complejo Represivo Polycomb 2 , Retina , Ratones , Animales , Diferenciación Celular , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Retina/metabolismo , Células Madre/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo
10.
J Allergy Clin Immunol ; 152(2): 386-399, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36841266

RESUMEN

BACKGROUND: Allergic asthma develops from allergen exposure in early childhood and progresses into adulthood. The central mediator of progressive allergic asthma is allergen-specific, TH2-resident memory cells (TRMs). Although the crosstalk between nerves and immune cells plays an established role in acute allergic inflammation, whether nerves facilitate the establishment of TH2-TRMs in the immature lung following early life allergen exposure is unknown. OBJECTIVES: The aim of this study was to identify nerve-derived signals that act in TH2 effector cells to regulate the tissue residency in the immature lung. METHODS: Following neonatal allergen exposure, allergen-specific TH2-TRMs were tracked temporally and spatially in relationship to developing sympathetic nerves in the lung. Functional mediators of dopamine signaling in the establishment of TH2-TRMs were identified by in vitro bulk RNA-sequencing of dopamine-treated TH2 cells followed by in vivo assessment of candidate genes using adoptive transfer of TH2 cells with viral gene knockdown. RESULTS: This study found that sympathetic nerves produce dopamine and reside in proximity to TH2 effector cells during the contraction phase following neonatal allergen exposure. Dopamine signals via DRD4 on TH2 cells to elevate IL2RA and epigenetically facilitate type 2 cytokine expression. Blockade of dopamine-DRD4 signaling following neonatal allergen exposure impairs lung residence of TH2 cells and ameliorates anamnestic inflammation in adults. CONCLUSIONS: These results demonstrate that maturing sympathetic nerves enable a dopamine-enriched lung environment in early life that promotes the establishment of allergen-specific TH2-TRMs. The dopamine-DRD4 axis may provide a therapeutic target to modify allergic asthma progression from childhood to adulthood.


Asunto(s)
Asma , Dopamina , Adulto , Preescolar , Humanos , Recién Nacido , Niño , Adolescente , Adulto Joven , Dopamina/metabolismo , Células Th2 , Pulmón , Alérgenos , Inflamación , Células TH1
11.
Reprod Biol ; 23(1): 100729, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36640627

RESUMEN

Recently, it has been proposed that epithelial-mesenchymal transition (EMT) plays a key role in the development of endometriosis (EMs). Although EMs is a benign disease, it has the characteristics of malignant tumors, such as invasion and migration. JARID2 (Jumonji, AT rich interaction domain) can induce EMT in cancer cells to increase their invasion and migration abilities. However, whether JARID2 has the same function in EMs is not yet known. In this study, A retrospective immunohistochemistry(IHC) was used to measure the expression of JARID2, E-cadherin, PTEN, and p-AKT in ovarian endometriosis (OE) tissues. JARID2, EMT and PTEN/AKT signaling pathway related indicators were assessed by RT-PCR and western blotting in vitro. Furthermore, functional assays were applied to evaluate the involvement of JARID2 in the invasion and migration of Ishikawa cells. Here,we conclude that JARID2 could be involved in the PTEN/AKT signalling pathway and contribute to the development of ovarian endometriosis. The expression of JARID2 was negatively correlated with PTEN, but positively correlated with p-AKT in the ectopic endometrial tissues of OE cases. JARID2 overexpression increased the expression of N-cadherin, vimentin and AKT, but inhibited the expression of E-cadherin and PTEN. Accordingly, the opposite results were obtainedwhen JARID2 was downregulated. Furthermore, JARID2 promoted the invasion and migration ability of Ishikawa cells.


Asunto(s)
Endometriosis , Neoplasias Ováricas , Femenino , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transición Epitelial-Mesenquimal , Endometriosis/metabolismo , Estudios Retrospectivos , Transducción de Señal/fisiología , Neoplasias Ováricas/patología , Cadherinas/metabolismo , Movimiento Celular , Línea Celular Tumoral , Proliferación Celular , Fosfohidrolasa PTEN/metabolismo , Complejo Represivo Polycomb 2/metabolismo
12.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38203196

RESUMEN

In pig production, pigs often show more aggressive behavior after mixing, which adversely affects animal welfare and growth performance. The Jumonji and structural domain-rich AT interaction domain 2 (JARID2) gene plays an important role in neurodevelopment in mice and various psychiatric disorders in humans. The JARID2 gene may impact the aggressive behavior of pigs. By observing the behavior of 500 weaned pigs during the first 72 h after mixing, the ear tissue samples of the 12 most aggressive and 12 least aggressive pigs were selected for DNA resequencing based on the intensity of their aggressive behavior. Large group correlation analysis indicated that the rs3262221458 site located in the 3'-UTR region of the porcine JARID2 gene has a strong relationship with the aggressive behavior of weaned pigs. Pigs with the mutant TT genotype of rs3262221458 have more aggressive behavior than those pigs with the GG and GT genotypes. The dual luciferase assay indicated that the luciferase activity of the plasmids containing the G allele of rs326221458 was significantly less than that of plasmids containing the T allele of rs326221458 and control groups. The binding ability of miR-9828-3p to sequences containing the T allele was less than that of sequences containing the G allele. The overexpression of miR-9828-3p in porcine neuroglial cells (PNGCs) and PK15 cells significantly decreased the mRNA and protein levels of the JARID2 gene. In addition, miR-9828-3p inhibited the proliferation of PNGCs. After inhibiting miR-9828-3p, the mRNA and protein expression levels of JARID2 increased, and the proliferation of PNGCs showed an opposite trend to the cells that forced the expression of miR-9828-3p. In addition, interference with the JARID2 gene by siRNA can effectively inhibit the proliferation of PNGCs. In summary, we found that the rs326221458 locus regulates the expression of the JARID2 gene by affecting the binding of miR-9828-3p and the JARID2 gene, thereby affecting the aggressive behavior of weaned pigs after mixing.


Asunto(s)
MicroARNs , Polimorfismo de Nucleótido Simple , Humanos , Porcinos/genética , Animales , Ratones , Regiones no Traducidas 3' , ARN Mensajero , Luciferasas , MicroARNs/genética , Complejo Represivo Polycomb 2
13.
Front Oncol ; 12: 904633, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578923

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most malignant cancers worldwide, with high mortality. However, the molecular regulatory mechanisms of liver cancer, especially transcriptional and post-transcriptional mechanisms, should be further studied. Here we used chromatin and cross-linking immunoprecipitation with high throughput sequencing methods (ChIP-seq and CLIP-seq) to capture the global binding profiles on RNAs and DNAs of Enhancer of zeste homolog 2 (EZH2) and its partner Jumonji And AT-Rich Interaction Domain Containing 2 (JARID2) in liver carcinoma cell lines (HepG2) and normal liver cell line (THLE-2), respectively. We also integrated HCC transcriptome data from the TCGA to analyze the expression pattern of bound genes. We found that EZH2 and JARID2 both showed distinct binding profiles between HepG2 and THLE-2 cells. By binding to the primary RNAs, bound transcripts of EZH2 and JARID2 in HepG2 showed significantly increased transcriptional levels in HCC patients. By performing gene set enrichment analysis (GSEA), the bound transcripts were also highly related to HCC development. We also found EZH2 and JARID2 could specifically bind to several long noncoding RNAs (lncRNAs), including H19. By exploring the DNA binding profile, we detected a dramatically repressed DNA binding ability of EZH2 in HepG2 cells. We also found that the EZH2-bound genes showed slightly increased transcriptional levels in HepG2 cells. Integrating analysis of the RNA and DNA binding profiles suggests EZH2 and JARID2 shift their binding ability from DNA to RNA in HepG2 cells to promote cancer development in HCC. Our study provided a comprehensive and distinct binding profile on RNAs and DNAs of EZH2 and JARID2 in liver cancer cell lines, suggesting their potential novel functional manners to promote HCC development.

14.
BMC Cancer ; 22(1): 1269, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36471281

RESUMEN

Long intergenic non-coding RNA 00852 (LINC00852) has been shown to promote the progression of many different cancers including prostate cancer. However, the involved mechanism in promoting the proliferation, migration and invasion of prostate cancer cells has not been reported. In this study, we found that LINC00852 was highly expressed in the tissue of prostate cancer using quantitative reverse transcription PCR (qRT-PCR). CCK-8 assay, colony formation experiment, Transwell migration and invasion experiments were performed to prove that the up-regulation of LINC00852 could promote the proliferation, migration and invasion of prostate cancer cells in vitro. Xenograft tumors experiments in nude mice confirmed that up-regulation of LINC00852 promoted the proliferation of prostate cancer cells in vivo. Bioinformatics predictions and dual-luciferase reporter gene assay showed that miR-29a-3p binds to the 3'-untranslated region of JARID2, and the enhancement of miR-29a-3p could reverse the effect of LINC00852 overexpression in vitro. Moreover, the results of qRT-PCR and western blot showed that LINC00852 could regulate the expression of JARID2 through miR-29a-3p induction. In summary, we demonstrated that LINC00852 played a key role in promoting the prostate cancer, and LINC00852/miR-29a-3p/JARID2 axis could be used as a target for prostate cancer treatment.


Asunto(s)
MicroARNs , Complejo Represivo Polycomb 2 , Neoplasias de la Próstata , ARN Largo no Codificante , Animales , Humanos , Masculino , Ratones , Regiones no Traducidas 3' , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Procesos Neoplásicos , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Neoplasias de la Próstata/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
15.
Genes (Basel) ; 13(10)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36292604

RESUMEN

Nile tilapia is a GSD + TE (Genetic Sex Determination + Temperature Effect) fish, and high-temperature treatment during critical thermosensitive periods (TSP) can induce the sex reversal of Nile tilapia genetic females, and brain transcriptomes have revealed the upregulation of Jarid2 (Jumonji and AT-rich domain containing 2) expression after 36 °C high-temperature treatment for 12 days during TSP. It was shown that JARID2 forms a complex with polycomb repressive complex 2 (PRC2) that catalyzed H3K27me3, which was strongly associated with transcriptional repression. In this study, Jarid2b was cloned and characterized in Nile tilapia, which was highly conserved among the analyzed fish species. The expression of Jarid2b was upregulated in the gonad of 21 dpf XX genetic females after 12-day high-temperature treatment and reached a similar level to that of males. Similar responses to high-temperature treatment also appeared in the brain, heart, liver, muscle, eye, and skin tissues. Interestingly, Jarid2b expression was only in response to high-temperature treatment, and not to 17α-methyltestosterone (MT) or letrozole treatments; although, these treatments can also induce the sex reversal of genetic Nile tilapia females. Further studies revealed that Jarid2b responded rapidly at the 8th hour after high-temperature treatment. Considering that JARID2 can recruit PRC2 and establish H3K27me3, we speculated that it might be an upstream gene participating in the regulation of Nile tilapia GSD + TE through regulating the H3K27 methylation level at the locus of many sex differentiation-related genes.


Asunto(s)
Cíclidos , Animales , Masculino , Femenino , Cíclidos/genética , Temperatura , Metiltestosterona/metabolismo , Letrozol , Histonas/genética , Histonas/metabolismo , Clonación Molecular , Complejo Represivo Polycomb 2/genética
16.
Mol Genet Genomic Med ; 10(11): e2037, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35979655

RESUMEN

BACKGROUND: Deletions covering the entire or partial JARID2 gene as well as pathogenic single nucleotide variants leading to haploinsufficiency of JARID2 have recently been shown to cause a clinically distinct neurodevelopmental syndrome. Here, we present a previously undescribed partial de novo duplication of the JARID2 gene in a patient displaying features similar to those of patients with JARID2 loss-of-function variants. CASE REPORT: The index patient presents with abnormalities in gross motor skills and speech development as well as neuropsychiatric disorders. The patient has markedly dark infraorbital circles and slightly prominent supraorbital ridges.Whole-genome sequencing and array comparative genomic hybridization revealed a novel disease-causing variant type, a partial tandem duplication of JARID2, covering the exons 1-7. Furthermore, RNA sequencing validated the increased expression of these exons. Expression alterations were also detected in target genes of the PRC2 complex, in which JARID2 acts as an essential member. CONCLUSION: Our data add to the variety of different pathogenic variants associated with JARID2 neurodevelopmental syndrome.


Asunto(s)
Haploinsuficiencia , Hibridación Genómica Comparativa , Fenotipo , Exones
17.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35887345

RESUMEN

JARID2 (Jumonji, AT Rich Interactive Domain 2) pathogenic variants cause a neurodevelopmental syndrome, that is characterized by developmental delay, cognitive impairment, hypotonia, autistic features, behavior abnormalities and dysmorphic facial features. JARID2 encodes a transcriptional repressor protein that regulates the activity of various histone methyltransferase complexes. However, the molecular etiology is not fully understood, and JARID2-neurodevelopmental syndrome may vary in its typical clinical phenotype. In addition, the detection of variants of uncertain significance (VUSs) often results in a delay of final diagnosis which could hamper the appropriate care. In this study we aim to detect a specific and sensitive DNA methylation signature for JARID2-neurodevelopmental syndrome. Peripheral blood DNA methylation profiles from 56 control subjects, 8 patients with (likely) pathogenic JARID2 variants and 3 patients with JARID2 VUSs were analyzed. DNA methylation analysis indicated a clear and robust separation between patients with (likely) pathogenic variants and controls. A binary model capable of classifying patients with the JARID2-neurodevelopmental syndrome was constructed on the basis of the identified episignature. Patients carrying VUSs clustered with the control group. We identified a distinct DNA methylation signature associated with JARID2-neurodevelopmental syndrome, establishing its utility as a biomarker for this syndrome and expanding the EpiSign diagnostic test.


Asunto(s)
Metilación de ADN , Complejo Represivo Polycomb 2 , Humanos , Motivos de Nucleótidos , Fenotipo , Complejo Represivo Polycomb 2/genética , Procesamiento Proteico-Postraduccional , Síndrome
18.
Mol Ther Oncolytics ; 25: 201-210, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35592389

RESUMEN

DLG1-AS1 and PBX3 have been identified as acting as an oncogene in cervical cancer. However, they have not been well explored in triple-negative breast cancer (TNBC). As TNBC is one of the malignancies causing increasing death throughout the world, this study aimed to probe into the regulatory relationship between DLG1-AS1 and PBX3 in TNBC cells. In this study, real-time quantitative PCR (qRT-PCR) and western blot experiments were conducted to investigate the RNA and protein levels of genes of interest in TNBC cells. Functional experiments were implemented, such as 5-ethynyl-2'-deoxyuridine (EdU), transwell, and wound healing assays, to assess the changes in TNBC cell phenotype. Chromatin immunoprecipitation, luciferase reporter, RNA binding protein immunoprecipitation, and RNA pull-down assays were conducted to investigate the binding relationships among subject genes. The results show that DLG1-AS1 and PBX3 displayed high expression in TNBC cells, and PBX3 worked as the transcriptional activator of DLG1-AS1. Also, DLG1-AS1 served as an oncogene in TNBC cells and as a sponge for miR-16-5p to up-regulate JARID2. Meanwhile, JARID2 and PBX3 exerted oncogenic effects on TNBC cell growth. In conclusion, PBX3-activated DLG1-AS1 can promote the proliferation, invasion, and migration of TNBC cells by sponging miR-16-5p and elevating JARID2 expression.

19.
Clin Genet ; 102(2): 136-141, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35533077

RESUMEN

Loss of function variants in JARID2 were recently reported in 16 patients with a neurodevelopmental disorder characterized by delays, intellectual and learning disability, autism, behavioral abnormalities, and dysmorphic features. Most cases were de novo, with only one variant inherited from an affected parent. Here, we present seven additional individuals from five families with pathogenic or likely pathogenic JARID2 variants, confirming this gene-disease association and highlighting palatal abnormalities and heart defects as part of the phenotype. In addition, we report inheritance of JARID2 variants from mildly affected parents, demonstrating the variable expressivity of the disease. We also note the high prevalence of intragenic JARID2 copy number variants, emphasizing the importance of exon-level analysis.


Asunto(s)
Trastorno Autístico , Discapacidad Intelectual , Trastorno Autístico/genética , Variaciones en el Número de Copia de ADN , Exones , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Fenotipo , Complejo Represivo Polycomb 2/genética
20.
Immunology ; 166(3): 357-379, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35404476

RESUMEN

Asthmatic airway inflammation is divided into two typical endotypes: Th2-mediated eosinophilic and Th1- or Th17-mediated neutrophilic airway inflammation. The miRNA miR-155 has well-documented roles in the regulation of adaptive T-cell responses and innate immunity. However, no specific cell-intrinsic role has yet been elucidated for miR-155 in T cells in the course of Th2-eosinophilic and Th17-neutrophilic airway inflammation using actual in vivo asthma models. Here, using conditional KO (miR155ΔCD4 cKO) mice that have the specific deficiency of miR-155 in T cells, we found that the specific deficiency of miR-155 in T cells resulted in fully suppressed Th2-type eosinophilic airway inflammation following acute allergen exposure, as well as greatly attenuated the Th17-type neutrophilic airway inflammation induced by repeated allergen exposure. Furthermore, miR-155 in T cells appeared to regulate the expression of several different target genes in the functional activation of CD4+ Th2 and Th17 cells. To be more precise, the deficiency of miR-155 in T cells enhanced the expression of c-Maf, SOCS1, Fosl2 and Jarid2 in the course of CD4+ Th2 cell activation, while C/EBPß was highly enhanced in CD4+ Th17 cell activation in the absence of miR-155 expression. Conclusively, our data revealed that miR-155 could promote Th2 and Th17-mediated airway inflammation via the regulation of several different target genes, depending on the context of asthmatic diseases. Therefore, these results provide valuable insights into actual understanding of specific cell-intrinsic role of miR-155 in eosinophilic and neutrophilic airway inflammation for the development of fine-tune therapeutic strategies.


Asunto(s)
Asma , MicroARNs , Factores de Transcripción , Alérgenos , Animales , Asma/inmunología , Modelos Animales de Enfermedad , Inflamación/inmunología , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Células Th17 , Células Th2 , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA