RESUMEN
BACKGROUND: Type-1 diabetes mellitus (T1DM) is associated with numerous health problems, including peripheral neuropathy, osteoporosis, and bone denervation, all of which diminish quality of life. However, there are relatively few therapies to treat these T1DM-related complications. Recent studies have shown that Janus kinase (JAK) inhibitors reverse aging- and rheumatoid arthritis-induced bone loss and reduce pain associated with peripheral nerve injuries, and rheumatoid arthritis. Thus, we assessed whether a JAK1/JAK2 inhibitor, baricitinib, ameliorates mechanical pain sensitivity (a measure of peripheral neuropathy), osteoporosis, and bone denervation in the femur of mice with T1DM. METHODS: Female ICR mice (13 weeks old) received five daily administrations of streptozotocin (ip, 50 mg/kg) to induce T1DM. At thirty-one weeks of age, mice were treated with baricitinib (po; 40 mg/kg/bid; for 28 days) or vehicle. Mechanical sensitivity was evaluated at 30, 33, and 35 weeks of age on the plantar surface of the right hind paw. At the end of the treatment, mice were sacrificed, and lower extremities were harvested for microcomputed tomography and immunohistochemistry analyses. RESULTS: Mice with T1DM exhibited greater blood glucose levels, hind paw mechanical hypersensitivity, trabecular bone loss, and decreased density of calcitonin gene-related peptide-positive and tyrosine hydroxylase-positive axons within the marrow of the femoral neck compared to control mice. Baricitinib treatment significantly reduced mechanical hypersensitivity and ameliorated sensory and sympathetic denervation at the femoral neck, but it did not reverse trabecular bone loss. CONCLUSIONS: Our findings suggest that baricitinib may represent a new therapeutic alternative to treat T1DM-induced peripheral neuropathy and bone denervation.
Asunto(s)
Azetidinas , Enfermedades Óseas Metabólicas , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hiperalgesia , Ratones Endogámicos ICR , Purinas , Pirazoles , Sulfonamidas , Animales , Azetidinas/farmacología , Purinas/farmacología , Pirazoles/farmacología , Sulfonamidas/farmacología , Femenino , Ratones , Hiperalgesia/tratamiento farmacológico , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Enfermedades Óseas Metabólicas/tratamiento farmacológico , Microtomografía por Rayos X , Modelos Animales de EnfermedadRESUMEN
Interferon-gamma (IFN-γ) plays a dual role in cancer; it is both a pro- and an antitumorigenic cytokine, depending on the type of cancer. The deregulation of the IFN-γ canonic pathway is associated with several disorders, including vulnerability to viral infections, inflammation, and cancer progression. In particular, the interplay between lung adenocarcinoma (LUAD) and viral infections appears to exist in association with the deregulation of IFN-γ signaling. In this mini-review, we investigated the status of the IFN-γ signaling pathway and the expression level of its components in LUAD. Interestingly, a reduction in IFNGR1 expression seems to be associated with LUAD progression, affecting defenses against viruses such as severe acute respiratory syndrome coronavirus 2. In addition, alterations in the expression of IFNGR1 may inhibit the antiproliferative action of IFN-γ signaling in LUAD.
RESUMEN
OBJECTIVES: The authors determined the level of Expression of Leptin (LEP) in Polycystic Ovary Syndrome (PCOS) patients with or without obesity and in GCs treated with insulin. METHODS: LEP expression was first assessed in ovary cortex specimens collected from women with PCOS with or without obesity as well as from healthy controls. Ovarian Granulosa Cells (OGCs) induced by insulin extracted from a mouse model were used in further functional research. RESULTS: Real-time PCR and western blotting indicated that LEP expression was upregulated in GCs induced by insulin, in comparison with that in GCs not induced by insulin. Furthermore, the knockdown of LEP resulted in a reduction in growth and multiplication and an increase in apoptosis and inflammation in GCs induced by insulin. Next, the authors evaluated the effect of LEP on three key pathways of inflammation (MAPK, NF-kB, and JAK1/STAT3); results showed that the JAK1/STAT3 pathway was induced by LEP knockdown, as evidenced by the upregulation of phosphor-JAK1, phosphor-STAT3, and nuclear STAT3 expression. Administration of curcumin, a specific inhibitor of STAT3, counteracted the effect of LEP knockdown on cell inflammation and apoptosis. CONCLUSION: The present data suggest that upregulation of LEP expression in the PCOS granulosa cell model is essential for reducing apoptosis and inflammation by modulating the JAK1/STAT3 pathway axis.
Asunto(s)
Síndrome del Ovario Poliquístico , Humanos , Ratones , Animales , Femenino , Síndrome del Ovario Poliquístico/metabolismo , Leptina/efectos adversos , Leptina/metabolismo , Células de la Granulosa/metabolismo , Insulina , Obesidad , Apoptosis , Janus Quinasa 1/metabolismo , Janus Quinasa 1/farmacología , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/farmacologíaRESUMEN
Abstract Objectives The authors determined the level of Expression of Leptin (LEP) in Polycystic Ovary Syndrome (PCOS) patients with or without obesity and in GCs treated with insulin. Methods LEP expression was first assessed in ovary cortex specimens collected from women with PCOS with or without obesity as well as from healthy controls. Ovarian Granulosa Cells (OGCs) induced by insulin extracted from a mouse model were used in further functional research. Results Real-time PCR and western blotting indicated that LEP expression was upregulated in GCs induced by insulin, in comparison with that in GCs not induced by insulin. Furthermore, the knockdown of LEP resulted in a reduction in growth and multiplication and an increase in apoptosis and inflammation in GCs induced by insulin. Next, the authors evaluated the effect of LEP on three key pathways of inflammation (MAPK, NF-kB, and JAK1/STAT3); results showed that the JAK1/STAT3 pathway was induced by LEP knockdown, as evidenced by the upregulation of phosphor-JAK1, phosphor-STAT3, and nuclear STAT3 expression. Administration of curcumin, a specific inhibitor of STAT3, counteracted the effect of LEP knockdown on cell inflammation and apoptosis. Conclusion The present data suggest that upregulation of LEP expression in the PCOS granulosa cell model is essential for reducing apoptosis and inflammation by modulating the JAK1/STAT3 pathway axis.
RESUMEN
Background: The Janus-activated kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway regulates cutaneous melanoma (CM) development and progression. The JAK1, JAK2, and STAT3 proteins are encoded by polymorphic genes. This study aimed to verify whether single-nucleotide variants (SNVs) in JAK1 (c.1648+1272G>A, c.991-27C>T), JAK2 (c.-1132G>T, c.-139G>A), and STAT3 (c.*1671T>C, c.-1937C>G) altered the risk, clinicopathological aspects, and survival of CM patients as well as protein activity. Methods: CM patients (N = 248) and controls (N = 274) were enrolled in this study. Genotyping was performed by real-time polymerase chain reaction (PCR), and JAK1, JAK2, and STAT3 expression was assessed by quantitative PCR (qPCR). STAT3 c.-1937C>G SNV was investigated by luciferase, qPCR, western blot, apoptosis, and cell cycle assays in SKMEL-28 cells with CC or GG genotype. Results: Individuals with STAT3 c.*1671TT and c.-1937CC genotypes and TC haplotype of both SNVs were under about 2.0-fold increased risk of CM. Specific JAK1, JAK2, and STAT3 combined genotypes were associated with up to 4.0-fold increased risk of CM. Higher luciferase activity [4,013.34 vs. 2,463.32 arbitrary units (AU); p = 0.004], STAT3 expression by qPCR (649.20 vs. 0.03 AU; p = 0.003) and western blot (1.69 vs. 1.16 AU; p = 0.01), and percentage of cells in the S phase of the cell cycle (57.54 vs. 30.73%; p = 0.04) were more frequent in SKMEL-28 with STAT3 c.-1937CC than with GG genotype. CM cell line with CC genotype presented higher STAT3 protein levels than the one with GG genotype (1.93 versus 1.27 AU, p = 0.0027). Conclusion: Our data present preliminary evidence that inherited abnormalities in the JAK/STAT pathway can be used to identify individuals at a high risk of CM, who deserve additional attention for tumor prevention and early detection.
RESUMEN
Upadacitinib and filgotinib, two JAK1 selective drugs have undergone extensive phase III clinical trials in RA and have demonstrated rapid improvements in disease activity, function and patient reported outcomes. Six global phase III randomized controlled clinical trials (SELECT phase III program) evaluated the efficacy and safety of upadacitinib and four clinical phase III trials (the FINCH program) evaluated the efficacy and safety of filgotinib. This article is a critical review of all these studies with focus on the therapeutic efficacy in RA. The aim is to display the data that could allow the approval of these new drugs for the treatment of RA (upadacitinib has been already approved in most of the markets around the world).
Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Janus Quinasa 1/antagonistas & inhibidores , Inhibidores de las Cinasas Janus/uso terapéutico , Piridinas/uso terapéutico , Triazoles/uso terapéutico , Artritis Reumatoide/diagnóstico por imagen , Artritis Reumatoide/fisiopatología , Ensayos Clínicos Fase III como Asunto , Humanos , Resultado del TratamientoRESUMEN
Pituitary adenoma is one of the most common tumors in the neuroendocrine system. This study investigated the effects of long non-coding RNAs (lncRNAs) highly up-regulated in liver cancer (HULC) on rat secreting pituitary adenoma GH3 cell viability, migration, invasion, apoptosis, and hormone secretion, as well as the underlying potential mechanisms. Cell transfection and qRT-PCR were used to change and measure the expression levels of HULC, miR-130b, and FOXM1. Cell viability, migration, invasion, and apoptosis were assessed using trypan blue staining assay, MTT assay, two-chamber transwell assay, Guava Nexin assay, and western blotting. The concentrations of prolactin (PRL) and growth hormone (GH) in culture supernatant of GH3 cells were assessed using ELISA. The targeting relationship between miR-130b and FOXM1 was verified using dual luciferase activity. Finally, the expression levels of key factors involved in PI3K/AKT/mTOR and JAK1/STAT3 pathways were evaluated using western blotting. We found that HULC was highly expressed in GH3 cells. Overexpression of HULC promoted GH3 cell viability, migration, invasion, PRL and GH secretion, as well as activated PI3K/AKT/mTOR and JAK1/STAT3 pathways. Knockdown of HULC had opposite effects and induced cell apoptosis. HULC negatively regulated the expression of miR-130b, and miR-130b participated in the effects of HULC on GH3 cells. FOXM1 was a target gene of miR-130b, which was involved in the regulation of GH3 cell viability, migration, invasion, and apoptosis, as well as PI3K/AKT/mTOR and JAK1/STAT3 pathways. In conclusion, HULC tumor-promoting roles in secreting pituitary adenoma might be via down-regulating miR-130b, up-regulating FOXM1, and activating PI3K/AKT/mTOR and JAK1/STAT3 pathways.
Asunto(s)
Humanos , Animales , Ratas , Neoplasias Hipofisarias/patología , Adenoma/patología , ARN Largo no Codificante/fisiología , Ensayo de Inmunoadsorción Enzimática , Transfección , Adenoma/genética , Adenoma/metabolismo , Movimiento Celular/fisiología , Supervivencia Celular/fisiología , Western Blotting , Apoptosis/fisiología , MicroARNs/análisis , Línea Celular Tumoral , Factor de Transcripción STAT3/análisis , Janus Quinasa 1/análisis , Janus Quinasa 1/metabolismo , Ensayos de Migración Celular , Proteína Forkhead Box M1/análisis , Proteína Forkhead Box M1/metabolismo , LuciferasasRESUMEN
JAK proteins have been linked with survival and proliferation of multiple myeloma (MM) cells; therefore, JAK inhibition could be a therapeutic strategy for MM. We evaluated JAK1 and JAK2 expression in MM patients and the effects of JAK/STAT pathway inhibition on apoptosis, cell cycle, gene and protein expression in RPMI-8226 and U266 MM cell lines. 57% of patients presented overexpression of JAK2 and 27%, of JAK1. After treatment with ruxolitinib and bortezomib, RPMI-8226 and U266 presented 50% of cells in late apoptosis, reduction of anti-apoptotic genes expression and higher number of cells in SubG0 phase. Co-culture with stromal cells protected RPMI-8226 cells from apoptosis, which was reversed by lenalidomide addition. Combination of ruxolitinib, bortezomib and lenalidomide induced 72% of cell death, equivalent to bortezomib, lenalidomide and dexamethasone, combination used in clinical practice. Many JAK/STAT pathway genes, after treatment, had their expression reduced, mainly in RPMI-8226, with insignificant changes in U266. In this scenario, JAK/STAT pathway could pose as a new therapeutic target to be exploited, since it is constitutively active and contributes to survival of MM tumor cells.