Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 164: 289-298, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34023643

RESUMEN

Hypocotyl phototropism is redundantly mediated by phot1 and phot2, two blue light receptor phototropins, under the intensity of blue light>1 µmol m-2 s-1. As light intensity increases, phot1 inhibits the phot2-mediated response. To date, only Arabidopsis Root Phototropism2 (RPT2) has been shown to participate in phot1-mediated inhibition of phototropism. To dissect the signaling network that underlies phot1-mediated inhibition, we carried out a yeast two-hybrid (Y2H) screening assay for RPT2 interacting proteins and identified J-domain protein required for chloroplast accumulation response 1 (JAC1). The interaction between JAC1 and RPT2 was verified by bimolecular fluorescence complementation and Co-IP assays. JAC1 is expressed mainly in cotyledons and hypocotyls. Like RPT2, JAC1 can be induced by blue light, suggesting that it may function similarly to RPT2 in the inhibition of phototropism. Genetic analysis showed that jac1 mutation significantly enhanced the hypocotyl bending of phot1 mutants towards intermediate-intensity blue light, and this effect was inhibited by the constitutive expression of JAC1 in the phot1 jac1 mutant. The phot1 rpt2 double mutant also exhibited enhanced phototropism compared with the phot1 mutant. Taken together, our data clearly demonstrate that JAC1 cooperates with RPT2 to negatively regulate hypocotyl phototropism in plants and may act either downstream of or in parallel with phot1.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Auxilinas , Cloroplastos , Hipocótilo , Luz , Fosfoproteínas , Fototropismo
2.
Proteins ; 83(8): 1414-26, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25973573

RESUMEN

The iron-sulfur protein 1 (Isu1) and the J-type co-chaperone Jac1 from yeast are part of a huge ATP-dependent system, and both interact with Hsp70 chaperones. Interaction of Isu1 and Jac1 is a part of the iron-sulfur cluster biogenesis system in mitochondria. In this study, the structure and dynamics of the yeast Isu1-Jac1 complex has been modeled. First, the complete structure of Isu1 was obtained by homology modeling using the I-TASSER server and YASARA software and thereafter tested for stability in the all-atom force field AMBER. Then, the known experimental structure of Jac1 was adopted to obtain initial models of the Isu1-Jac1 complex by using the ZDOCK server for global and local docking and the AutoDock software for local docking. Three most probable models were subsequently subjected to the coarse-grained molecular dynamics simulations with the UNRES force field to obtain the final structures of the complex. In the most probable model, Isu1 binds to the left face of the Γ-shaped Jac1 molecule by the ß-sheet section of Isu1. Residues L105 , L109 , and Y163 of Jac1 have been assessed by mutation studies to be essential for binding (Ciesielski et al., J Mol Biol 2012; 417:1-12). These residues were also found, by UNRES/molecular dynamics simulations, to be involved in strong interactions between Isu1 and Jac1 in the complex. Moreover, N(95), T(98), P(102), H(112), V(159), L(167), and A(170) of Jac1, not yet tested experimentally, were also found to be important in binding.


Asunto(s)
Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Simulación de Dinámica Molecular , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA