Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Nutrients ; 16(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39064628

RESUMEN

BACKGROUND: In MASLD (formerly called NAFLD) mouse models, oversupply of dietary fat and sugar is more lipogenic than either nutrient alone. Fatty acids suppress de novo lipogenesis (DNL) from sugars, while DNL inhibits fatty acid oxidation. How such factors interact to impact hepatic triglyceride levels are incompletely understood. METHODS: Using deuterated water, we measured DNL in mice fed 18-weeks with standard chow (SC), SC supplemented with 55/45-fructose/glucose in the drinking water at 30% (w/v) (HS), high-fat chow (HF), and HF with HS supplementation (HFHS). Liver glycogen levels and its sources were also measured. For HS and HFHS mice, pentose phosphate (PP) fluxes and fructose contributions to DNL and glycogen were measured using [U-13C]fructose. RESULTS: The lipogenic diets caused significantly higher liver triglyceride levels compared to SC. DNL rates were suppressed in HF compared to SC and were partially restored in HFHS but supplied a minority of the additional triglyceride in HFHS compared to HF. Fructose contributed a significantly greater fraction of newly synthesized saturated fatty acids compared to oleic acid in both HS and HFHS. Glycogen levels were not different between diets, but significant differences in Direct and Indirect pathway contributions to glycogen synthesis were found. PP fluxes were similar in HS and HFHS mice and were insufficient to account for DNL reducing equivalents. CONCLUSIONS: Despite amplifying the lipogenic effects of fat, the fact that sugar-activated DNL per se barely contributes suggests that its role is likely more relevant in the inhibition of fatty acid oxidation. Fructose promotes lipogenesis of saturated over unsaturated fatty acids and contributes to maintenance of glycogen levels. PP fluxes associated with sugar conversion to fat account for a minor fraction of DNL reducing equivalents.


Asunto(s)
Dieta Alta en Grasa , Fructosa , Lipogénesis , Glucógeno Hepático , Hígado , Ratones Endogámicos C57BL , Periodo Posprandial , Triglicéridos , Animales , Triglicéridos/metabolismo , Triglicéridos/sangre , Lipogénesis/efectos de los fármacos , Masculino , Hígado/metabolismo , Ratones , Glucógeno Hepático/metabolismo , Fructosa/administración & dosificación , Ácidos Grasos/metabolismo , Azúcares de la Dieta/administración & dosificación , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/farmacología , Glucosa/metabolismo
2.
J Cheminform ; 16(1): 54, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38741211

RESUMEN

This work presents a proposed extension to the International Union of Pure and Applied Chemistry (IUPAC) International Chemical Identifier (InChI) standard that allows the representation of isotopically-resolved chemical entities at varying levels of ambiguity in isotope location. This extension includes an improved interpretation of the current isotopic layer within the InChI standard and a new isotopologue layer specification for representing chemical intensities with ambiguous isotope localization. Both improvements support the unique isotopically-resolved chemical identification of features detected and measured in analytical instrumentation, specifically nuclear magnetic resonance and mass spectrometry. SCIENTIFIC CONTRIBUTION: This new extension to the InChI standard would enable improved annotation of analytical datasets characterizing chemical entities, supporting the FAIR (Findable, Accessible, Interoperable, and Reusable) guiding principles of data stewardship for chemical datasets, ultimately promoting Open Science in chemistry.

3.
Methods Mol Biol ; 2790: 439-466, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38649586

RESUMEN

Stable isotope labeling with 13CO2 coupled with mass spectrometry allows monitoring the incorporation of 13C into photosynthetic intermediates and is a powerful technique for the investigation of the metabolic dynamics of photosynthesis. We describe here a protocol for 13CO2 labeling of large leaved plants and of Arabidopsis thaliana rosette, and a method for quantitative mass spectrometry analyses to uncover the labeling pattern of Calvin-Benson cycle sucrose, and starch synthesis as well as carbon-concentrating mechanism metabolites.


Asunto(s)
Arabidopsis , Isótopos de Carbono , Marcaje Isotópico , Fotosíntesis , Marcaje Isotópico/métodos , Arabidopsis/metabolismo , Isótopos de Carbono/metabolismo , Espectrometría de Masas/métodos , Sacarosa/metabolismo , Dióxido de Carbono/metabolismo , Almidón/metabolismo , Metabolómica/métodos , Hojas de la Planta/metabolismo
4.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-37960978

RESUMEN

Gas chromatography-tandem mass spectrometry with electron ionization (GC-EI-MS/MS) provides rich information on stable-isotope labeling for 13C-metabolic flux analysis (13C-MFA). To pave the way for the routine application of tandem MS data for metabolic flux quantification, we aimed to compile a comprehensive library of GC-EI-MS/MS fragments of tert-butyldimethylsilyl (TBDMS) derivatized proteinogenic amino acids. First, we established an analytical workflow that combines high-resolution gas chromatography-quadrupole time-of-flight mass spectrometry and fully 13C-labeled biomass to identify and structurally elucidate tandem MS amino acid fragments. Application of the high-mass accuracy MS procedure resulted into the identification of 129 validated precursor-product ion pairs of 13 amino acids with 30 fragments being accepted for 13C-MFA. The practical benefit of the novel tandem MS data was demonstrated by a proof-of-concept study, which confirmed the importance of the compiled library for high-resolution 13C-MFA. ONE SENTENCE SUMMARY: An analytical workflow that combines high-resolution mass spectrometry (MS) and fully 13C-labeled biomass to identify and structurally elucidate tandem MS amino acid fragments, which provide positional information and therefore offering significant advantages over traditional MS to improve 13C-metabolic flux analysis.


Asunto(s)
Escherichia coli , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Escherichia coli/metabolismo , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo , Análisis de Flujos Metabólicos/métodos , Aminoácidos/metabolismo
5.
Cell Metab ; 35(10): 1830-1843.e5, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37611583

RESUMEN

Stable isotopes are powerful tools to assess metabolism. 13C labeling is detected using nuclear magnetic resonance (NMR) spectroscopy or mass spectrometry (MS). MS has excellent sensitivity but generally cannot discriminate among different 13C positions (isotopomers), whereas NMR is less sensitive but reports some isotopomers. Here, we develop an MS method that reports all 16 aspartate and 32 glutamate isotopomers while requiring less than 1% of the sample used for NMR. This method discriminates between pathways that result in the same number of 13C labels in aspartate and glutamate, providing enhanced specificity over conventional MS. We demonstrate regional metabolic heterogeneity within human tumors, document the impact of fumarate hydratase (FH) deficiency in human renal cancers, and investigate the contributions of tricarboxylic acid (TCA) cycle turnover and CO2 recycling to isotope labeling in vivo. This method can accompany NMR or standard MS to provide outstanding sensitivity in isotope-labeling experiments, particularly in vivo.


Asunto(s)
Ácido Aspártico , Ácido Glutámico , Humanos , Isótopos de Carbono , Ciclo del Ácido Cítrico , Espectrometría de Masas
6.
NMR Biomed ; 36(10): e4994, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37392148

RESUMEN

Renal metabolism is essential for kidney functions and energy homeostasis in the body. The TCA cycle is the hub of metabolism, but the metabolic activities of the cycle in the kidney have rarely been investigated. This study is to assess metabolic processes at the level of the TCA cycle in the kidney based on isotopomer distributions in multiple metabolites. Isolated rat kidneys were perfused with media containing common substrates including lactate and alanine for an hour. One group of kidneys received [U-13 C3 ]lactate instead of natural abundance lactate while the other group received [U-13 C3 ]alanine instead of natural abundance alanine. Perfused kidneys and effluent were prepared for analysis using NMR spectroscopy. 13 C-labeling patterns in glutamate, fumarate, aspartate and succinate from the kidney extracts showed that pyruvate carboxylase and oxidative metabolism through the TCA cycle were comparably very active, but pyruvate cycling and pyruvate dehydrogenase were relatively less active. Isotopomer analyses with fumarate and malate from effluent, however, indicated that pyruvate carboxylase was much more active than the TCA cycle and other metabolic processes. The reverse equilibrium of oxaloacetate with four-carbon intermediates of the cycle was nearly complete (92%), based on the ratio of [2,3,4-13 C3 ]/[1,2,3-13 C3 ] in aspartate or malate. 13 C enrichment in glucose with 13 C-lactate supply was higher than that with 13 C-alanine. Isotopomer analyses with multiple metabolites (i.e., glutamate, fumarate, aspartate, succinate and malate) allowed us to assess relative metabolic processes in the TCA cycle in the kidney supplied with [U-13 C3 ]lactate. Data from the analytes were generally consistent, indicating highly active pyruvate carboxylase and oxidative metabolism through the TCA cycle. Different 13 C-labeling patterns in analytes from the kidney extracts versus effluent suggested metabolic compartmentalization.


Asunto(s)
Ciclo del Ácido Cítrico , Malatos , Ratas , Animales , Malatos/metabolismo , Piruvato Carboxilasa/metabolismo , Ácido Aspártico/metabolismo , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Ácido Pirúvico/metabolismo , Ácido Láctico , Succinatos , Alanina/metabolismo , Isótopos de Carbono/metabolismo
7.
NMR Biomed ; 36(4): e4716, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35196744

RESUMEN

Bonded cumomers are sets of isotopomers of 13 C-labeled metabolites containing a particular sequence of contiguously or singly labeled carbon atoms. Only these isotopomers contribute to multiplet structure in the 13 C NMR spectrum. We discuss the application of this technique to the study of quantitative tumor metabolism, bioenergetics, and the Warburg effect. The advantages and sensitivity of bonded cumomer analysis over positional enrichment analysis are discussed. When sensitivity requirements are met, bonded cumomer analysis enables the extraction of fluxes through specific metabolic pathways with higher precision. In conjunction with isotopomer control analysis, we evaluate the sensitivity of experimentally measurable metabolite multiplets to determine the robustness of flux analysis in 13 C spectra of tumors. This review examines the role of glycolytic and tricarboxylic acid cycle metabolism with special emphasis on flux through the pentose phosphate pathway (PPP). The impact of reversibility of the nonoxidative branch of the PPP with various 13 C glucose tracers on fine-structure multiplets is analyzed.


Asunto(s)
Modelos Biológicos , Neoplasias , Humanos , Espectroscopía de Resonancia Magnética/métodos , Metabolismo Energético , Ciclo del Ácido Cítrico , Glucosa/metabolismo , Isótopos de Carbono/metabolismo
8.
Metabolites ; 14(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38248827

RESUMEN

The pentose phosphate pathway (PPP) plays a key role in the cellular regulation of immune function; however, little is known about the interplay of metabolic adjustments in granulocytes, especially regarding the non-oxidative PPP. For the determination of metabolic mechanisms within glucose metabolism, we propose a novel set of measures for 13C-metabolic flux analysis based on ex vivo parallel tracer experiments ([1,2-13C]glucose, [U-13C]glucose, [4,5,6-13C]glucose) and gas chromatography-mass spectrometry labeling measurements of intracellular metabolites, such as sugar phosphates and their fragments. A detailed constraint analysis showed that the permission range for net and irreversible fluxes was limited to a three-dimensional space. The overall workflow, including its Bayesian flux estimation, resulted in precise flux distributions and pairwise confidence intervals, some of which could be represented as a line due to the strength of their correlation. The principal component analysis that was enabled by these behaviors comprised three components that explained 99.6% of the data variance. It showed that phagocytic stimulation reversed the direction of non-oxidative PPP net fluxes from ribose-5-phosphate biosynthesis toward glycolytic pathways. This process was closely associated with the up-regulation of the oxidative PPP to promote the oxidative burst.

9.
Front Immunol ; 14: 1319986, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38332911

RESUMEN

Introduction: Supplementation with increased inspired oxygen fractions has been suggested to alleviate the harmful effects of tissue hypoxia during hemorrhagic shock (HS) and traumatic brain injury. However, the utility of therapeutic hyperoxia in critical care is disputed to this day as controversial evidence is available regarding its efficacy. Furthermore, in contrast to its hypoxic counterpart, the effect of hyperoxia on the metabolism of circulating immune cells remains ambiguous. Both stimulating and detrimental effects are possible; the former by providing necessary oxygen supply, the latter by generation of excessive amounts of reactive oxygen species (ROS). To uncover the potential impact of increased oxygen fractions on circulating immune cells during intensive care, we have performed a 13C-metabolic flux analysis (MFA) on PBMCs and granulocytes isolated from two long-term, resuscitated models of combined acute subdural hematoma (ASDH) and HS in pigs with and without cardiovascular comorbidity. Methods: Swine underwent resuscitation after 2 h of ASDH and HS up to a maximum of 48 h after HS. Animals received normoxemia (PaO2 = 80 - 120 mmHg) or targeted hyperoxemia (PaO2 = 200 - 250 mmHg for 24 h after treatment initiation, thereafter PaO2 as in the control group). Blood was drawn at time points T1 = after instrumentation, T2 = 24 h post ASDH and HS, and T3 = 48 h post ASDH and HS. PBMCs and granulocytes were isolated from whole blood to perform electron spin resonance spectroscopy, high resolution respirometry and 13C-MFA. For the latter, we utilized a parallel tracer approach with 1,2-13C2 glucose, U-13C glucose, and U-13C glutamine, which covered essential pathways of glucose and glutamine metabolism and supplied redundant data for robust Bayesian estimation. Gas chromatography-mass spectrometry further provided multiple fragments of metabolites which yielded additional labeling information. We obtained precise estimations of the fluxes, their joint credibility intervals, and their relations, and characterized common metabolic patterns with principal component analysis (PCA). Results: 13C-MFA indicated a hyperoxia-mediated reduction in tricarboxylic acid (TCA) cycle activity in circulating granulocytes which encompassed fluxes of glutamine uptake, TCA cycle, and oxaloacetate/aspartate supply for biosynthetic processes. We further detected elevated superoxide levels in the swine strain characterized by a hypercholesterolemic phenotype. PCA revealed cell type-specific behavioral patterns of metabolic adaptation in response to ASDH and HS that acted irrespective of swine strains or treatment group. Conclusion: In a model of resuscitated porcine ASDH and HS, we saw that ventilation with increased inspiratory O2 concentrations (PaO2 = 200 - 250 mmHg for 24 h after treatment initiation) did not impact mitochondrial respiration of PBMCs or granulocytes. However, Bayesian 13C-MFA results indicated a reduction in TCA cycle activity in granulocytes compared to cells exposed to normoxemia in the same time period. This change in metabolism did not seem to affect granulocytes' ability to perform phagocytosis or produce superoxide radicals.


Asunto(s)
Hematoma Subdural Agudo , Hiperoxia , Choque Hemorrágico , Animales , Porcinos , Glutamina/metabolismo , Ciclo del Ácido Cítrico , Análisis de Flujos Metabólicos/métodos , Superóxidos , Teorema de Bayes , Granulocitos/metabolismo , Oxígeno , Glucosa/metabolismo
10.
Methods ; 206: 8-17, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35908585

RESUMEN

NMR is a very powerful tool for identifying and quantifying compounds within complex mixtures without the need for individual standards or chromatographic separation. Stable Isotope Resolved Metabolomics (or SIRM) is an approach to following the fate of individual atoms from precursors through metabolic transformation, producing an atom-resolved metabolic fate map. However, extracts of cells or tissue give rise to very complex NMR spectra. While multidimensional NMR experiments may partially overcome the spectral overlap problem, additional tools may be needed to determine site-specific isotopomer distributions. NMR is especially powerful by virtue of its isotope editing capabilities using NMR active nuclei such as 13C, 15N, 19F and 31P to select molecules containing just these atoms in a complex mixture, and provide direct information about which atoms are present in identified compounds and their relative abundances. The isotope-editing capability of NMR can also be employed to select for those compounds that have been selectively derivatized with an NMR-active stable isotope at particular functional groups, leading to considerable spectral simplification. Here we review isotope analysis by NMR, and methods of chemoselection both for spectral simplification, and for enhanced isotopomer analysis.


Asunto(s)
Imagen por Resonancia Magnética , Metabolómica , Isótopos de Carbono/química , Mezclas Complejas , Marcaje Isotópico/métodos , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos
11.
Water Res X ; 15: 100130, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35287381

RESUMEN

Nitrous oxide (N2O) dominates greenhouse gas emissions in wastewater treatment plants (WWTPs). Formation of N2O occurs during biological nitrogen removal, involves multiple microbial pathways, and is typically very dynamic. Consequently, N2O mitigation strategies require an improved understanding of nitrogen transformation pathways and their modulating controls. Analyses of the nitrogen (N) and oxygen (O) isotopic composition of N2O and its substrates at natural abundance have been shown to provide valuable information on formation and reduction pathways in laboratory settings, but have rarely been applied to full-scale WWTPs. Here we show that N-species isotope ratio measurements at natural abundance level, combined with long-term N2O monitoring, allow identification of the N2O production pathways in a full-scale plug-flow WWTP (Hofen, Switzerland). Heterotrophic denitrification appears as the main N2O production pathway under all tested process conditions (0-2 mgO2/l, high and low loading conditions), while nitrifier denitrification was less important, and more variable. N2O production by hydroxylamine oxidation was not observed. Fractional N2O elimination by reduction to dinitrogen (N2) during anoxic conditions was clearly indicated by a concomitant increase in site preference, δ18O(N2O) and δ15N(N2O). N2O reduction increased with decreasing availability of dissolved inorganic N and organic substrates, which represents the link between diurnal N2O emission dynamics and organic substrate fluctuations. Consequently, dosing ammonium-rich reject water under low-organic-substrate conditions is unfavorable, as it is very likely to cause high net N2O emissions. Our results demonstrate that monitoring of the N2O isotopic composition holds a high potential to disentangle N2O formation mechanisms in engineered systems, such as full-scale WWTP. Our study serves as a starting point for advanced campaigns in the future combining isotopic technologies in WWTP with complementary approaches, such as mathematical modeling of N2O formation or microbial assays to develop efficient N2O mitigation strategies.

12.
NMR Biomed ; 35(3): e4648, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34850989

RESUMEN

PURPOSE: De novo lipogenesis (DNL) is critical for cell growth and maintenance, and acetyl-CoA precursors can be derived from different substrates. We developed a 13 C NMR analysis of lipid extracts from cultured microglia cells administered with [U-13 C]glucose that informs overall lipogenic activity as well as the contribution of glucose to lipogenic acetyl-CoA. METHODS: BV-2 microglial cell line cultured with glucose and glutamine was provided with [U-13 C]glucose and unlabeled glutamine for 24 h and studied in either the presence or absence of lipopolysaccharide (LPS). Cells were then extracted for lipids and the crude lipid fraction was analyzed by 13 C NMR. 13 C-isotopomer signals in the fatty acid ω - 1 and ω - 2 signals representing consecutive or non-consecutive enrichment of the fatty acid chain by [1,2-13 C2 ]acetyl-CoA were quantified and applied to a probabilistic model of acetyl-CoA precursor and fatty acid enrichment. RESULTS: Glucose contributed 72 ± 2% of lipogenic acetyl-CoA while DNL from all sources accounted for 16 ± 2% of lipid turnover. With LPS, there was a significant decrease in glucose contribution (59 ± 4%, p < 0.05) while DNL was unchanged (11 ± 3%). CONCLUSIONS: A simple 13 C NMR analysis of the crude lipid fractions of BV-2 cells administered with [U-13 C]glucose informs DNL activity and the contribution of glucose to the acetyl-CoA precursors. While DNL was preserved in the presence of LPS, there was redirection of lipogenic acetyl-CoA sources from glucose to other substrates. Thus, in the present article, we describe a novel and simple 13 C NMR analysis approach to disclose the overall lipogenic activity and substrate contribution to DNL, suitable for evaluating DNL rates in cell cultures.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13/métodos , Lipogénesis , Microglía/metabolismo , Acetilcoenzima A/metabolismo , Animales , Células Cultivadas , Glucosa/metabolismo , Ratones
13.
J Biol Chem ; 298(1): 101396, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34774796

RESUMEN

Quantitative flux maps describing glycerolipid synthesis can be important tools for rational engineering of lipid content and composition in oilseeds. Lipid accumulation in cultured embryos of Camelina sativa is known to mimic that of seeds in terms of rate of lipid synthesis and composition. To assess the kinetic complexity of the glycerolipid flux network, cultured embryos were incubated with [14C/13C]glycerol, and initial and steady state rates of [14C/13Cglyceryl] lipid accumulation were measured. At steady state, the linear accumulations of labeled lipid classes matched those expected from mass compositions. The system showed an apparently simple kinetic precursor-product relationship between the intermediate pool, dominated by diacylglycerol (DAG) and phosphatidylcholine (PC), and the triacylglycerol (TAG) product. We also conducted isotopomer analyses on hydrogenated lipid class species. [13C3glyceryl] labeling of DAG and PC, together with estimates of endogenous [12C3glyceryl] dilution, showed that each biosynthetically active lipid pool is ∼30% of the total by moles. This validates the concept that lipid sub-pools can describe lipid biosynthetic networks. By tracking the kinetics of [13C3glyceryl] and [13C2acyl] labeling, we observed two distinct TAG synthesis components. The major TAG synthesis flux (∼75%) was associated with >95% of the DAG/PC intermediate pool, with little glycerol being metabolized to fatty acids, and with little dilution from endogenous glycerol; a smaller flux exhibited converse characteristics. This kinetic heterogeneity was further explored using postlabeling embryo dissection and differential lipid extractions. The minor flux was tentatively localized to surface cells across the whole embryo. Such heterogeneity must be recognized in order to construct accurate gene expression patterns and metabolic networks describing lipid biosynthesis in developing embryos.


Asunto(s)
Brassicaceae , Glicerol , Triglicéridos , Brassicaceae/metabolismo , Ácidos Grasos/metabolismo , Glicerol/metabolismo , Cinética , Fosfatidilcolinas/metabolismo , Semillas/metabolismo , Triglicéridos/metabolismo
14.
Plant J ; 108(4): 1213-1233, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34486764

RESUMEN

13 C-Metabolic flux analysis (13 C-MFA) has greatly contributed to our understanding of plant metabolic regulation. However, the generation of detailed in vivo flux maps remains a major challenge. Flux investigations based on nuclear magnetic resonance have resolved small networks with high accuracy. Mass spectrometry (MS) approaches have broader potential, but have hitherto been limited in their power to deduce flux information due to lack of atomic level position information. Herein we established a gas chromatography (GC) coupled to MS-based approach that provides 13 C-positional labelling information in glucose, malate and glutamate (Glu). A map of electron impact (EI)-mediated MS fragmentation was created and validated by 13 C-positionally labelled references via GC-EI-MS and GC-atmospheric pressure chemical ionization-MS technologies. The power of the approach was revealed by analysing previous 13 C-MFA data from leaves and guard cells, and 13 C-HCO3 labelling of guard cells harvested in the dark and after the dark-to-light transition. We demonstrated that the approach is applicable to established GC-EI-MS-based 13 C-MFA without the need for experimental adjustment, but will benefit in the future from paired analyses by the two GC-MS platforms. We identified specific glucose carbon atoms that are preferentially labelled by photosynthesis and gluconeogenesis, and provide an approach to investigate the phosphoenolpyruvate carboxylase (PEPc)-derived 13 C-incorporation into malate and Glu. Our results suggest that gluconeogenesis and the PEPc-mediated CO2 assimilation into malate are activated in a light-independent manner in guard cells. We further highlight that the fluxes from glycolysis and PEPc toward Glu are restricted by the mitochondrial thioredoxin system in illuminated leaves.


Asunto(s)
Carbono/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Análisis de Flujos Metabólicos/métodos , Isótopos de Carbono/análisis , Ácido Glutámico/análisis , Glucólisis , Espectroscopía de Resonancia Magnética , Malatos/análisis , Fotosíntesis , Hojas de la Planta/metabolismo
15.
Ecol Appl ; 31(7): e02403, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34231260

RESUMEN

Soil fertility in organic agriculture relies on microbial cycling of nutrient inputs from legume cover crops and animal manure. However, large quantities of labile carbon (C) and nitrogen (N) in these amendments may promote the production and emission of nitrous oxide (N2 O) from soils. Better ecological understanding of the N2 O emission controls may lead to new management strategies to reduce these emissions. We measured soil N2 O emission for two growing seasons in four corn-soybean-winter grain rotations with tillage, cover crop, and manure management variations typical of organic agriculture in temperate and humid North America. To identify N2 O production pathways and mitigation opportunities, we supplemented N2 O flux measurements with determinations of N2 O isotopomer composition and microbiological genomic DNA abundances in microplots where we manipulated cover crop and manure additions. The N input from legume-rich cover crops and manure prior to corn planting made the corn phase the main source of N2 O emissions, averaging 9.8 kg/ha of N2 O-N and representing 80% of the 3-yr rotations' total emissions. Nitrous oxide emissions increased sharply when legume cover crop and manure inputs exceeded 1.8 and 4 Mg/ha (dry matter), respectively. Removing the legume aboveground biomass before corn planting to prevent co-location of fresh biomass and manure decreased N2 O emissions by 60% during the corn phase. The co-occurrence of peak N2 O emission and high carbon dioxide emission suggests that oxygen (O2 ) consumption likely caused hypoxia and bacterial denitrification. This interpretation is supported by the N2 O site preference values trending towards denitrification during peak emissions with limited N2 O reduction, as revealed by the N2 O δ15 N and δ18 O and the decrease in clade I nosZ gene abundance following incorporation of cover crops and manure. Thus, accelerated microbial O2 consumption seems to be a critical control of N2 O emissions in systems with large additions of decomposable C and N substrates. Because many agricultural systems rely on combined fertility inputs from legumes and manures, our research suggests that controlling the rate and timing of organic input additions, as well as preventing the co-location of legume cover crops and manure, could mitigate N2 O emissions.


Asunto(s)
Desnitrificación , Óxido Nitroso , Agricultura , Animales , Productos Agrícolas , Nitrógeno/análisis , Óxido Nitroso/análisis , Suelo
16.
Methods Mol Biol ; 2310: 259-270, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34096007

RESUMEN

Mitochondria play a central role in metabolic reprograming that occurs in numerous disease conditions. A precise evaluation of the extent of mitochondrial involvement in the metabolic alterations is essential for a better definition of metabolically based therapeutic strategies. In this chapter, some simple protocols are presented, using carbon 13 tracers and nuclear magnetic resonance isotopomer analysis, for the evaluation of mitochondrial contributions to intermediary metabolism and the metabolic effects of the implementation of some mitochondrial regulatory mechanisms.


Asunto(s)
Espectroscopía de Resonancia Magnética con Carbono-13 , Metabolismo Energético , Mitocondrias/metabolismo , Animales , Fraccionamiento Celular , Células Cultivadas , Glutamina/metabolismo , Glucólisis , Humanos , Fosforilación Oxidativa
17.
Sci Total Environ ; 781: 146515, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-33812119

RESUMEN

Nitrous oxide (N2O) is a potent greenhouse gas (GHG) emitted from agricultural soils and is influenced by nitrogen (N) fertiliser management and weather and soil conditions. Source partitioning N2O emissions related to management practices and soil conditions could suggest effective mitigation strategies. Multispecies swards can maintain herbage yields at reduced N fertiliser rates compared to grass monocultures and may reduce N losses to the wider environment. A restricted-simplex centroid experiment was used to measure daily N2O fluxes and associated isotopomers from eight experimental plots (7.8 m2) post a urea-N fertiliser application (40 kg N ha-1). Experimental pastures consisted of differing proportions of grass, legume and forage herb represented by perennial ryegrass (Lolium perenne), white clover (Trifolium repens) and ribwort plantain (Plantago lanceolata), respectively. N2O isotopomers were measured using a cavity ring down spectroscopy (CRDS) instrument adapted with a small sample isotope module (SSIM) for the analysis of gas samples ≤20 mL. Site preference (SP = δ15Nα - δ15Nß) and δ15Nbulk ((δ15Nα + δ15Nß) / 2) values were used to attribute N2O production to nitrification, denitrification or a mixture of both nitrification and denitrification over a range of soil WFPS (%). Daily N2O fluxes ranged from 8.26 to 86.86 g N2O-N ha-1 d-1. Overall, 34.2% of daily N2O fluxes were attributed to nitrification, 29.0% to denitrification and 36.8% to a mixture of both. A significant diversity effect of white clover and ribwort plantain on predicted SP and δ15Nbulk indicated that the inclusion of ribwort plantain may decrease N2O emission through biological nitrification inhibition under drier soil conditions (31%-75% WFPS). Likewise, a sharp decline in predicted SP indicates that increased white clover content could increase N2O emissions associated with denitrification under elevated soil moisture conditions (43%-77% WFPS). Biological nitrification inhibition from ribwort plantain inclusion in grassland swards and management of N fertiliser source and application timing to match soil moisture conditions could be useful N2O mitigation strategies.

18.
Metabolites ; 11(4)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805301

RESUMEN

Lipids comprise diverse classes of compounds that are important for the structure and properties of membranes, as high-energy fuel sources and as signaling molecules. Therefore, the turnover rates of these varied classes of lipids are fundamental to cellular function. However, their enormous chemical diversity and dynamic range in cells makes detailed analysis very complex. Furthermore, although stable isotope tracers enable the determination of synthesis and degradation of complex lipids, the numbers of distinguishable molecules increase enormously, which exacerbates the problem. Although LC-MS-MS (Liquid Chromatography-Tandem Mass Spectrometry) is the standard for lipidomics, NMR can add value in global lipid analysis and isotopomer distributions of intact lipids. Here, we describe new developments in NMR analysis for assessing global lipid content and isotopic enrichment of mixtures of complex lipids for two cell lines (PC3 and UMUC3) using both 13C6 glucose and 13C5 glutamine tracers.

19.
Front Plant Sci ; 12: 646498, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868347

RESUMEN

Microalgae have the potential to recycle CO2 as starch and triacylglycerol (TAG), which provide alternative source of biofuel and high added-value chemicals. Starch accumulates in the chloroplast, whereas TAG accumulates in the cytoplasmic lipid droplets (LD). Preferential accumulation of starch or TAG may be achieved by switching intracellular metabolic carbon flow, but our knowledge on this control remains limited. Are these two products mutually exclusive? Or, does starch act as a precursor to TAG synthesis, or vice versa? To answer these questions, we analyzed carbon flow in starch and lipids using a stable isotope 13C in Chlamydomonas debaryana NIES-2212, which accumulates, without nutrient limitation, starch in the exponential growth phase and TAG in the stationary phase. Pulse labeling experiments as well as pulse labeling and chase experiments were conducted, and then, gas chromatography-mass spectrometry (GC-MS) analysis was performed on starch-derived glucose and lipid-bound fatty acids. We exploited the previously developed method of isotopomer analysis to estimate the proportion of various pools with different isotopic abundance. Starch turned over rapidly to provide carbon for the synthesis of fatty acids in the exponential phase cells. Most fatty acids showed rapid and slow components of metabolism, whereas oleic acid decayed according to a single exponential curve. Highly labeled population of fatty acids that accumulated during the initial labeling decreased rapidly, and replaced by low abundance population during the chase time, indicating that highly labeled fatty acids were degraded and the resulting carbons were re-used in the re-synthesis with about 9-fold unlabeled, newly fixed carbons. Elongation of C16-C18 acids in vivo was indicated by partially labeled C18 acids. The accumulation of TAG in the stationary growth phase was accounted for by both de novo synthesis and remodeling of membrane lipids. These results suggest that de novo synthesis of starch and TAG was rapid and transient, and also almost independent to each other, but there is a pool of starch quickly turning over for the synthesis of fatty acids. Fatty acids were also subject to re-synthesis. Evidence was also provided for remodeling of lipids, namely, re-use of acyl groups in polar lipids for TAG synthesis.

20.
Metabolites ; 11(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466367

RESUMEN

Ovine models of pregnancy have been used extensively to study maternal-fetal interactions and have provided considerable insight into nutrient transfer to the fetus. Ovine models have also been utilized to study congenital heart diseases. In this work, we demonstrate a comprehensive assessment of heart function and metabolism using a perinatal model of heart function with the addition of a [U-13C]glucose as tracer to study central energy metabolism. Using nuclear magnetic resonance spectroscopy, and metabolic modelling, we estimate myocardial citric acid cycle turnover (normalized for oxygen consumption), substrate selection, and anaplerotic fluxes. This methodology can be applied to studying acute and chronic effects of hormonal signaling in future studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA