Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.723
Filtrar
1.
J Environ Sci (China) ; 148: 27-37, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095163

RESUMEN

Naphthenic acids, NAs, are a major contaminant of concern and a focus of much research around remediation of oil sand process affected waters, OSPW. Using activated carbon adsorbents are an attractive option given their low cost of fabrication and implementation. A deeper evaluation of the effect NA structural differences have on uptake affinity is warranted. Here we provide an in-depth exploration of NA adsorption including many more model NA species than have been assessed previously with evaluation of adsorption kinetics and isotherms at the relevant alkaline pH of OSPW using several different carbon adsorbents with pH buffering to simulate the behaviour of real OSPW. Uptake for the NA varied considerably regardless of the activated carbon used, ranging from 350 mg/g to near zero highlighting recalcitrant NAs. The equilibrium data was explored to identify structural features of these species and key physiochemical properties that influence adsorption. We found that certain NA will be resistant to adsorption when hydrophobic adsorbents are used. Adsorption isotherm modelling helped explore interactions occurring at the interface between NA and adsorbent surfaces. We identified the importance of NA hydrophobicity for activated carbon uptake. Evidence is also presented that indicates favorable hydrogen bonding between certain NA and surface site hydroxyl groups, demonstrating the importance of adsorbent surface functionality for NA uptake. This research highlights the challenges associated with removing NAs from OSPW through adsorption and also identifies how adsorbent surface chemistry modification can be used to increase the removal efficiency of recalcitrant NA species.


Asunto(s)
Ácidos Carboxílicos , Contaminantes Químicos del Agua , Adsorción , Ácidos Carboxílicos/química , Contaminantes Químicos del Agua/química , Carbón Orgánico/química , Modelos Químicos , Cinética , Concentración de Iones de Hidrógeno
2.
Int J Biol Macromol ; 279(Pt 3): 135470, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39250998

RESUMEN

This study evaluated the ability of triethyl benzyl ammonium chloride/lactic acid deep eutectic solvent extracted lignin (TEBAC/LA-DES-L) to adsorb methylene blue (MB) without additional functional group modification. The structure and morphology of TEBAC/LA-DES-L were characterized using SEM, BET, FT-IR, and TGA techniques. Various factors influencing MB adsorption, such as extraction temperature, solution pH, adsorbent dose, initial MB concentration, adsorption time, and reaction temperature, were investigated. The Redlich-Peterson isotherm displayed a good fit for the experimental data, with a maximum adsorption capacity of 85.16 mg/g. Kinetic analysis suggested that the adsorption process followed the pseudo-second-order model, with adsorption occurring in <100 min on DES-L-4 h. The mechanism of MB adsorption on DES-L-4 h was attributed to electrostatic attraction, hydrophobic interactions, and hydrogen bonding forces. Overall, DES-L-4 h demonstrated high adsorption capacity and rapid adsorption rate, making it a promising adsorbent for effectively removing cationic dyes from wastewater.

3.
Molecules ; 29(17)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39274870

RESUMEN

The preparation of biocarbons from cellulose fibres utilised in the production of baby nappy mats (sourced from Feniks Recycling company, Poland) for the removal of methylene blue and rhodamine B dyes has been documented. A Brunauer, Emmett and Teller analysis revealed a surface area within the range of 384 to 450 m2/g. The objective of this study was to investigate the removal efficiency of dyes from aqueous solutions by biocarbons, with a particular focus on the influence of various parameters, including pH, dye concentration, adsorbent dosage, shaking speed, contact time, and temperature. The maximum adsorption capacity of the dyes onto the biocarbons was found to be 85 mg/g for methylene blue and 48 mg/g for rhodamine B, respectively. The Langmuir equation proved to be the most suitable for interpreting the sorption of organic dyes. The adsorption process was found to exhibit a chemisorption mechanism, effectively mirroring the pseudo-second-order kinetics. Furthermore, the adsorption of dyes was observed to be endothermic (the enthalpy change was positive, 9.1-62.6 kJ/mol) and spontaneous under the tested operating conditions. The findings of this study indicate that biocarbons represent a cost-effective option for the removal of methylene blue and rhodamine B. The adsorption method was observed to be an effective and straightforward approach for the removal of these dyes. The results of the Boehm titration analysis and zero charge point value indicated that the synthesised biomaterials exhibited a slightly basic surface character.

4.
Molecules ; 29(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39274948

RESUMEN

A nanostructured material, ordered mesoporous carbon (OMC), was synthesised in metal- and halide-free form and its use for the sequestration of crystal violet, a hazardous triphenylmethane dye, is reported for the first time. The OMC material is characterised using scanning transmission electron microscopy with energy-dispersive spectroscopy for chemical analysis, by Fourier-transform infrared spectroscopy, and by nitrogen gas physisorption. The ideal conditions for the uptake of crystal violet dye were determined in batch experiments covering the standard parameters: pH, concentration, contact time, and adsorbent dosage. Experimental data are validated by applying Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherms. The thermodynamic parameters, ΔH°, ΔG°, and ΔS°, are calculated and it has been found that the adsorption process is spontaneous and endothermic with increasing disorder. An in-depth analysis of the kinetics of the adsorption process, order of the reaction and corresponding values of the rate constants was performed. The adsorption of crystal violet over OMC has been found to follow pseudo-second-order kinetics through a film diffusion process at all temperatures studied. Continuous flow column operations were performed using fixed bed adsorption. Parameters including percentage saturation of the OMC bed are evaluated. The exhausted column was regenerated through a desorption process and column efficiency was determined.

5.
Environ Res ; 263(Pt 1): 119980, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270952

RESUMEN

Porous organic polymers (POPs) exhibit significant potential for adsorbing toxic metal ions in wastewater. Developing POPs with controlled morphologies is a pivotal direction in this field. This study synthesized a series of novel hyper-crosslinked nanofibrous tubes designated HCNT-Cn (n = 4, 8, 12, 16) via Friedel-Crafts alkylation and quaternization reactions. These reactions were fine-tuned through a post-synthetic strategy involving varying alkyl chain lengths. These materials were characterized using FT-IR, SEM, N2 adsorption-desorption isotherms, among others, and they were specifically evaluated for their ability to adsorb Cr(VI). Among the variants, HCNT-C4 exhibited the highest specific surface area (495.26 m2 g-1), superior hydrophilicity (CA = 48.7°), and optimal adsorption performance. The adsorption kinetics of HCNT-C4 conformed to a pseudo-second-order model, while its adsorption isotherm aligned with the Langmuir model. An investigation into the impact of Cr(VI) removal was conducted using three independent variables in a Central Composite Design (CCD) response surface model, revealing that under optimal conditions, the Cr(VI) removal efficiency reached 98%. Additionally, a mechanism for Cr(VI) adsorption on HCNT-C4 was proposed. It was also found that HCNT-C4 could be reused up to four times, maintaining a removal efficiency of 70%. This study suggests potential applications for removing Cr(VI) from contaminated wastewater.

6.
Chemosphere ; 365: 143331, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39278324

RESUMEN

Granular activated carbon (GAC) and ion exchange resin (IXR) are widely used as adsorbents to remove PFAS from drinking water sources and effluent waste streams. However, the high cost associated with GAC and IXR generation has motivated the development of less expensive adsorbents for treatment of PFAS-impacted water. Thus, the objective of this research was to create an economically viable and sustainable PFAS adsorbent from sewage sludge. Stepwise pyrolysis at temperatures from 300 °C to 1000 °C yielded biochars whose specific surface area (SSA) and porosity increased from 41 to 148 m2/g, and from 0.062 to 0.193 cm3/g, respectively. On a per organic char basis, the SSA of the biochar was as high as 1183 m2/g, which is comparable to commercially-available activated carbons. The adsorption of perfluorooctane sulfonic acid (PFOS) on sludge biochar increased with increasing pyrolysis temperature, which was positively correlated with increasing porosity and SSA. When 1000 °C processed biochar was tested with a mixture of eight PFAS, preferential adsorption of longer carbon chain-length species was observed, indicating the importance of PFAS hydrophobic interactions with the biochar and the availability of a wide range of mesopores. The adsorption of each PFAS was dependent upon both chain length and head group, with longer chain-length species exhibiting greater adsorption than shorter chain-length species, along with greater adsorption of species with sulfonic acid head groups compared to their chain length counterparts with carboxylic acid head groups. These findings demonstrate that biochar derived from municipal solid waste can serve as a cost-effective and sustainable adsorbent for the removal of PFOS and PFAS mixtures from source waters. The circular economy benefits and waste reduction potential associated with the use of sewage sludge-derived biochar supports the development of a viable sludge-derived biochar for the removal of PFAS from water.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39227535

RESUMEN

The present study describes a set of methodological procedures (seldom applied together), including (i) development of an alternative adsorbent derived from abundant low-cost plant biomass; (ii) use of simple low-cost biomass modification techniques based on physical processing and chemical activation; (iii) design of experiments (DoE) applied to optimize the removal of a pharmaceutical contaminant from water; (iv) at environmentally relevant concentrations, (v) that due to initial low concentrations required determination by ultra-performance liquid phase chromatography coupled to mass spectrometry (UPLC-MS/MS). A central composite rotational design (CCRD) was employed to investigate the performance of vegetable sponge biomass (Luffa cylindrica), physically processed (crushing and sieving) and chemically activated with phosphoric acid, in the adsorption of the antibiotic trimethoprim (TMP) from water. The optimized model identified pH as the most significant variable, with maximum drug removal (91.1 ± 5.7%) achieved at pH 7.5, a temperature of 22.5 °C, and an adsorbent/adsorbate ratio of 18.6 mg µg-1. The adsorption mechanisms and surface properties of the adsorbent were examined through characterization techniques such as scanning electron microscopy (SEM), point of zero charge (pHpzc) measurement, thermogravimetric analysis (TGA), specific surface area, and Fourier-transform infrared spectroscopy (FTIR). The best kinetic fit was obtained by the Avrami fractional-order model. The hypothesis of a hybrid behavior of the adsorbent was suggested by the equilibrium results presented by the Langmuir and Freundlich models and reinforced by the Redlich-Peterson model, which achieved the best fit (R2 = 0.982). The thermodynamic study indicated an exothermic, spontaneous, and favorable process. The maximum adsorption capacity of the material was 2.32 × 102 µg g-1 at an equilibrium time of 120 min. Finally, a sustainable and promising adsorbent for the polishing of aqueous matrices contaminated by contaminants of emerging concern (CECs) at environmentally relevant concentrations is available for future investigations.

8.
Sci Rep ; 14(1): 21116, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256397

RESUMEN

Three types of synthetic coal-derived adsorbents were characterized as potential enhanced structurers during the removal of chlorpyrifos pesticide. The raw coal (CA) was activated into porous graphitic carbon (AC), and both CA and AC were blended with polyaniline polymers (PANI/CA and PANI/AC) forming two advanced composites. The adsorption performances of the modified structures in comparison with CA were evaluated based on both the steric and energetic parameters of the applied advanced isotherm model (the monolayer model of one energy). The uptake performances reflected higher capacities for the PANI hybridized form (235.8 mg/g (PANI/CA) and 309.75 mg/g (PANI/AC) as compared to AC (156.9 mg/g) and raw coal (135.8 mg/g). This signifies the impact of activation step and PANI blending on the surface and textural properties of coal. The steric investigation determined the saturation of the coal surface with extra active sites after the activation step (Nm(AC) = 62.05 mg/g) and the PANI integration (Nm(PANI/CA) = 113.5 mg/g and Nm(PANI/AC) = 169.7 mg/g) as compared to raw coal (Nm(CA) = 39.6 mg/g). This illustrated the reported uptake efficiencies of the modified samples, which can be attributed to the enhancement in the surface area and the incorporation of additional chemical groups. The results also reflect that each site can be loaded with 3-4 molecules of chlorpyrifos, which are arranged vertically and adsorbed by multi-molecular mechanisms. The energetic studies (< 40 kJ/mol) suggested the physical uptake of pesticide molecules by dipole bonding and hydrogen bonding processes. The thermodynamic functions donate the exothermic properties of 47reactions that occur spontaneously.

9.
J Mol Model ; 30(10): 335, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283541

RESUMEN

CONTEXT: In this comparative study of the adsorption of L-phenylalanine (L-Phe) on two modified low-activated carbons (ACK and ACZ) at four temperatures (293-313 K), steric and energetic characteristics of adsorption were investigated. An advanced statistical physics multilayer model involving single-layer and double-layer adsorption scenarios was developed to interpret the L-Phe adsorption phenomenon. Modeling results indicate that two and three L-Phe layers were arranged depending on the tested adsorption systems. The estimated number of L-Phe molecules per leading adsorption site varied from 1.71 to 2.09 and from 1.76 to 1.86 for systems L-Phe-ACK and L-Phe-ACZ, respectively. The results show that a multimolecular adsorption mechanism might connect this amino acid molecule on ACZ and ACK surfaces in a non-parallel location. These parameters changed as follows, according to the adsorbed quantity at saturation analysis: Qasat (L-Phe-ACK) ˃ Qasat (L-Phe-ACZ). This indicates that ACK material was more efficient and valuable for L-Phe adsorption than ACZ. It was also shown that the adsorption capacity decreases as the temperature increases, proving the exothermicity of the adsorption process. This analytical substantiation is confirmed by calculating the binding energies, suggesting the occurrence of physical bonds between L-Phe amino acid molecules and ACK/ACZ binding sites and among L-Phe-L-Phe molecules. Pore size distribution was interpreted and calculated by applying the Kelvin theory to data from single adsorption isotherms. All used temperatures depicted a distribution of pores below 2 nm. The docking analysis involving L-Phe and the ACZ and ACK adsorbents reveal a significant resemblance in how receptors detect ligands. Consequently, the findings from the docking process confirm that the calculated binding affinities fall within the spectrum of adsorption energy. METHODS: This study analyzed the adsorption capacity of the L-Phe through a model proposed by statistical physics formalism. Molecular docking was used to determine the various types of interactions between the two activated carbons. Two aspects, including orientation of L-Phe on the site, number of molecules per site n, interaction energy, density of receptor site, and adsorption capacity, were discussed to elucidate the influence of activation on the two adsorbents.

10.
Environ Res ; : 120003, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293754

RESUMEN

Selenium (Se) is an essential micronutrient for human beings, but excess concentration can lead to many health issues and degrade the ecosystem. This study focuses on the removal of selenium from an aqueous solution using iron-doped dolochar. SEM, EDX, BET, XRD, FTIR, and Pzpc were conducted to determine the surface characteristics of iron-doped dolochar (FeD). The characterization of the adsorbent gave an insight into surface morphology, surface area (100 m2/g), average pore diameter (3.9 nm), and surface composition, which contributed to the Se adsorption. The pHzpc of the iron-doped adsorbent surface was found to be 7.02, which provided a broad range for effective Se adsorption. To detect the optimum parameters, the parametric influence on removal efficiency was conducted by varying pH, dosages, contact time, and initial concentration. The experiment achieved maximum selenium removal, ∼98 %, at low concentration, 10 g/L dosage, and low pH (2) within 90 min at room temperature. It fits the Langmuir better than the Freundlich isotherm (R2 = 0.99), indicating monolayer adsorption. It fitted well with pseudo-second-order kinetics. The experiment is a spontaneous, endothermic (ΔH0=9.22 kJ/mol) and high randomness (ΔS0 =45.37 kJ/mol) suggested by thermodynamic study. The adsorption was influenced by competing ions as follows: phosphate > sulfate > nitrate > manganese > aluminum> zinc > iron. A regression learner tool was used to compare different models using the experimental data that showed the best fit with the Gaussian Process Regression with RMSE =0.246, MSE = 0.061, and R2 = 0.99. Thus, it can be concluded that FeD is preferred as a better adsorbent for selenium removal from aqueous solutions and could produce 35.5% ROI, 21.5% IRR, and 24.59% BEP on FeD production.

11.
Heliyon ; 10(17): e36731, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296183

RESUMEN

Dyes are among the toxic contaminants that significantly impact water ecosystems. A biomaterial prepared from Zizyphus Spina-Christi seed (ZSCS) to remove methylene blue (MB) and methyl violet (MV) from an aqueous solution was investigated. Several techniques have been used, including FTIR, SEM, EDX, XPS, and TGA, to characterize the physical and chemical properties of ZSCS. The effect of various parameters such as pH, adsorbent dosage, contact time, temperature, and initial dye concentration on the adsorption process were studied. The ZSCS adsorbent showed efficient MB and MV dye adsorption with Langmuir adsorption capacity of 666.66 and 476.19 mg/g, respectively, at experimental condition [(pH = 6; time = 30 min; T = 45 °C, dye concentration: 500 mg/L, and adsorbent dose = 0.6 g/L for MB and 1 g/L for MV dye)]. Kinetic and isotherm models were applied to fit the experimental outcomes. The result showed that ZSCS showed an ultrafast absorption process with a high removal efficiency of MB and MV within 5 min indicating its effective adsorption properties. The Langmuir isotherm model was the most suitable model for describing the adsorption of MB and MV dyes on ZSCS. The pseudo-second-order model kinetic fits better to MB and MV adsorption onto ZSCS than other models, suggesting that the adsorption mechanism followed chemisorption. Our results could offer an efficient cost-effective approach for dye removal from wastewater.

12.
Dose Response ; 22(3): 15593258241271655, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165285

RESUMEN

Antibiotics are widely used in veterinary and human medicine, but these compounds, when released into the aquatic environment, present potential risks to living organisms. In the present study, the activated carbon (AC) used for their removals is characterized by FT-IR spectroscopy, BET analysis and Scanning Electron Microscopy (SEM) to determine the physicochemical characteristics. Response surface methodology (RSM) and Box-Behnken statistical design (BBD) were used to optimize important parameters including pH (2-12), temperature (20-45°C), and AC dose (0.05-0.20 g). The experimental data were analyzed by analysis of variance (ANOVA) and fitted to second-order polynomial using multiple regression analysis. The optimal conditions for maximum elimination of Amoxicillin (Amox) are (Dose: 0.124 g, pH 5.03 and 45°C) by applying the desirability function (df). A confirmation experiment was carried out to evaluate the accuracy of the optimization model and maximum removal efficiency (R = 89.999%) was obtained under the optimized conditions. Several error analysis equations were used to measure goodness of fit. Pareto analysis suggests the importance of the relative order of factors: pH > Temperature > AC dose in optimized situations. The equilibrium adsorption data of Amox on Activated Carbone were analyzed by Freundlich, Elovich, Temkin and Langmuir models. The latter gave the best correlation with qmax capacities of 142.85 mg/g (R2 = 0.999) at 25°C is removed from solution. The adsorption process is dominated by chemisorption and the kinetic model obeys a pseudo-second order model (R2 = 0.999).

13.
Heliyon ; 10(15): e35364, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39166070

RESUMEN

The increasing presence of plastics in the environment has raised concerns about their potential impact, especially as carriers of heavy metals such as Cd, Ni, and Pb. However, the adsorption mechanism of heavy metals on microplastics remains poorly understood. In this study, we investigated the adsorption behavior of Cd, Ni, and Pb by polystyrene (PS) and polypropylene (PP) microplastics to better comprehend their interaction and potential environmental implications. Our results revealed that equilibrium adsorption of microplastics with different heavy metals was achieved within a 6-h contact time. The FTIR analysis findings, which suggest that physical interactions play a significant role in the adsorption of heavy metals onto microplastics, are further supported by the observed changes in surface morphology after adsorption. We explored the influence of solution pH, contact duration, and initial concentration on the adsorption capacity and found significant effects on the adsorption behavior. To model the adsorption process, we applied Langmuir and Freundlich adsorption isotherm models and observed that the Langmuir model better fit the experimental data. Furthermore, we compared the pseudo-first and pseudo-second-order kinetic models and found that the pseudo-second-order model provided a more accurate description of the adsorption kinetics. Notably, the adsorption percentages varied depending on the type of microplastic and experimental conditions. Overall, this study enhances our understanding of the adsorption mechanism of heavy metals on microplastics and provides valuable insights into their behavior in aquatic environments. These findings have implications for the development of effective strategies for mitigating pollution caused by microplastics and heavy metals in aquatic ecosystems.

14.
Gels ; 10(8)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39195025

RESUMEN

Water pollution caused by dyes is a significant environmental issue, necessitating the development of effective, cost-efficient decolorization methods suitable for industrial use. In this study, a Chitosan-Fe polymeric gel was synthesized, characterized, and tested for removing the azo dye Direct Red 83:1 from water. The polymeric magnetic chitosan was analyzed using various techniques: Field Emission Scanning Electron Microscopy (FE-SEM) revealed a porous structure, Differential Scanning Calorimetry (DSC) and Thermal Gravimetric Analysis (TGA) demonstrated the thermal stability, Infrared Spectrophotometry (IR) indicated the successful coordination of iron at the C3 position, and X-ray Powder Diffraction (XRD) confirmed the crystalline nature of the polymeric structure. Optimal conditions for kinetic and isotherm models were found at 1 g and pH 7.0. Adsorption behavior of Direct Red 83:1 onto magnetic chitosan gel beads was studied through kinetic tests and isotherm curves. The maximum adsorption capacity was 17.46 mg/g (qmax). The adsorption process followed pseudo-second-order kinetics (R2 = 0.999) and fit the Temkin isotherm (R2 = 0.946), suggesting heterogeneous surface adsorption. The newly synthesized Chitosan-Fe polymeric gel demonstrated good adsorption properties and facilitated easy separation of purified water.

15.
Chemosphere ; 364: 143048, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39121956

RESUMEN

Water is essential for the survival of all living things; however, its extensive use in agriculture, high-tech manufacturing, energy production, and the rapid development of the chemical and petroleum industries has led to significant contamination, making water pollution a major concern today. Ammonia is one of the most harmful contaminants present in water, posing significant environmental and health risks that require appropriate remediation methods. To remove ammonia from contaminated water, we employ Carbon Nanotubes (CNTs) and Activated Carbon (AC). To ensure appropriate metal impregnation on the adsorbents, Fe, Al, Ag, and Cu were impregnated into both CNT and AC, followed by extensive characterization using Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), and Energy Dispersive X-rays (EDX). To optimize ammonia removal from water, several parameters were adjusted, including pH, dose amount, contact time, shaking speed, and temperature. Astonishingly, the highest removal efficiency of 40% was achieved with a 1 g dosage at pH 10.5 and 200 RPM, while silver oxide had a lower removal rate of 10% under the same conditions. Temperature additionally had a significant impact, with removal percentages reaching 40% at 70 °C as compared to 21.5% at 25 °C. Adsorption isotherms were used to analyze the experimental data, along with Langmuir and Freundlich's models. Notably, Langmuir produced superior curve fitting, resulting in a correlation factor close to one. Furthermore, kinetic modeling was carried out with 2nd-order and pseudo-2nd-order equations, with the latter responding better according to curve analysis. Because the ammonia removal rate was low, this study indicates the feasibility of implementing an adsorption technique using CNT and AC as a pre-treatment method for this purpose. This approach has the potential for future optimization and deployment in tackling water contamination concerns effectively.

16.
Heliyon ; 10(14): e33748, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39113992

RESUMEN

Corrosion significantly threatens the structural integrity of steel-based constructions like buildings and industrial units. Traditional corrosion inhibitors, such as chromates, are associated with environmental and health risks. This has led to a growing interest in environmentally sustainable alternatives, with plant extracts emerging as promising candidates. These extracts are widely available, sustainable, and eco-friendly. This review aims to explore the potential of plant extracts as corrosion inhibitors for various types of steel. After examining current scientific literature, over 40 plant extracts have been identified that exhibit corrosion inhibition properties. These extracts have been thoroughly analyzed to understand their effectiveness in preventing corrosion. The review elucidates the mechanisms by which these extracts interact with metal surfaces to form protective layers, effectively hindering the corrosion process. In this review, we focus on the challenges associated with utilizing plant extracts as inhibitors, including optimal extract concentration and temperature considerations.

17.
Sci Rep ; 14(1): 17827, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090089

RESUMEN

Dyes are one of the common contaminants in industrial wastewater. Adsorption is the most widely method which used to treat dye-contaminated water due to their easy use, cost-effectiveness, and their efficiency was high. The aim of this study is the investigating of the utilization of the activated carbon which prepared from Raphanus seeds solid residual (ACRS) as a low cost adsorbent for removing of cationic Methylene Blue dye (MB)from wastewater. measuring the surface area using BET methods and SEM. The FT‒IR and XRD was measured. Different variables (e.g.: initial concentration of the dye, pH, contact time, and dosage) have been studied. Process has been systematically investigated experimentally at (25 ± 1 °C). The % removal of MB reached 99.4% after 90-min MB adsorption (40 mg/L) was observed within 5 min of contact time for the Raphanus seeds solid residual (ACRS) dosage of 4 g/L. MB initial concentration (10 ppm) Raphanus seeds solid residual (ACRS) effectively adsorbed MB (> 99%) over a widely range of pH (from pH 2 to pH 8). However, a swift decline in removal was observed when the pH was set at 7. The results of the adsorption kinetics analysis indicate a strong correlation with the pseudo-second-order model, as evidenced by the high regression coefficients. However, the adsorption capacity diminished with a rise in temperature. Thermodynamic calculations of (MB) onto Raphanus seeds solid residual (ACRS) is an exothermic reaction. The results have been indicated that the effectiveness of MB removal by activated carbon prepared from Raphanus seeds solid residual is favorable under neutral conditions, Raphanus seeds solid residual (ACRS) can be considered an efficient, environmentally friendly, readily available, and economical adsorbent that could treat industrial wastewater contaminated with cationic textile dyes. The objective of the experiments was to investigate the impact of various factors on the response of a process or formulation. To accomplish this goal, response surface methodology (RSM) has employed as a statistical model. RSM is an efficient and effective method for optimizing processes through the use of a quadratic polynomial model. The utilization of RSM allows for a reduction in the number of experiments needed, thus minimizing the associated costs of extensive analysis. This method has been done using Box-Behnken Design (BBD) to optimize % removal of MB. The optimal conditions as obtained from the RSM is pH 7,contact time 120 min, initial concentration 10 ppm, ACRS dosage 1 g, adsorption temperature 45 °C.

18.
Artículo en Inglés | MEDLINE | ID: mdl-39096456

RESUMEN

Single rock-like N-doped carbon monolith (ND-PFCM) was successfully constructed via nanocasting method. Phenol formaldehyde resin was taken as carbon source and nitrogen was incorporated in monoliths through NaNH2 activation. The synthesized monoliths were used for the removal of Pb (II) from aqueous solution. Various characterization techniques, namely Brunauer-Emmett-Teller (BET), Raman spectroscopy, UV-visible diffuse reflectance spectra (DRS) UV-DRS, zeta potential, scanning electron microscopy (SEM), TEM (transmission electron microscopy), TGA (thermogravimetric analysis), and XPS (X-ray photoelectron spectroscopy), were utilized to characterize synthesized monolithic samples. The different parameters such as pH, adsorbent dosage, and time were enquired on the removal efficiency of monoliths toward Pb(II). ND-PFCM exhibited the highest adsorption capacity of 330.03 mg g-1 in 180 min at pH 6. This is attributed to the fact that the better texture properties and presence of nitrogen functional groups enhance the uptake of Pb (II) ions on the monolith surface. In the kinetic studies, pseudo-second-order model fitted best with the experimental data. Furthermore, the removal of thiamethoxam (TM) from aqueous solution was done by using different weight ratios of ND-PFCM under the visible light. The maximum removal efficiency of 97.35% with rate constant of 0.02085 min-1 was obtained in 160 min. Moreover, monoliths exhibited good reusability for five consecutive cycles. The findings suggest that the synthesized monoliths exhibit characteristics suitable and eco-friendly for sustainable use in water treatment applications.

19.
Int J Mol Sci ; 25(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39201602

RESUMEN

Carbon dioxide (CO2) capture has been identified as a potential technology for reducing the anthropic emissions of greenhouse gases, particularly in post-combustion processes. The development of adsorbents for carbon capture and storage is expanding at a rapid rate. This article presents a novel sustainable synthesis method for the production of chitosan/activated carbon CO2 adsorbents. Chitosan is a biopolymer that is naturally abundant and contains amino groups (-NH2), which are required for the selective adsorption of CO2. Spent coffee grounds have been considered as a potential feedstock for the synthesis of activated coffee grounds through carbonization and chemical activation. The chitosan/activated coffee ground composite microspheres were created using the emulsion cross-linking method with epichlorohydrin. The effects of the amount of chitosan (15, 20, and 25 g), activated coffee ground (10, 20, 30, and 40%w/w), and epichlorohydrin (2, 3, 4, 5, 6, 7 and 8 g) were examined. The CO2 capture potential of the composite beads is superior to that of the neat biopolymer beads. The CO2 adsorbed of synthesized materials at a standard temperature and pressure is improved by increasing the quantity of activated coffee ground and epichlorohydrin. These findings suggest that the novel composite bead has the potential to be applied in CO2 separation applications.


Asunto(s)
Dióxido de Carbono , Carbón Orgánico , Quitosano , Café , Epiclorhidrina , Epiclorhidrina/química , Dióxido de Carbono/química , Quitosano/química , Café/química , Adsorción , Carbón Orgánico/química , Microesferas , Reactivos de Enlaces Cruzados/química
20.
Environ Res ; 261: 119727, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39117052

RESUMEN

The study focuses on reactive orange 16 (RO16), a sulfonated dye, and ciprofloxacin (CiP), a fluoroquinolone antibiotic treatment from aquatic surface by adsorption. The functionalized Persea americana seed powder (PASP) was developed by acid hydrolysis technique and investigated for RO16 and CiP removal in batch scale at different concentrations for CiP and RO16, pH (2-8), contact duration and temperature (303-318K). Utilizing a scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDAX), the generated native PASP were assessed for their morphological characteristics. Fourier transform infrared (FTIR) spectroscopy was applied to examine the performing characteristics of PASP. Experimental findings with four kinetic mathematical models allowed the estimation of the process involved in the biosorption. The most effective agreement was explained by the pseudo-second-order model and Sips isotherm (Cip = 34.603 mg/g and RO16 = 30.357 mg/g) at 303K temperature. For Cip Process economics of the biosorbent was done, and it was observed that it was less than the readily market-available activated carbon.


Asunto(s)
Antibacterianos , Colorantes , Semillas , Contaminantes Químicos del Agua , Semillas/química , Cinética , Colorantes/química , Colorantes/análisis , Contaminantes Químicos del Agua/análisis , Fluoroquinolonas/química , Adsorción , Polvos , Ciprofloxacina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA