Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 417
Filtrar
1.
Environ Pollut ; 361: 124895, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243933

RESUMEN

Variability in biogenic volatile organic compound (BVOC) emissions across species and seasons poses challenges for accurate regional emission estimates and effective ozone (O3) control policies. To address this issue, we conducted in-situ measurements of emission factors for six dominant tree species in Beijing across four seasons. Subsequently, we developed monthly dynamic standard emission factors (SER-MDs) to model monthly BVOC emissions and their impacts on O3 formation at citywide and district levels. Our observations revealed pronounced seasonal differences in the BVOC composition and emission rates, as well as their responsiveness to monthly average temperature. By introducing the SER-MDs, we estimated BVOC emissions from the dominant tree species in Beijing to be 38.2 Gg yr-1, with monoterpenes and isoprene contributing 49% and 11%, respectively. This calculation reduced the overestimation associated with constant standard emission factors by 31%-38% at district level. The estimates also revealed regional differences in plant compositions rather than simple feedback from regional temperature and photosynthetically active radiation periods. Under these conditions, the maximum monthly BVOC-induced O3 concentration occurred in August and ranged from 4 to 17 µg m-3 across districts, with isoprene being the dominant contributor. Quercus mongolica and Populus tomentosa played significant roles in the formation of BVOC-induced O3 due to their strong isoprene emitting potential in July-August. These results indicate the necessity of introducing species-specific rhythms of BVOC emissions from dominant species in the development of urban BVOC emission inventories. This approach could inform the development of air pollution management policies that are consistent with the local vegetation composition and O3 pollution characteristics. For Beijing and other similar northern cities, reducing the use of tree species emitting substantial amounts of isoprene during periods of regional peak ambient O3 concentrations could constitute an effective nature-based solution for improving urban air quality in the future.

2.
Plant Cell Environ ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248643

RESUMEN

Traditional leaf gas exchange experiments have focused on net CO2 exchange (Anet). Here, using California poplar (Populus trichocarpa), we coupled measurements of net oxygen production (NOP), isoprene emissions and δ18O in O2 to traditional CO2/H2O gas exchange with chlorophyll fluorescence, and measured light, CO2 and temperature response curves. This allowed us to obtain a comprehensive picture of the photosynthetic redox budget including electron transport rate (ETR) and estimates of the mean assimilatory quotient (AQ = Anet/NOP). We found that Anet and NOP were linearly correlated across environmental gradients with similar observed AQ values during light (1.25 ± 0.05) and CO2 responses (1.23 ± 0.07). In contrast, AQ was suppressed during leaf temperature responses in the light (0.87 ± 0.28), potentially due to the acceleration of alternative ETR sinks like lipid synthesis. Anet and NOP had an optimum temperature (Topt) of 31°C, while ETR and δ18O in O2 (35°C) and isoprene emissions (39°C) had distinctly higher Topt. The results confirm a tight connection between water oxidation and ETR and support a view of light-dependent lipid synthesis primarily driven by photosynthetic ATP/NADPH not consumed by the Calvin-Benson cycle, as an important thermotolerance mechanism linked with high rates of (photo)respiration and CO2/O2 recycling.

3.
Sci Total Environ ; 951: 175738, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39182777

RESUMEN

Climate change and the associated increased frequency of extreme weather events are likely to alter the emissions of biogenic volatile organic compounds (BVOCs) from boreal peatlands. Hydrologically sensitive Sphagnum mosses are keystone species in boreal peatland ecosystems that are known to emit various BVOCs. However, it is not known how their emissions respond to seasonal droughts. In this study, we quantified the effect of severe drought, and subsequent recovery, on the BVOC emissions from Sphagnum mosses using mesocosms originating from wet open and naturally drier treed boreal fens and bogs. Here we report the emissions of 30 detected BVOCs, of which isoprene was the most abundant with an average flux rate of 5.6 µg m-2 h-1 (range 0-31.9 µg m-2 h-1). The experimental 43-day ecohydrological drought reduced total BVOC and isoprene emissions. In addition, in mesocosms originating from bogs, sesquiterpene emissions decreased with the drought, while the emissions of green leaf volatiles were induced. Sesquiterpene emissions remained low even six weeks after rewetting, indicating a long and limited recovery from the drought. Our results further imply that long-term exposure to deep water tables does not decrease sensitivity of Sphagnum to an extreme drought; we did not detect differences in the emission rates or drought responses between Sphagna originating from wet open and naturally drier treed habitats. Yet, the differences between fen and bog originating Sphagna indicate local variability in the BVOC quality changes following drought, potentially altering the climate feedback of boreal peatland BVOC emissions.


Asunto(s)
Cambio Climático , Sequías , Monitoreo del Ambiente , Sphagnopsida , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , Humedales , Taiga , Butadienos , Hemiterpenos
4.
Environ Sci Technol ; 58(31): 13783-13794, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39042817

RESUMEN

As cities strive for ambitious increases in tree canopy cover and reductions in anthropogenic volatile organic compound (AVOC) emissions, accurate assessments of the impacts of biogenic VOCs (BVOCs) on air quality become more important. In this study, we aim to quantify the impact of future urban greening on ozone production. BVOC emissions in dense urban areas are often coarsely represented in regional models. We set up a high-resolution (30 m) MEGAN (The Model of Emissions of Gases and Aerosols from Nature version 3.2) to estimate summertime biogenic isoprene emissions in the New York City metro area (NYC-MEGAN). Coupling an observation-constrained box model with NYC-MEGAN isoprene emissions successfully reproduced the observed isoprene concentrations in the city core. We then estimated future isoprene emissions from likely urban greening scenarios and evaluated the potential impact on future ozone production. NYC-MEGAN predicts up to twice as much isoprene emissions in NYC as the coarse-resolution (1.33 km) Biogenic Emission Inventory System version 3.61 (BEIS) on hot summer days. We find that BVOCs drive ozone production on hot summer days, even in the city core, despite large AVOC emissions. If high isoprene emitting species (e.g., oak trees) are planted, future isoprene emissions could increase by 1.4-2.2 times in the city core, which would result in 8-19 ppbv increases in peak ozone on ozone exceedance days with current NOx concentrations. We recommend planting non- or low-isoprene emitting trees in cities with high NOx concentrations to avoid an increase in the frequency and severity of future ozone exceedance events.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Estaciones del Año , Compuestos Orgánicos Volátiles , Ciudad de Nueva York , Contaminantes Atmosféricos/análisis , Ozono/análisis , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente , Butadienos/análisis , Hemiterpenos/análisis , Pentanos
5.
Sci Total Environ ; 948: 174821, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39019283

RESUMEN

China implemented continuous forestation and experienced significant greening tendency in the past several decades. While the ecological project brings benefits to regional carbon assimilation, it also affects surface ozone (O3) pollution level through perturbations in biogenic emissions and dry deposition. Here, we use a coupled chemistry-vegetation model to assess the impacts of land use and land cover change (LULCC) on summertime surface O3 in China during 2000-2019. The LULCC is found to enhance O3 by 1-2 ppbv in already-polluted areas. In contrast, moderate reductions of -0.4 to -0.8 ppbv are predicted in southern China where the largest forest cover changes locate. Such inconsistency is attributed to the background chemical regimes with positive O3 changes over VOC-limited regions but negative changes in NOx-limited regions. The net contribution of LULCC to O3 budget in China is 24.17 Kg/s, in which the positive contribution by more isoprene emissions almost triples the negative effects by the increased dry deposition. Although the LULCC-induced O3 perturbation is much lower than the effects of anthropogenic emissions, forest expansion has exacerbated regional O3 pollution in North China Plain and is expected to further enhance surface O3 with continuous forestation in the future.

6.
Plant Direct ; 8(7): e617, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38973810

RESUMEN

Isoprene, a volatile hydrocarbon, is typically emitted from the leaves of many plant species. Given its well-known function in plant growth and defense aboveground, we examined its effects on root physiology. We used isoprene-emitting (IE) lines and a non-emitting (NE) line of Arabidopsis and investigated their performance by analyzing root phenotype, hormone levels, transcriptome, and metabolite profiles under both normal and salt stress conditions. We show that IE lines emitted tiny amounts of isoprene from roots and showed an increased root/shoot ratio compared with NE line. Isoprene emission exerted a noteworthy influence on hormone profiles related to plant growth and stress response, promoting root development and salt-stress resistance. Methyl erythritol 4-phosphate pathway metabolites, precursors of isoprene and hormones, were higher in the roots of IE lines than in the NE line. Transcriptome data indicated that the presence of isoprene increased the expression of key genes involved in hormone metabolism/signaling. Our findings reveal that constitutive root isoprene emission sustains root growth under saline conditions by regulating and/or priming hormone biosynthesis and signaling mechanisms and expression of key genes relevant to salt stress defense.

7.
Ecotoxicol Environ Saf ; 280: 116545, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850709

RESUMEN

Isoprenoid metabolism and its derivatives took part in photosynthesis, growth regulation, signal transduction, and plant defense to biotic and abiotic stresses. However, how aluminum (Al) stress affects the isoprenoid metabolism and whether isoprenoid metabolism plays a vital role in the Citrus plants in coping with Al stress remain unclear. In this study, we reported that Al-treatment-induced alternation in the volatilization rate of monoterpenes (α-pinene, ß-pinene, limonene, α-terpinene, γ-terpinene and 3-carene) and isoprene were different between Citrus sinensis (Al-tolerant) and C. grandis (Al-sensitive) leaves. The Al-induced decrease of CO2 assimilation, maximum quantum yield of primary PSII photochemistry (Fv/Fm), the lower contents of glucose and starch, and the lowered activities of enzymes involved in the mevalonic acid (MVA) pathway and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway might account for the different volatilization rate of isoprenoids. Furthermore, the altered transcript levels of genes related to isoprenoid precursors and/or derivatives metabolism, such as geranyl diphosphate (GPP) synthase (GPPS) in GPP biosynthesis, geranylgeranyl diphosphate synthase (GGPPS), chlorophyll synthase (CHS) and GGPP reductase (GGPPR) in chlorophyll biosynthesis, limonene synthase (LS) and α-pinene synthase (APS) in limonene and α-pinene synthesis, respectively, might be responsible for the different contents of corresponding products in C. grandis and C. sinensis. Our data suggested that isoprenoid metabolism was involved in Al tolerance response in Citrus, and the alternation of some branches of isoprenoid metabolism could confer different Al-tolerance to Citrus species.


Asunto(s)
Aluminio , Monoterpenos Bicíclicos , Citrus , Limoneno , Fotosíntesis , Hojas de la Planta , Terpenos , Aluminio/toxicidad , Terpenos/metabolismo , Citrus/metabolismo , Citrus/efectos de los fármacos , Limoneno/metabolismo , Fotosíntesis/efectos de los fármacos , Monoterpenos Bicíclicos/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Monoterpenos/metabolismo , Hemiterpenos/metabolismo , Ciclohexenos/metabolismo , Fosfatos de Azúcar/metabolismo , Butadienos/metabolismo , Eritritol/análogos & derivados , Eritritol/metabolismo , Ácido Mevalónico/metabolismo , Monoterpenos Ciclohexánicos , Citrus sinensis/metabolismo , Citrus sinensis/efectos de los fármacos , Citrus sinensis/genética , Clorofila/metabolismo , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/genética , Volatilización
8.
FEBS J ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38944687

RESUMEN

Isoprene pyrophosphates play a crucial role in the synthesis of a diverse array of essential nonsterol and sterol biomolecules and serve as substrates for posttranslational isoprenylation of proteins, enabling specific anchoring to cellular membranes. Hydrolysis of isoprene pyrophosphates would be a means to modulate their levels, downstream products, and protein isoprenylation. While NUDIX hydrolases from plants have been described to catalyze the hydrolysis of isoprene pyrophosphates, homologous enzymes with this function in animals have not yet been reported. In this study, we screened an extensive panel of human NUDIX hydrolases for activity in hydrolyzing isoprene pyrophosphates. We found that human nucleotide triphosphate diphosphatase NUDT15 and 8-oxo-dGDP phosphatase NUDT18 efficiently catalyze the hydrolysis of several physiologically relevant isoprene pyrophosphates. Notably, we demonstrate that geranyl pyrophosphate is an excellent substrate for NUDT18, with a catalytic efficiency of 2.1 × 105 m-1·s-1, thus making it the best substrate identified for NUDT18 to date. Similarly, geranyl pyrophosphate proved to be the best isoprene pyrophosphate substrate for NUDT15, with a catalytic efficiency of 4.0 × 104 M-1·s-1. LC-MS analysis of NUDT15 and NUDT18 catalyzed isoprene pyrophosphate hydrolysis revealed the generation of the corresponding monophosphates and inorganic phosphate. Furthermore, we solved the crystal structure of NUDT15 in complex with the hydrolysis product geranyl phosphate at a resolution of 1.70 Å. This structure revealed that the active site nicely accommodates the hydrophobic isoprenoid moiety and helped identify key binding residues. Our findings imply that isoprene pyrophosphates are endogenous substrates of NUDT15 and NUDT18, suggesting they are involved in animal isoprene pyrophosphate metabolism.

9.
Plants (Basel) ; 13(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38592896

RESUMEN

One of the most concerning global environmental issues is the pollution of agricultural soils by heavy metals (HMs), especially cadmium, which not only affects human health through Cd-containing foods but also impacts the quality of rice. The soil's nitrification and denitrification processes, coupled with the release of volatile organic compounds by plants, raise substantial concerns. In this review, we summarize the recent literature related to the deleterious effects of Cd on both soil processes related to the N cycle and rice quality, particularly aroma, in different water management practices. Under both continuous flooding (CF) and alternate wetting and drying (AWD) conditions, cadmium has been observed to reduce both the nitrification and denitrification processes. The adverse effects are more pronounced in alternate wetting and drying (AWD) as compared to continuous flooding (CF). Similarly, the alteration in rice aroma is more significant in AWD than in CF. The precise modulation of volatile organic compounds (VOCs) by Cd remains unclear based on the available literature. Nevertheless, HM accumulation is higher in AWD conditions compared to CF, leading to a detrimental impact on volatile organic compounds (VOCs). The literature concludes that AWD practices should be avoided in Cd-contaminated fields to decrease accumulation and maintain the quality of the rice. In the future, rhizospheric engineering and plant biotechnology can be used to decrease the transport of HMs from the soil to the plant's edible parts.

10.
Sci Total Environ ; 928: 172098, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38582124

RESUMEN

Terpenoids have long been known to originate from natural sources. However, there is growing evidence for emissions from anthropogenic activities in cities, in particular from the production, manufacturing, and use of household solvents. Here, as part of the DATAbASE (Do Anthropogenic Terpenoids mAtter in AtmoSpheric chEmistry?) project, we investigate for the first time the potential role of industrial activities on the terpenoid burden in the urban atmosphere. This study is based on continuous VOC observations from an intensive field campaign conducted in July 2014 at an industrial-urban background site located in Dunkirk, Northern France. More than 80 VOCs including oxygenated and terpenoid compounds were measured by on-line Thermal Desorption Gas Chromatography with a Flame Ionization Detection (TD-GC-FID) and Proton Transfer Reaction-Time of Flight Mass Spectrometry (PTR-ToFMS). Isoprene, α-pinene, limonene and the sum of monoterpenes were the terpenoids detected at average mixing ratios of 0.02 ± 0.02 ppbv, 0.02 ± 0.02 ppbv, 0.01 ± 0.01 ppbv and 0.03 ± 0.05 ppbv, respectively. Like other anthropogenic VOCs, the mixing ratios of terpenoids significantly increase downwind the industrial plumes by one order of magnitude. Positive Matrix Factorization (PMF) was performed to identify the different emission sources of VOCs and their contribution. Six factors out of the eight factors extracted (r2 = 0.95) are related to industrial emissions such as solvent use, chemical and agrochemical storage, metallurgy, petrochemical, and coal-fired industrial activities. From the correlations between the industrial-type PMF factors, sulfur dioxide, and terpenoids, we determined their emissions ratios and we quantified for the first time their industrial emissions. The highest emission ratio is related to the alkene-dominated factor and is related to petrochemical, metallurgical and coal-fired industrial activities. The industrial emissions of monoterpenes equal 8.1 ± 4.3 tons/year. Those emissions are as significant as the non-industrialized anthropogenic ones estimated for the Paris megacity.

11.
J Breath Res ; 18(3)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38663377

RESUMEN

In the breath research community's search for volatile organic compounds that can act as non-invasive biomarkers for various diseases, hundreds of endogenous volatiles have been discovered. Whilst these systemic chemicals result from normal and abnormal metabolic activities or pathological disorders, to date very few are of any use for the development of clinical breath tests that could be used for disease diagnosis or to monitor therapeutic treatments. The reasons for this lack of application are manifold and complex, and these complications either limit or ultimately inhibit the analytical application of endogenous volatiles for use in the medical sciences. One such complication is a lack of knowledge on the biological origins of the endogenous volatiles. A major exception to this is isoprene. Since 1984, i.e. for 40 years, it has been generally accepted that the pathway to the production of human isoprene, and hence the origin of isoprene in exhaled breath, is through cholesterol biosynthesis via the mevalonate (MVA) pathway within the liver. However, various studies between 2001 and 2012 provide compelling evidence that human isoprene is produced in skeletal muscle tissue. A recent multi-omic investigation of genes and metabolites has revealed that this proposal is correct by showing that human isoprene predominantly results from muscular lipolytic cholesterol metabolism. Despite the overwhelming proof for a muscular pathway to isoprene production in the human body, breath research papers still reference the hepatic MVA pathway. The major aim of this perspective is to review the evidence that leads to a correct interpretation for the origins of human isoprene, so that the major pathway to human isoprene production is understood and appropriately disseminated. This is important, because an accurate attribution to the endogenous origins of isoprene is needed if exhaled isoprene levels are to be correctly interpreted and for assessing isoprene as a clinical biomarker.


Asunto(s)
Pruebas Respiratorias , Butadienos , Hemiterpenos , Pentanos , Humanos , Hemiterpenos/análisis , Butadienos/análisis , Pentanos/análisis , Pruebas Respiratorias/métodos , Espiración , Ácido Mevalónico/metabolismo , Colesterol/metabolismo , Colesterol/análisis , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo
12.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673766

RESUMEN

The plastidic 2-C-methylerythritol 4-phosphate (MEP) pathway supplies the precursors of a large variety of essential plant isoprenoids, but its regulation is still not well understood. Using metabolic control analysis (MCA), we examined the first enzyme of this pathway, 1-deoxyxylulose 5-phosphate synthase (DXS), in multiple grey poplar (Populus × canescens) lines modified in their DXS activity. Single leaves were dynamically labeled with 13CO2 in an illuminated, climate-controlled gas exchange cuvette coupled to a proton transfer reaction mass spectrometer, and the carbon flux through the MEP pathway was calculated. Carbon was rapidly assimilated into MEP pathway intermediates and labeled both the isoprene released and the IDP+DMADP pool by up to 90%. DXS activity was increased by 25% in lines overexpressing the DXS gene and reduced by 50% in RNA interference lines, while the carbon flux in the MEP pathway was 25-35% greater in overexpressing lines and unchanged in RNA interference lines. Isoprene emission was also not altered in these different genetic backgrounds. By correlating absolute flux to DXS activity under different conditions of light and temperature, the flux control coefficient was found to be low. Among isoprenoid end products, isoprene itself was unchanged in DXS transgenic lines, but the levels of the chlorophylls and most carotenoids measured were 20-30% less in RNA interference lines than in overexpression lines. Our data thus demonstrate that DXS in the isoprene-emitting grey poplar plays only a minor part in controlling flux through the MEP pathway.


Asunto(s)
Eritritol , Eritritol/análogos & derivados , Populus , Fosfatos de Azúcar , Transferasas , Populus/genética , Populus/metabolismo , Populus/enzimología , Eritritol/metabolismo , Fosfatos de Azúcar/metabolismo , Transferasas/metabolismo , Transferasas/genética , Hemiterpenos/metabolismo , Butadienos/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Pentanos/metabolismo , Plantas Modificadas Genéticamente
13.
Plants (Basel) ; 13(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38674574

RESUMEN

Volatile organic compounds (VOCs) emitted by plants may help in understanding the status of a plant's physiology and its coping with mild to severe stress. Future climatic projections reveal that shifts in temperature and CO2 availability will occur, and plants may incur the uncoupling of carbon assimilation and synthesis of key molecules. This study explores the patterns of emissions of key VOCs (isoprene, methanol, acetaldehyde, and acetic acid) emitted by poplar leaves (more than 350) under a combined gradient of temperature (12-42 °C) and air CO2 concentration (400-1500 ppm), along with measurements of photosynthetic rates and stomatal conductance. Isoprene emission exhibited a rise with temperature and CO2 availability, peaking at 39 °C, the temperature at which methanol emission started to peak, illustrating the limit of stress tolerance to severe damage. Isoprene emission was uncoupled from the photosynthesis rate, indicating a shift from the carbon source for isoprene synthesis, while assimilation was decreased. Methanol and acetaldehyde emissions were correlated with stomatal conductance and peaked at 25 °C and 1200 ppm CO2. Acetic acid emissions lacked a clear correlation with stomatal conductance and the emission pattern of its precursor acetaldehyde. This study offers crucial insights into the limitations of photosynthetic carbon and stress tolerance.

14.
Polymers (Basel) ; 16(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38475262

RESUMEN

A family of pyridine-oxazoline-ligated cobalt complexes L2CoCl23a-h were synthesized and characterized. Determined via single-crystal X-ray diffraction, complexes 3a and 3d, ligated by two ligands, displayed a distorted tetrahedral coordination of a cobalt center. The X-ray structure indicated the pyridine-oxazoline ligands acted as unusual mono-dentate ligands by coordinating only to Noxazoline. Upon activation with AlEt2Cl (diethylaluminum chloride), these cobalt complexes all exhibited high catalytic activity (up to 2.5 × 106 g·molCo-1·h-1), affording cis-1,4-co-3,4-polyisoprene with molecular weights of 4.4-176 kg mol-1 and a narrow Ð of 1.79-3.42, suggesting a single-site nature of the active sites. The structure of cobalt catalysts and reaction parameters, especially co-catalysts and the reaction temperature, all have significant influence on the polymerization activity but not on the microstructure of polyisoprene.

15.
Nat Prod Bioprospect ; 14(1): 22, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507117

RESUMEN

Based on the research progress and traditional usage with whole herbal of the TCM "Tianma", chemical studies herein on the flower branch of Gastrodia elata were carried out in-depth and got 13 compounds including the gastrodinols (1-4), the flavonoid morins (5-8, 11-12), together with the specialist mulberrofurans (9, 13) and gastrodiamide (10) for the first time from the species. The antibacterial and cholinesterase inhibitory activities were then evaluated and the results showed that compounds 5, 11, 12, 13 have good activity against anti-methicillin-resistant Staphylococcus aureus, and compounds 9, 13 had good acetylcholinesterase inhibitory activity. All these results provide new chemical composition for better understanding the traditional application of "Tianma" and for exploring new pharmacological ingredients.

16.
ACS Sens ; 9(3): 1575-1583, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38483350

RESUMEN

Monitoring of isoprene in exhaled breath is expected to provide a noninvasive and painless method for dynamic monitoring of physiological and metabolic states during exercise. However, for real-time and portable detection of isoprene, gas sensors have become the best choice for gas detection technology, which are crucial to achieving the goal of anytime, anywhere, human-centered healthcare in the future. Here, we first report a mixed potential type isoprene sensor based on a Gd2Zr2O7 solid electrolyte and a CdSb2O6 sensing electrode, which enables sensitive detection for isoprene with sensitivities of -21.2 mV/ppm and -65.8 mV/decade in the range of 0.05-1 and 1-100 ppm. The sensing behavior of the sensor follows the mixed potential sensing mechanism and was further verified by the electrochemical polarization curves. The significant differentiation between the sensor response to exhaled breath of healthy individuals and simulated breath containing different concentrations of isoprene demonstrates the potential of the sensor for the detection of isoprene in exhaled breath. Simultaneously, monitoring of isoprene during exercise signifies the feasibility of the sensor in dynamic monitoring of physiological indicators, which is not only of great significance for optimizing training and guiding therapeutic exercise intervention in sporting scenarios but also expected to help further reveal the interaction between exercise, muscle, and organ metabolism in medicine.


Asunto(s)
Pruebas Respiratorias , Gases , Hemiterpenos , Humanos , Pruebas Respiratorias/métodos , Butadienos , Biomarcadores
17.
Plant Biotechnol J ; 22(8): 2301-2311, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38507185

RESUMEN

Building sustainable platforms to produce biofuels and specialty chemicals has become an increasingly important strategy to supplement and replace fossil fuels and petrochemical-derived products. Terpenoids are the most diverse class of natural products that have many commercial roles as specialty chemicals. Poplar is a fast growing, biomassdense bioenergy crop with many species known to produce large amounts of the hemiterpene isoprene, suggesting an inherent capacity to produce significant quantities of other terpenes. Here we aimed to engineer poplar with optimized pathways to produce squalene, a triterpene commonly used in cosmetic oils, a potential biofuel candidate, and the precursor to the further diversified classes of triterpenoids and sterols. The squalene production pathways were either re-targeted from the cytosol to plastids or co-produced with lipid droplets in the cytosol. Squalene and lipid droplet co-production appeared to be toxic, which we hypothesize to be due to disruption of adventitious root formation, suggesting a need for tissue specific production. Plastidial squalene production enabled up to 0.63 mg/g fresh weight in leaf tissue, which also resulted in reductions in isoprene emission and photosynthesis. These results were also studied through a technoeconomic analysis, providing further insight into developing poplar as a production host.


Asunto(s)
Populus , Escualeno , Escualeno/metabolismo , Populus/metabolismo , Populus/genética , Populus/crecimiento & desarrollo , Ingeniería Metabólica/métodos , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/genética , Triterpenos/metabolismo , Biocombustibles , Plastidios/metabolismo
18.
Genes Genomics ; 46(4): 499-510, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38453815

RESUMEN

BACKGROUND: The skin microbiome is essential in guarding against harmful pathogens and responding to environmental changes by generating substances useful in the cosmetic and pharmaceutical industries. Among these microorganisms, Streptococcus is a bacterial species identified in various isolation sources. In 2021, a strain of Streptococcus infantis, CX-4, was identified from facial skin and found to be linked to skin structure and elasticity. As the skin-derived strain differs from other S. infantis strains, which are usually of oral origin, it emphasizes the significance of bacterial variation by the environment. OBJECTIVE: This study aims to explore the unique characteristics of the CX-4 compared to seven oral-derived Streptococcus strains based on the Whole-Genome Sequencing data, focusing on its potential role in skin health and its possible application in cosmetic strategies. METHODS: The genome of the CX-4 strain was constructed using PacBio Sequencing, with the assembly performed using the SMRT protocol. Comparative whole-genome analysis was then performed with seven closely related strains, utilizing web-based tools like PATRIC, OrthoVenn3, and EggNOG-mapper, for various analyses, including protein association analysis using STRING. RESULTS: Our analysis unveiled a substantial number of Clusters of Orthologous Groups in diverse functional categories in CX-4, among which sphingosine kinase (SphK) emerged as a unique product, exclusively present in the CX-4 strain. SphK is a critical enzyme in the sphingolipid metabolic pathway, generating sphingosine-1-phosphate. The study also brought potential associations with isoprene formation and retinoic acid synthesis, the latter being a metabolite of vitamin A, renowned for its crucial function in promoting skin cell growth, differentiation, and maintaining of skin barrier integrity. These findings collectively suggest the potential of the CX-4 strain in enhancing of skin barrier functionality. CONCLUSION: Our research underscores the potential of the skin-derived S. infantis CX-4 strain by revealing unique bacterial compounds and their potential roles on human skin.


Asunto(s)
Genoma Bacteriano , Streptococcus , Humanos , Filogenia , Streptococcus/genética , Secuenciación Completa del Genoma
19.
Annu Rev Plant Biol ; 75(1): 605-627, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38382906

RESUMEN

Climate change profoundly affects the timing of seasonal activities of organisms, known as phenology. The impact of climate change is not unidirectional; it is also influenced by plant phenology as plants modify atmospheric composition and climatic processes. One important aspect of this interaction is the emission of biogenic volatile organic compounds (BVOCs), which link the Earth's surface, atmosphere, and climate. BVOC emissions exhibit significant diurnal and seasonal variations and are therefore considered essential phenological traits. To understand the dynamic equilibrium arising from the interplay between plant phenology and climate, this review presents recent advances in comprehending the molecular mechanisms underpinning plant phenology and its interaction with climate. We provide an overview of studies investigating molecular phenology, genome-wide gene expression analyses conducted in natural environments, and how these studies revolutionize the concept of phenology, shifting it from observable traits to dynamic molecular responses driven by gene-environment interactions. We explain how this knowledge can be scaled up to encompass plant populations, regions, and even the globe by establishing connections between molecular phenology, changes in plant distribution, species composition, and climate.


Asunto(s)
Cambio Climático , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/metabolismo , Plantas/metabolismo , Plantas/genética , Desarrollo de la Planta , Interacción Gen-Ambiente , Fenómenos Fisiológicos de las Plantas , Estaciones del Año
20.
Appl Microbiol Biotechnol ; 108(1): 191, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305904

RESUMEN

Bacterial degradation of natural rubber (NR) in an oxic environment is initiated by oxidative cleavage of double bonds in the NR-carbon backbone and is catalyzed by extracellular haem-containing rubber oxygenases. NR-cleavage products of sufficiently low molecular mass are taken up by the cells and metabolized for energy and biomass formation. Gram-negative and Gram-positive NR-degrading bacteria (usually) employ different types of rubber oxygenases such as RoxA and/or RoxB (most Gram-negative NR-degraders) or latex clearing protein Lcp (most Gram-positive NR-degraders). In order to find novel orthologues of Rox proteins, we have revisited databases and provide an update of Rox-like proteins. We describe the putative evolution of rubber oxygenases and confirm the presence of a third subgroup of Rox-related proteins (RoxCs), the biological function of which remains, however, unclear. We summarize the knowledge on the taxonomic position of Steroidobacter cummioxidans 35Y and related species. Comparison of genomic and biochemical features of strain 35Y with other species of the genus Steroidobacter suggests that strain 35Y represents a species of a novel genus for which the designation Aurantibaculum gen. nov. is proposed. A short summary on the capabilities of NR-degrading consortia, that could be superior in biotechnological applications compared to pure cultures, is also provided. KEY POINTS: • Three types of rubber oxygenases exist predominantly in Gram-negative microbes • S. cummioxidans 35Y contains RoxA and RoxB which are superior in activity • S. cummioxidans 35Y represents a species of a novel genus.


Asunto(s)
Oxigenasas , Goma , Goma/metabolismo , Oxigenasas/metabolismo , Proteínas Bacterianas/metabolismo , Látex/metabolismo , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA