RESUMEN
An efficient synthesis of a series of 4'-oxyalkyl-isocordoin analogues (2-8) is reported for the first time. Their structures were confirmed by ¹H-NMR, 13C-NMR, and HRMS. Their anti-oomycete activity was evaluated by mycelium and spores inhibition assay against two selected pathogenic oomycetes strains: Saprolegnia parasitica and Saprolegnia australis. The entire series of isocordoin derivatives (except compound 7) showed high inhibitory activity against these oomycete strains. Among them, compound 2 exhibited strong activity, with minimum inhibitory concentration (MIC) and minimum oomyceticidal concentration (MOC) values of 50 µg/mL and 75 µg/mL, respectively. The results showed that 4'-oxyalkylated analogues of isocordoin could be potential anti-oomycete agents.
Asunto(s)
Catecoles/química , Micelio/efectos de los fármacos , Saprolegnia/efectos de los fármacos , Esporas Fúngicas/efectos de los fármacos , Antifúngicos/síntesis química , Antifúngicos/clasificación , Antifúngicos/farmacología , Catecoles/síntesis química , Catecoles/farmacología , Compuestos Inorgánicos/síntesis química , Compuestos Inorgánicos/química , Compuestos Inorgánicos/farmacología , Pruebas de Sensibilidad Microbiana , Micelio/patogenicidad , Saprolegnia/patogenicidad , Esporas Fúngicas/patogenicidadRESUMEN
Current work was conducted to evaluate the vasorelaxant effect of dihydrospinochalcone-A (1) and isocordoin (2), compounds type chalcone isolated from Lonchocarpus xuul, an endemic tree of the Yucatan Peninsula, Mexico. Compounds 1 and 2 were found to induce significant relaxant effect in a concentration-dependent manner on aortic rat rings pre-contracted with noradrenaline (NA, 0.1 µM). Compound 1 was the most active and its effect was endothelium-dependent (Emax=79.67% and EC50=21.46 µM with endothelium and Emax=23.58% and EC50=91.8 µM without endothelium, respectively). The functional mechanism of action for 1 was elucidated. Pre-incubation with L-NAME (unspecific nitric oxide synthase inhibitor), indomethacin (unspecific COX inhibitor), ODQ (soluble guanylyl cyclase inhibitor), atropine (cholinergic receptor antagonist), TEA (unspecific potassium channel blocker) reduced relaxations induced by 1. Oral administration of 50 mg/kg of compound 1 exhibited significant decrease in diastolic and systolic blood pressure in SHR rats. The heart rate was not modified. Compound 1 was docked with a crystal structure of eNOS. Dihydrospinochalcone-A showed calculated affinity with eNOS in the C1 binding pockets, near the catalytic site; Trp449, Trp447 and His373 through aromatic and π-π interactions, also His463 and Arg367 are the residues that make hydrogen bonds with the carbonyl and hydroxyl groups. In conclusion, dihydrospinochalcone-A induces a significant antihypertensive effect due to its direct vasorelaxant action on rat aorta rings, through NO/sCG/PKG pathway and potassium channel opening.