Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Evol Appl ; 17(9): e70002, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39247089

RESUMEN

The impact of global changes on populations may not be necessarily uniform across a species' range. Here, we aim at comparing the phenotypic and transcriptomic response to warming and an invasive predator cue in populations across different geographic scales in the damselfly Ischnura elegans. We collected adult females in two ponds in southern Poland (central latitude) and two ponds in southern Sweden (high latitude). We raised their larvae in growth chambers and exposed them to combination of temperature and a predator cue released by the crayfish Orconectes limosus. When larvae reached the prefinal larval stage, they were phenotyped for traits related to growth and size and collected for a gene expression analysis. High-latitude populations exhibited greater phenotypic and transcriptomic variation than central-latitude populations. Across latitudes and ponds, temperature generally increased growth rate and the predator cue decreased mass, but the effects of temperature were also pond-specific. Comparison of the transcriptomic profiles revealed a greater overlap in the response to temperature across latitudes and ponds, especially for pathway-related oxidative stress and sugar and lipid metabolism. The transcriptomic response to a predator cue and to the interaction temperature × predator cue was more pond-specific and overlapped only for few genes and pathways related to cuticle, development and signal transduction. We demonstrated that central- and high-latitude populations may partially respond through similar mechanisms to warming and, to a lower extent to a predator cue and to the interaction temperature × predator cue. For the predator cue and the interaction, the large fraction of ponds-specific genes suggests local adaptation. We show that high-latitude populations were generally more plastic at the phenotypic and transcriptomic level and may be more capable to cope with environmental changes than their central-latitude counterparts.

2.
Evol Appl ; 16(8): 1503-1515, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37622092

RESUMEN

Many species are currently adapting to cities at different latitudes. Adaptation to urbanization may require eco-evolutionary changes in response to temperature and invasive species that may differ between latitudes. Here, we studied single and combined effects of increased temperatures and an invasive alien predator on the phenotypic response of replicated urban and rural populations of the damselfly Ischnura elegans and contrasted these between central and high latitudes. Adult females were collected in rural and urban ponds at central and high latitudes. Their larvae were exposed to temperature treatments (current [20°C], mild warming [24°C], and heat wave [28°C; for high latitude only]) crossed with the presence or absence of chemical cues released by the spiny-cheek crayfish (Faxonius limosus), only present at the central latitude. We measured treatment effects on larval development time, mass, and growth rate. Urbanization type affected all life history traits, yet these responses were often dependent on latitude, temperature, and sex. Mild warming decreased mass in rural and increased growth rate in urban populations. The effects of urbanization type on mass were latitude-dependent, with central-latitude populations having a greater phenotypic difference. Urbanization type effects were sex-specific with urban males being lighter and having a lower growth rate than rural males. At the current temperature and mild warming, the predator cue reduced the growth rate, and this independently of urbanization type and latitude of origin. This pattern was reversed during a heat wave in high-latitude damselflies. Our results highlight the context-dependency of evolutionary and plastic responses to urbanization, and caution for generalizing how populations respond to cities based on populations at a single latitude.

3.
Front Zool ; 20(1): 13, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37032330

RESUMEN

BACKGROUND: Understanding and predicting how organisms respond to human-caused environmental changes has become a major concern in conservation biology. Here, we linked gene expression and phenotypic data to identify candidate genes underlying existing phenotypic trait differentiation under individual and combined environmental variables. For this purpose, we used the damselfly Ischnura elegans. Egg clutches from replicated high- (southern Sweden) and central-latitude (southern Poland) populations facing different degrees of seasonal time constraints were collected. Damselfly larvae were exposed to experimental treatments: current and mild warming temperatures crossed with the presence or absence of an invasive alien predator cue released by the spiny-cheek crayfish, Faxonius limosus, which is only present in Poland to date. We measured the following traits: larval development time, body size, mass and growth rate, and used the larvae for gene expression analysis by RNA-seq. Data were analysed using a multivariate approach. RESULTS: We showed latitudinal differences in coping with mild warming and predator cues. When exposed to an increased temperature and a predator cue, central-latitude individuals had the shortest development and the fastest growth compared to high-latitude individuals. There was a general effect of predator cues regarding mass and growth rate reduction independent of latitude. Transcriptome analysis revealed that metabolic pathways related to larval anatomy and development tended to be upregulated in response to mild warming but only in fast-growing central-latitude individuals. Metabolic pathways linked to oxidative stress tended to be downregulated in response to a predator cue, especially in central-latitude individuals. CONCLUSION: Different phenotypic and transcriptomic responses to environmental factors might be attributed to the variability in I. elegans life history strategies between the two latitudes caused by seasonal time constraints and to its coexistence with the invasive alien predator in nature. By providing insights into how organisms may respond to future anthropogenic changes, our results may be of particular interest in conservation biology.

4.
Insects ; 13(7)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35886798

RESUMEN

Under climate warming, temperate ectotherms are expected to hatch earlier and grow faster, increase the number of generations per season, i.e., voltinism. Here, we studied, under laboratory conditions, the impact of artificial warming and manipulated hatching dates on life history (voltinism, age and mass at emergence and growth rate) and physiological traits (phenoloxidase (PO) activity at emergence, as an indicator of investment in immune function) and larval survival rate in high-latitude populations of the damselfly Ischnura elegans. Larvae were divided into four groups based on crossing two treatments: early versus late hatching dates and warmer versus control rearing temperature. Damselflies were reared in groups over the course of one (univoltine) or two (semivoltine) growth seasons, depending on the voltinism. Warming temperature did not affect survival rate. However, warming increased the number of univoltine larvae compared to semivoltine larvae. There was no effect of hatching phenology on voltinism. Early hatched larvae reared under warming had elevated PO activity, regardless of their voltinism, indicating increased investment in immune function against pathogens. Increased PO activity was not associated with effects on age or mass at emergence or growth rate. Instead, life history traits were mainly affected by temperature and voltinism. Warming decreased development time and increased growth rate in univoltine females, yet decreased growth rate in univoltine males. This indicates a stronger direct impact of warming and voltinism compared to impacts of hatching phenology on life history traits. The results strengthen the evidence that phenological shifts in a warming world may affect physiology and life history in freshwater insects.

5.
Ecol Lett ; 25(4): 790-801, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35026042

RESUMEN

In seasonally variable environments, phenotypic plasticity in phenology may be critical for adaptation to fluctuating environmental conditions. Using an 18-generation longitudinal dataset from natural damselfly populations, we show that phenology has strongly advanced. Individual fitness data suggest this is likely an adaptive response towards a temperature-dependent optimum. A laboratory experiment revealed that developmental plasticity qualitatively matches the temperature dependence of selection, partially explaining observed advance in phenology. Expanding our analysis to the macroevolutionary level, we use a database of over 1-million occurrence records and spatiotemporally matched temperature data from 49 Swedish Odonate species to infer macroevolutionary dynamics of phenology. Phenological plasticity was more closely aligned with adaptation for species that have recently colonised northern latitudes, but with higher phenological mismatch at lower latitudes. Our results show that phenological plasticity plays a key role in microevolutionary dynamics within a single species, and such plasticity may have facilitated post-Pleistocene range expansion in this insect clade.


Asunto(s)
Aclimatación , Adaptación Fisiológica , Animales , Cambio Climático , Insectos , Estaciones del Año , Temperatura
6.
Wellcome Open Res ; 7: 66, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36874565

RESUMEN

We present a genome assembly from an individual female Ischnura elegans (the blue-tailed damselfly; Arthropoda; Insecta; Odonata; Coenagrionidae). The genome sequence is 1,723 megabases in span. The majority of the assembly (99.55%) is scaffolded into 14 chromosomal pseudomolecules, with the X sex chromosome assembled.

7.
J Anim Ecol ; 91(6): 1104-1118, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33759189

RESUMEN

Range expansions can be shaped by sex differences in behaviours and other phenotypic traits affecting dispersal and reproduction. Here, we investigate sex differences in morphology, behaviour and genomic population differentiation along a climate-mediated range expansion in the common bluetail damselfly (Ischnura elegans) in northern Europe. We sampled 65 sites along a 583-km gradient spanning the I. elegans range in Sweden and quantified latitudinal gradients in site relative abundance, sex ratio and sex-specific shifts in body size and mating status (a measure of sexual selection). Using single nucleotide polymorphism (SNP) data for 426 individuals from 25 sites, we further investigated sex-specific landscape and climatic effects on neutral genetic connectivity and migration patterns. We found evidence for sex differences associated with the I. elegans range expansion, namely (a) increased male body size with latitude, but no latitudinal effect on female body size, resulting in reduced sexual dimorphism towards the range limit, (b) a steeper decline in male genetic similarity with increasing geographic distance than in females, (c) male-biased genetic migration propensity and (d) a latitudinal cline in migration distance (increasing migratory distances towards the range margin), which was stronger in males. Cooler mean annual temperatures towards the range limit were associated with increased resistance to gene flow in both sexes. Sex ratios became increasingly male biased towards the range limit, and there was evidence for a changed sexual selection regime shifting from favouring larger males in the south to favouring smaller males in the north. Our findings suggest sex-specific spatial phenotype sorting at the range limit, where larger males disperse more under higher landscape resistance associated with cooler climates. The combination of latitudinal gradients in sex-biased dispersal, increasing male body size and (reduced) sexual size dimorphism should have emergent consequences for sexual selection dynamics and the mating system at the expanding range front. Our study illustrates the importance of considering sex differences in the study of range expansions driven by ongoing climate change.


Asunto(s)
Odonata , Caracteres Sexuales , Animales , Tamaño Corporal , Femenino , Masculino , Reproducción , Selección Genética , Selección Sexual
8.
Ecol Evol ; 11(14): 9361-9369, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34306627

RESUMEN

Biological invasions are a serious problem in natural ecosystems. Local species that are potential prey of invasive alien predators can be threatened by their inability to recognize invasive predator cues. Such an inability of prey to recognize the presence of the predator supports the naïve prey hypothesis. We exposed eggs of a damselfly, Ischnura elegans, to four treatments: water with no predator cue (control), water with a native predator cue (perch), water with an invasive alien predator cue (spinycheek crayfish) that is present in the damselfly sampling site, and water with an invasive alien predator cue (signal crayfish) that is absent in the damselfly sampling site but is expected to invade it. We measured egg development time, mortality between ovipositing and hatching, and hatching synchrony. Eggs took longer to develop in the signal crayfish group (however, in this group, we also observed high green algae growth), and there was a trend of shorter egg development time in the spinycheek crayfish group than in the control group. There was no difference in egg development time between the perch and the control group. Neither egg mortality nor hatching synchrony differed between groups. We suggest that egg response to signal crayfish could be a general stress reaction to an unfamiliar cue or an artifact due to algae development in this group. The egg response to the spinycheek crayfish cue could be caused by the predation of crayfish on damselfly eggs in nature. The lack of egg response to the perch cue could be caused by perch predation on damselfly larvae rather than on eggs. Such differences in egg responses to alternative predator cues can have important implications for understanding how this group of insects responds to biological invasions, starting from the egg stage.

9.
Ecol Evol ; 11(9): 4399-4412, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33976818

RESUMEN

Search image formation, a proximal mechanism to maintain genetic polymorphisms by negative frequency-dependent selection, has rarely been tested under natural conditions. Females of many nonterritorial damselflies resemble either conspecific males or background vegetation. Mate-searching males are assumed to form search images of the majority female type, sexually harassing it at rates higher than expected from its frequency, thus selectively favoring the less common morph. We tested this and how morph coloration and behavior influenced male perception and intersexual encounters by following marked Ischnura elegans and noting their reactions to conspecifics. Contrary to search image formation and associative learning hypotheses, although males encountered the minority, male-like morph more often, sexual harassment and clutch size were similar for both morphs. Prior mating attempts or copula with morphs did not affect a male's subsequent reaction to them; males rarely attempted matings with immature females or males. Females mated early in the day, reducing the opportunity for males to learn their identity beforehand. Once encountered, the male-like morph was more readily noticed by males than the alternative morph, which once noticed was more likely to receive mating attempts. Flexible behavior gave morphs considerable control over their apparency to males, influencing intersexual encounters. Results suggested a more subtle proximal mechanism than male learning maintains these color polymorphisms and call for inferences of learning to be validated by behavior of wild receivers and their signalers.

10.
Genomics ; 113(4): 1828-1837, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33831439

RESUMEN

The evolution of sex chromosomes, and patterns of sex-biased gene expression and dosage compensation, are poorly known among early winged insects such as odonates. We assembled and annotated the genome of Ischnura elegans (blue-tailed damselfly), which, like other odonates, has a male-hemigametic sex-determining system (X0 males, XX females). By identifying X-linked genes in I. elegans and their orthologs in other insect genomes, we found homologies between the X chromosome in odonates and chromosomes of other orders, including the X chromosome in Coleoptera. Next, we showed balanced expression of X-linked genes between sexes in adult I. elegans, i.e. evidence of dosage compensation. Finally, among the genes in the sex-determining pathway only fruitless was found to be X-linked, while only doublesex showed sex-biased expression. This study reveals partly conserved sex chromosome synteny and independent evolution of dosage compensation among insect orders separated by several hundred million years of evolutionary history.


Asunto(s)
Compensación de Dosificación (Genética) , Odonata/genética , Cromosoma X , Animales , Femenino , Expresión Génica , Genes Ligados a X , Masculino , Cromosoma X/genética
11.
Ecol Evol ; 8(10): 4793-4806, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29876058

RESUMEN

Many species are currently changing their distributions and subsequently form sympatric zones with hybridization between formerly allopatric species as one possible consequence. The damselfly Ischnura elegans has recently expanded south into the range of its ecologically and morphologically similar sister species Ischnura graellsii. Molecular work shows ongoing introgression between these species, but the extent to which this species mixing is modulated by ecological niche use is not known. Here, we (1) conduct a detailed population genetic analysis based on molecular markers and (2) model the ecological niche use of both species in allopatric and sympatric regions. Population genetic analyses showed chronic introgression between I. elegans and I. graellsii across a wide part of Spain, and admixture analysis corroborated this, showing that the majority of I. elegans from the sympatric zone could not be assigned to either the I. elegans or I. graellsii species cluster. Niche modeling demonstrated that I. elegans has modified its environmental niche following hybridization and genetic introgression with I. graellsii, making niche space of introgressed I. elegans populations more similar to I. graellsii. Taken together, this corroborates the view that adaptive introgression has moved genes from I. graellsii into I. elegans and that this process is enabling Spanish I. elegans to occupy a novel niche, further facilitating its expansion. Our results add to the growing evidence that hybridization can play an important and creative role in the adaptive evolution of animals.

12.
BMC Genomics ; 17(1): 985, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27905879

RESUMEN

BACKGROUND: Sexual dimorphism occurs widely across the animal kingdom and has profound effects on evolutionary trajectories. Here, we investigate sex-specific gene expression in Ischnura elegans (Odonata: dragonflies and damselflies), a species with pronounced sexual differences including a female-limited colour polymorphism with two female-like gynochrome morphs and one male-mimicking, androchrome morph. Whole-organism transcriptome profiling and sex-biased gene expression analysis was conducted on adults of both sexes (pooling all females as well as separating the three morphs) to gain insights into genes and pathways potentially associated with sexual development and sexual conflict. RESULTS: The de novo transcriptome assembly was of high quality and completeness (54 k transcripts; 99.6% CEGMA score; 55% annotated). We identified transcripts of several relevant pathways, including transcripts involved in sex determination, hormone biosynthesis, pigmentation and innate immune signalling. A total of 1,683 genes were differentially expressed (DE) between males and all females (1,173 were female-biased; 510 male-biased). The DE genes were associated with sex-specific physiological and reproductive processes, olfaction, pigmentation (ommochrome and melanin), hormone (ecdysone) biosynthesis and innate immunity signalling pathways. Comparisons between males and each female morph category showed that the gynochromes differed more from males than the androchrome morph. CONCLUSIONS: This is the first study to characterize sex-biased gene expression in odonates, one of the most ancient extant insect orders. Comparison between I. elegans sexes revealed expression differences in several genes related to sexual differences in behaviour and development as well as morphology. The differential expression of several olfactory genes suggests interesting sexual components in the detection of odours, pheromones and environmental volatiles. Up-regulation of pigmentation pathways in females indicates a prominent role of ommochrome pigments in the formation of the genetically controlled female colour polymorphism. Finally, the female-biased expression of several immunity genes suggests a stronger immune response in females, possibly related to the high levels of male mating harassment and recurrent matings in this species, both of which have been shown to injure females and expose them to sexually transmitted diseases and toxins contained in seminal fluids.


Asunto(s)
Odonata/genética , Transcriptoma , Animales , Ecdisona/biosíntesis , Femenino , Perfilación de la Expresión Génica , Inmunidad Innata/genética , Masculino , Pigmentación/genética , Caracteres Sexuales , Transducción de Señal/genética , Olfato/genética
13.
J Insect Physiol ; 91-92: 34-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27349728

RESUMEN

Selection for the oviposition site represents the criterion for the behavioral process of habitat selection for the next generation. It is well known that in Odonata the most general cues are detected visually, but laboratory investigations on the coenagrionid Ischnura elegans showed through behavioral and electrophysiological assays that adults were attracted by olfactory cues emitted by prey and that males of the same species are attracted by female odor. The results of the present behavioral and electrophysiological investigations on I. elegans suggest the involvement of antennal olfactory sensilla in oviposition behavior. In particular, I. elegans females laid in the laboratory significantly more eggs in water from larval rearing aquaria than in distilled or tap water. Moreover, the lack of preference between rearing water and tap water with plankton suggests a role of volatiles related to conspecific and plankton presence in the oviposition site choice. I. elegans may rely on food odor for oviposition site selection, thus supporting the predictions of the "mother knows best" theory. These behavioral data are partially supported by electroantennographic responses. These findings confirm a possible role of olfaction in crucial aspects of Odonata biology.


Asunto(s)
Señales (Psicología) , Odonata/fisiología , Percepción Olfatoria , Oviposición , Animales , Fenómenos Electrofisiológicos , Femenino , Masculino , Sensilos/fisiología , Compuestos Orgánicos Volátiles
14.
Evol Appl ; 9(6): 818-30, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27330557

RESUMEN

How evolution may mitigate the effects of global warming and pesticide exposure on predator-prey interactions is directly relevant for vector control. Using a space-for-time substitution approach, we addressed how 4°C warming and exposure to the pesticide endosulfan shape the predation on Culex pipiens mosquitoes by damselfly predators from replicated low- and high-latitude populations. Although warming was only lethal for the mosquitoes, it reduced predation rates on these prey. Possibly, under warming escape speeds of the mosquitoes increased more than the attack efficiency of the predators. Endosulfan imposed mortality and induced behavioral changes (including increased filtering and thrashing and a positional shift away from the bottom) in mosquito larvae. Although the pesticide was only lethal for the mosquitoes, it reduced predation rates by the low-latitude predators. This can be explained by the combination of the evolution of a faster life history and associated higher vulnerabilities to the pesticide (in terms of growth rate and lowered foraging activity) in the low-latitude predators and pesticide-induced survival selection in the mosquitoes. Our results suggest that predation rates on mosquitoes at the high latitude will be reduced under warming unless predators evolve toward the current low-latitude phenotype or low-latitude predators move poleward.

15.
Zoology (Jena) ; 119(2): 137-142, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26831359

RESUMEN

The present paper shows, by means of single-cell recordings, responses of antennal sensory neurons of the damselfly Ischnura elegans when stimulated by air streams at different CO2 concentrations. Unlike most insects, but similarly to termites, centipedes and ticks, Odonata possess sensory neurons strongly inhibited by CO2, with the magnitude of the off-response depending upon the CO2 concentration. The Odonata antennal sensory neurons responding to CO2 are also sensitive to airborne odors; in particular, the impulse frequency is increased by isoamylamine and decreased by heptanoic and pentanoic acid. Further behavioral investigations are necessary to assign a biological role to carbon dioxide detection in Odonata.


Asunto(s)
Dióxido de Carbono/metabolismo , Odonata/fisiología , Aminas/farmacología , Animales , Antenas de Artrópodos/citología , Antenas de Artrópodos/fisiología , Dióxido de Carbono/farmacología , Ácidos Carboxílicos/farmacología , Odonata/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología
16.
Mitochondrial DNA B Resour ; 1(1): 574-576, 2016 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-33473559

RESUMEN

Damselflies of the genus Ischnura emerge as organisms with high potential in ecological, evolutionary and developmental research at the base of flying insects. Ischnura elegans and Ischnura hastata are for example one of the few odonate species where a complete life cycle over generations can be reared under laboratory conditions. We here report the complete mitochondrial genome of Ischnura elegans as a valuable genomic resource for future eco-evo-devo studies at the base of flying insects. The genome has a total length of 15,962 bp and displays all typical features of Odonata (dragonflies and damselflies) mitochondrial genomes in gene content and order as well as A + T content. Start and stop codons of all protein-coding genes are consistent. Most interestingly, we found four intergenic spacer regions and a long A + T rich (control) region of 1196 bp, which is almost double the size of the close relative Ischnura pumilio. We assume that the adequate insert size and iterative mapping may be more efficient in assembling this duplicated and repetitive region.

17.
J Insect Physiol ; 70: 49-58, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25218659

RESUMEN

Volatile chemicals mediate a great range of intra- and interspecific signalling and information in insects. Olfaction has been widely investigated mostly in Neoptera while the knowledge of this sense in most basal insects such as Paleoptera (Odonata and Ephemeroptera) is still poor. In the present study we show the results of an electrophysiological screening on two model species, Libellula depressa (Libellulidae) and Ischnura elegans (Coenagrionidae), representatives of the two Odonata suborders Anisoptera and Zygoptera, with the aim to deep the knowledge on the sense of smell of this insect order. The antennal olfactory sensory neurons (OSNs) of these two species responded to the same 22 compounds (out of 48 chemicals belonging to different functional groups) encompassing mostly amines, carboxylic acids or aldehydes and belonging to green leaf volatiles, vertebrate related volatiles and volatiles emitted by standing waters bacteria. The properties of Odonata OSNs are very similar to those of ionotropic receptors (IRs) expressing OSNs in other insects.


Asunto(s)
Odonata/fisiología , Olfato/fisiología , Animales , Antenas de Artrópodos/fisiología , Electrofisiología , Femenino , Masculino , Odorantes
18.
J Insect Physiol ; 62: 26-31, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24486162

RESUMEN

Dragonflies and damselflies are among the most ancient winged insects. Adults belonging to this order are visually oriented and are considered anosmic on the basis of neuroanatomical investigations. As a consequence, the chemical ecology of these predatory insects has long been neglected. Morphological and electrophysiological data demonstrated that dragonfly antennae possess olfactory sensilla. Additionally, a neuroanatomical study revealed the presence of spherical knots in the aglomerular antennal lobe that could allow for the perception of odour. However, the biological role of the antennal olfactory sensilla remains unknown, and no bioassay showing the use of olfaction in Odonata has been performed thus far. Here, we demonstrate through behavioural assays that adults of Ischnura elegans are attracted by olfactory cues emitted by prey; furthermore, using electrophysiological single-cell recordings, we prove that the antennal olfactory sensilla of I. elegans respond to prey odour. Our results clearly demonstrate the involvement of antennal olfactory sensilla in Odonata predation, thus showing, for the first time, the use of olfaction in Odonata biology. This finding indicates that the nervous system of Odonata is able to receive and process olfactory information, suggesting that the simple organisation of the antennal lobe does not prevent the use of olfaction in insects.


Asunto(s)
Odonata/fisiología , Animales , Conducta Animal , Electrofisiología , Odonata/química , Odorantes/análisis , Sensilos/química , Sensilos/fisiología , Olfato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA