Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 342
Filtrar
1.
Mol Neurobiol ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39278884

RESUMEN

Hypoxic-ischemic brain damage (HIBD) in neonates is a substantial cause of mortality and neurodevelopmental impairment, with the exact molecular mechanisms still being elucidated. The involvement of HIF-1α, MALAT1, miR-140-5p, TGFBR1, and the NF-κB signaling pathway in such injury cascades is of increasing research interest due to their pivotal roles in cellular and pathological processes. This study aimed to explore how HIF-1α regulates the MALAT1/miR-140-5p/TGFBR1/NF-κB signaling axis to participate in the molecular mechanisms of HIBD in neonatal rats. Utilizing bioinformatic analyses and a suite of experimental approaches, the study delineated interactions and regulatory relationships among the molecules. Knockdown of HIF-1α was shown to mitigate brain tissue damage in a neonatal HIBD rat model through the MALAT1/miR-140-5p/TGFBR1/NF-κB signaling axis, revealing a protective effect achieved by inhibiting hippocampal neuron apoptosis and potentially guiding the way toward therapeutic interventions in HIBD. This study implicates the HIF-1α mediated regulation of the MALAT1/miR-140-5p/TGFBR1/NF-κB signaling axis in the pathological development of HIBD, offering insights into novel potential interventional strategies.

2.
Resuscitation ; : 110397, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278393

RESUMEN

AIM: Temperature control is a complex bundled intervention; the synergistic impact of each individual component is ill defined and underreported. Resultantly, the influence of parameter optimization on temperature control's overall neuroprotective effect remains poorly understood. To characterize variability in temperature control parameters and barriers to short pre-induction and induction times, we surveyed sites enrolling in an ongoing multicenter clinical trial. METHODS: This was a cross-sectional, survey study evaluating temperature control practices within the Influence of Cooling duration on Efficacy in Cardiac Arrest Patients (ICECAP) trial (NCT04217551). A 23-question web-based survey (Qualtrics) was distributed to the site principal investigators by email. Respondents were asked about site practices pertaining to the use of temperature control, including the request to upload individual institutional protocols. Open-ended responses were analyzed qualitatively by categorizing responses into identified themes. To complement survey level data, records pertaining to the quality of temperature control were extracted from the ICECAP trial database. RESULTS: The survey response rate was 75% (n= 51) including 23.5% (n=12) survey respondents who uploaded institutional protocols. Most sites reported having institutional protocols for temperature control (n = 41; 80%), including 62.5% (n=32) who had separate protocols for initiation of temperature control in the emergency department (ED). Fewer sites had protocols specific to sedation or neuromuscular blockade (NMB) management (n = 35, 68.6%). Use of NMB during temperature control induction was variable; 61.7% (n= 29) of sites induced paralysis less than 20% of the time. While most institutional protocols (n=11, 83.3%) commented on the importance of early initiation of temperature control, this was incongruent with the largest reported barrier, which was clinical nihilism regarding the importance of early temperature control initiation (n=30, 62.5%). Within the ICECAP trial database, 1 in 2 patients were treated with NMB however, use of NMB and time to initiation of temperature control device varied widely between sites. CONCLUSION: Amongst ICECAP trial sites, there was significant variability in resources, methods, and barriers for early temperature control initiation. Defining and standardizing high-quality temperature control must be prioritized, as it may impact the interpretation of past and current clinical trial findings.

3.
Int J Med Sci ; 21(11): 2189-2200, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239553

RESUMEN

In the realm of this study, obtaining a comprehensive understanding of ischemic brain injury and its molecular foundations is of paramount importance. Our study delved into single-cell data analysis, with a specific focus on sub-celltypes and differentially expressed genes in the aftermath of ischemic injury. Notably, we observed a significant enrichment of the "ATP METABOLIC PROCESS" and "ATP HYDROLYSIS ACTIVITY" pathways, featuring pivotal genes such as Pbx3, Dguok, and Kif21b. A remarkable finding was the consistent upregulation of genes like Fabp7 and Bcl11a within the MCAO group, highlighting their crucial roles in regulating the pathway of mitochondrial ATP synthesis coupled proton transport. Furthermore, our network analysis unveiled pathways like "Neuron differentiation" and "T cell differentiation" as central in the regulatory processes of sub-celltypes. These findings provide valuable insights into the intricate molecular responses and regulatory mechanisms that govern brain injury. The shared differentially expressed genes among sub-celltypes emphasize their significance in orchestrating responses post-ischemic injury. Our research, viewed from the perspective of a medical researcher, contributes to the evolving understanding of the molecular landscape underlying ischemic brain injury, potentially paving the way for targeted therapeutic strategies and improved patient outcomes.


Asunto(s)
Adenosina Trifosfato , Infarto de la Arteria Cerebral Media , Cinesinas , Mitocondrias , Células Precursoras de Oligodendrocitos , Transducción de Señal , Animales , Transducción de Señal/genética , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/biosíntesis , Cinesinas/genética , Cinesinas/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Humanos , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Ratas , Proteínas Proto-Oncogénicas
4.
Resusc Plus ; 19: 100746, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39238950

RESUMEN

Background: Grey-white matter ratio (GWR) measured by head computed tomography (CT) scan is known as a neurological prognostication tool for out-of-hospital cardiac arrest (OHCA) survivors. The prognostic value of GWR obtained early (within two hours after return of spontaneous circulation [ROSC]) remains a matter of debate. Methods: We conducted a multicenter, retrospective, observational study at five hospitals. We included adult OHCA survivors who underwent head CT within two hours following ROSC. GWR values were measured using head CT. Average GWR values were calculated by the mean of the GWR-basal ganglia and GWR-Cerebrum. We divided the patients into poor or favorable neurological outcome groups defined by Glasgow-Pittsburgh Cerebral Performance Category scores. The predictive accuracy of GWR performance was assessed using the area under the curve (AUC). The sensitivities and specificities for predicting poor outcome were examined. Results: Of 377 eligible patients, 281 (74.5%) showed poor neurological outcomes at one month after ROSC. Average GWR values of the poor neurological outcome group were significantly lower than those of the favorable neurological outcome. The average GWR value to predict neurological outcome with Youden index was 1.24 with AUC of 0.799. When average GWR values were 1.15 or lower, poor neurological outcomes could be predicted with 100% specificity. Conclusions: GWR values measured by head CT scans early (within two hours after ROSC) demonstrated moderate predictive performance for overall ROSC patients. When limited to the patients with GWR values of 1.15 or lower, poor neurological outcomes could be predicted with high specificity.

5.
Diagnostics (Basel) ; 14(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39125550

RESUMEN

PURPOSE: Therapeutic hypothermia (TH) is widely acknowledged as one of the interventions for preventing hypoxic ischemic brain injury in comatose patients following cardiac arrest (CA). Despite its recognized efficacy, recent debates have questioned its effectiveness. This preclinical study evaluated the impact of TH on brain glucose metabolism, utilizing fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in a rat model of CA. METHODS: Asphyxia CA was induced in Sprague-Dawley rats using vecuronium. Brain PET images using 18F-FDG were obtained from 21 CA rats, who were randomized to receive either TH or no intervention. Of these, 9 rats in the TH group received hypothermia under general anesthesia and mechanical ventilation for eight hours, while the remaining 12 rats in the non-TH group were observed without intervention. We conducted regional and voxel-based analyses of standardized uptake values relative to the pons (SUVRpons) to compare the two groups. RESULTS: Survival rates were identical in both the TH and non-TH groups (67%). There was no discernible difference in the SUVRpons across the brain cortical regions between the groups. However, in a subgroup analysis of the rats that did not survive (n = 7), those in the TH group (n = 3) displayed significantly higher SUVRpons values across most cortical regions compared to those in the non-TH group (n = 4), with statistical significance after false-discovery rate correction (p < 0.05). CONCLUSIONS: The enhancement in SUVRpons due to TH intervention was only observed in the cortical regions of rats with severe encephalopathy that subsequently died. These findings suggest that the beneficial effects of TH on brain glucose metabolism in this asphyxia CA model may be confined to cases of severe ischemic encephalopathy.

6.
Cureus ; 16(8): e67299, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39165618

RESUMEN

This case report presents a novel exploration of serial systemic immune-inflammation indices (SSIIi) as a potential prognostic biomarker in a critical care setting. The subject of this report is a 31-year-old male who, following a heroin overdose, suffered an asystolic cardiac arrest and subsequently passed away two weeks later in the intensive care unit (ICU). The SSIIi, calculated as platelet count × neutrophil count / lymphocyte count, was monitored throughout his stay. The case demonstrates that SSIIi measurements, particularly within the critical initial 24-72 hours, may provide insight into the patient's immune response dynamics following a severe hypoxic event. Specifically, the data suggest that a persistently elevated SSIIi may be indicative of a maladaptive immune response, characterized by ongoing inflammation, which correlates with a deteriorating clinical trajectory. The rapid escalation and sustained high SSIIi values observed in this patient appear to predict a poor outcome. This case underscores the importance of SSIIi as a potential tool for clinicians to assess prognosis in ICU patients, particularly in cases of acute brain injury where hypoxia is a central factor and sepsis is not present. The findings open avenues for further research into SSIIi as an objective measure for guiding treatment decisions and improving outcomes in similar critical care scenarios.

7.
Biomedicines ; 12(8)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39200360

RESUMEN

Experimental animal studies of hypoxic-ischemic injury of the hippocampus of pigs are limited due to the unprecise definition of hippocampal subfields, cornu ammonis 1 to 4, compared to humans. Given that the pig model closely mirrors human physiology and serves as an important model for critical care research, a more precise description is necessary to draw valid conclusions applicable to human diseases. In our study, we were able to precisely define the CA2 and its adjacent regions in a domestic pig model by arginine vasopressin receptor 1B (AVPR1B) and calbindin-D28K like (CaBP-Li) expression patterns. Our findings demonstrate that the histoarchitecture of the porcine cornu ammonis subfields closely resembles that of the human hippocampus. Notably, we identified unusually strong neuronal damage in regions of the pig hippocampus following global ischemia, which are typically not susceptible to hypoxic-ischemic damage in humans.

8.
Nutrients ; 16(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39064695

RESUMEN

Neonatal hypoxic-ischemic (HI) brain injury is a prominent cause of neurological morbidity, urging the development of novel therapies. Interventions with n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs) and mesenchymal stem cells (MSCs) provide neuroprotection and neuroregeneration in neonatal HI animal models. While lysophosphatidylcholine (LPC)-bound n-3 LCPUFAs enhance brain incorporation, their effect on HI brain injury remains unstudied. This study investigates the efficacy of oral LPC-n-3 LCPUFAs from Lysoveta following neonatal HI in mice and explores potential additive effects in combination with MSC therapy. HI was induced in 9-day-old C57BL/6 mice and Lysoveta was orally supplemented for 7 subsequent days, with or without intranasal MSCs at 3 days post-HI. At 21-28 days post-HI, functional outcome was determined using cylinder rearing, novel object recognition, and open field tasks, followed by the assessment of gray (MAP2) and white (MBP) matter injury. Oral Lysoveta diminished gray and white matter injury but did not ameliorate functional deficits following HI. Lysoveta did not further enhance the therapeutic potential of MSC therapy. In vitro, Lysoveta protected SH-SY5Y neurons against oxidative stress. In conclusion, short-term oral administration of Lysoveta LPC-n-3 LCPUFAs provides neuroprotection against neonatal HI by mitigating oxidative stress injury but does not augment the efficacy of MSC therapy.


Asunto(s)
Animales Recién Nacidos , Ácidos Grasos Omega-3 , Hipoxia-Isquemia Encefálica , Lisofosfatidilcolinas , Trasplante de Células Madre Mesenquimatosas , Ratones Endogámicos C57BL , Animales , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/administración & dosificación , Hipoxia-Isquemia Encefálica/terapia , Hipoxia-Isquemia Encefálica/prevención & control , Ratones , Trasplante de Células Madre Mesenquimatosas/métodos , Modelos Animales de Enfermedad , Suplementos Dietéticos , Lesiones Encefálicas/prevención & control , Lesiones Encefálicas/terapia , Fármacos Neuroprotectores/farmacología , Células Madre Mesenquimatosas , Masculino , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Proteína Básica de Mielina
9.
Inflamm Regen ; 44(1): 33, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014391

RESUMEN

BACKGROUND: Neonatal hypoxic-ischemic brain injury (HIBI) is a significant contributor to neonatal mortality and long-term neurodevelopmental disability, characterized by massive neuronal loss and reactive astrogliosis. Current therapeutic approaches for neonatal HIBI have been limited to general supportive therapy because of the lack of methods to compensate for irreversible neuronal loss. This study aimed to establish a feasible regenerative therapy for neonatal HIBI utilizing in vivo direct neuronal reprogramming technology. METHODS: Neonatal HIBI was induced in ICR mice at postnatal day 7 by permanent right common carotid artery occlusion and exposure to hypoxia with 8% oxygen and 92% nitrogen for 90 min. Three days after the injury, NeuroD1 was delivered to reactive astrocytes of the injury site using the astrocyte-tropic adeno-associated viral (AAV) vector AAVShH19. AAVShH19 was engineered with the Cre-FLEX system for long-term tracking of infected cells. RESULTS: AAVShH19-mediated ectopic NeuroD1 expression effectively converted astrocytes into GABAergic neurons, and the converted cells exhibited electrophysiological properties and synaptic transmitters. Additionally, we found that NeuroD1-mediated in vivo direct neuronal reprogramming protected injured host neurons and altered the host environment, i.e., decreased the numbers of activated microglia, reactive astrocytes, and toxic A1-type astrocytes, and decreased the expression of pro-inflammatory factors. Furthermore, NeuroD1-treated mice exhibited significantly improved motor functions. CONCLUSIONS: This study demonstrates that NeuroD1-mediated in vivo direct neuronal reprogramming technology through AAV gene delivery can be a novel regenerative therapy for neonatal HIBI.

10.
J Integr Neurosci ; 23(7): 141, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39082286

RESUMEN

BACKGROUND: Hypoxic-ischemic injury of neurons is a pathological process observed in several neurological conditions, including ischemic stroke and neonatal hypoxic-ischemic brain injury (HIBI). An optimal treatment strategy for these conditions remains elusive. The present study delved deeper into the molecular alterations occurring during the injury process in order to identify potential therapeutic targets. METHODS: Oxygen-glucose deprivation/reperfusion (OGD/R) serves as an established in vitro model for the simulation of HIBI. This study utilized RNA sequencing to analyze rat primary hippocampal neurons that were subjected to either 0.5 or 2 h of OGD, followed by 0, 9, or 18 h of reperfusion. Differential expression analysis was conducted to identify genes dysregulated during OGD/R. Time-series analysis was used to identify genes exhibiting similar expression patterns over time. Additionally, functional enrichment analysis was conducted to explore their biological functions, and protein-protein interaction (PPI) network analyses were performed to identify hub genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was used for validation of hub-gene expression. RESULTS: The study included a total of 24 samples. Analysis revealed distinct transcriptomic alterations after OGD/R processes, with significant dysregulation of genes such as Txnip, Btg2, Egr1 and Egr2. In the OGD process, 76 genes, in two identified clusters, showed a consistent increase in expression; functional analysis showed involvement of inflammatory responses and signaling pathways like tumor necrosis factor (TNF), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and interleukin 17 (IL-17). PPI network analysis suggested that Ccl2, Jun, Cxcl1, Ptprc, and Atf3 were potential hub genes. In the reperfusion process, 274 genes, in three clusters, showed initial upregulation followed by downregulation; functional analysis suggested association with apoptotic processes and neuronal death regulation. PPI network analysis identified Esr1, Igf-1, Edn1, Hmox1, Serpine1, and Spp1 as key hub genes. qRT-PCR validated these trends. CONCLUSIONS: The present study provides a comprehensive transcriptomic profile of an in vitro OGD/R process. Key hub genes and pathways were identified, offering potential targets for neuroprotection after hypoxic ischemia.


Asunto(s)
Hipoxia-Isquemia Encefálica , Neuronas , Transcriptoma , Animales , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/genética , Ratas , Neuronas/metabolismo , Hipocampo/metabolismo , Ratas Sprague-Dawley , Glucosa/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Mapas de Interacción de Proteínas
11.
Adv Funct Mater ; 34(17)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-39071865

RESUMEN

Cardiac arrest (CA)-induced cerebral ischemia remains challenging with high mortality and disability. Neural stem cell (NSC) engrafting is an emerging therapeutic strategy with considerable promise that, unfortunately, is severely compromised by limited cell functionality after in vivo transplantation. This groundbreaking report demonstrates that metabolic glycoengineering (MGE) using the "Ac5ManNTProp (TProp)" monosaccharide analog stimulates the Wnt/ß-catenin pathway, improves cell adhesion, and enhances neuronal differentiation in human NSCs in vitro thereby substantially increasing the therapeutic potential of these cells. For the first time, MGE significantly enhances NSC efficacy for treating ischemic brain injury after asphyxia CA in rats. In particular, neurological deficit scores and neurobehavioral tests experience greater improvements when the therapeutic cells are pretreated with TProp than with "stand-alone" NSC therapy. Notably, the TProp-NSC group exhibits significantly stronger neuroprotective functions including enhanced differentiation, synaptic plasticity, and reduced microglia recruitment; furthermore, Wnt pathway agonists and inhibitors demonstrate a pivotal role for Wnt signaling in the process. These findings help establish MGE as a promising avenue for addressing current limitations associated with NSC transplantation via beneficially influencing neural regeneration and synaptic plasticity, thereby offering enhanced therapeutic options to boost brain recovery following global ischemia.

12.
Behav Brain Res ; 471: 115113, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-38878973

RESUMEN

Neonatal hypoxic-ischemic (HI) brain injury leads to cognitive impairments including social communication disabilities. Current treatments do not sufficiently target these impairments, therefore new tools are needed to examine social communication in models for neonatal brain injury. Ultrasonic vocalizations (USVs) during early life show potential as a measurement for social development and reflect landmark developmental stages in neonatal mice. However, changes in USV emission early after HI injury have not been found yet. Our current study examines USV patterns and classes in the first 3 days after HI injury. C57Bl/6 mice were subjected to HI on postnatal day (P)9 and USVs were recorded between P10 and P12. Audio files were analyzed using the VocalMat automated tool. HI-injured mice emitted less USVs, for shorter durations, and at a higher frequency compared to control (sham-operated) littermates. The HI-induced alterations in USVs were most distinct at P10 and in the frequency range of 50-75 kHz. At P10 HI-injured mouse pups also produced different ratios of USV class types compared to control littermates. Moreover, alterations in the duration and frequency were specific to certain USV classes in HI animals compared to controls. Injury in the striatum and hippocampus contributed most to alterations in USV communication after HI. Overall, neonatal HI injury leads to USV alterations in newborn mice which could be used as a tool to study early HI-related social communication deficits.


Asunto(s)
Animales Recién Nacidos , Hipoxia-Isquemia Encefálica , Ratones Endogámicos C57BL , Vocalización Animal , Animales , Vocalización Animal/fisiología , Hipoxia-Isquemia Encefálica/fisiopatología , Masculino , Femenino , Ratones , Modelos Animales de Enfermedad , Ondas Ultrasónicas
13.
J Cereb Blood Flow Metab ; : 271678X241258809, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833565

RESUMEN

Ubiquitin C-terminal hydrolase L1 (UCHL1) is a neuronal protein important in maintaining axonal integrity and motor function and may be important in the pathogenesis of many neurological disorders. UCHL1 may ameliorate acute injury and improve recovery after cerebral ischemia. In the current study, the hypothesis that UCHL1's hydrolase activity underlies its effect in maintaining axonal integrity and function is tested after ischemic injury. Hydrolase activity was inhibited by treatment with a UCHL1 hydrolase inhibitor or by employing knockin mice bearing a mutation in the hydrolase active site (C90A). Ischemic injury was induced by oxygen-glucose deprivation (OGD) in brain slice preparations and by transient middle cerebral artery occlusion (tMCAO) surgery in mice. Hydrolase activity inhibition increased restoration time and decreased the amplitude of evoked axonal responses in the corpus callosum after OGD. Mutation of the hydrolase active site exacerbated white matter injury as detected by SMI32 immunohistochemistry, and motor deficits as detected by beam balance and cylinder testing after tMCAO. These results demonstrate that UCHL1 hydrolase activity ameliorates white matter injury and functional deficits after acute ischemic injury and support the hypothesis that UCHL1 activity plays a significant role in preserving white matter integrity and recovery of function after cerebral ischemia.

14.
Cureus ; 16(5): e60621, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38903282

RESUMEN

Lance-Adams syndrome (LAS) is a rare clinical presentation of hypoxic-ischemic brain injury typically occurring in the setting of cardiac arrest. It is rare for it to be associated with respiratory failure. The advent of the COVID-19 pandemic heralded a new cause of respiratory failure, and not much is known about the occurrence of Lance-Adams syndrome in the context of COVID-19 pneumonia. A 23-year-old male was brought to the emergency department (ED) after being found unconscious at home. He had prominent generalized myoclonus in the context of COVID-19 pneumonia and a possible clonazepam overdose. Magnetic resonance imaging (MRI) of the brain with and without contrast revealed findings suggestive of hypoxic-ischemic brain injury. A diagnosis of LAS was made based on electroencephalography (EEG). As LAS typically carries a relatively favorable prognosis, aggressive treatment was pursued. This resulted in a fairly good outcome, although he had to be maintained on several antiseizure medications. Our case is a rare occurrence of Lance-Adams syndrome in the setting of respiratory failure and COVID-19 pneumonia in the absence of cardiac arrest. It is critical to distinguish myoclonic status epilepticus (MSE) from Lance-Adams syndrome due to the difference in prognosis. Our case can provide future direction for studies in a larger cohort of patients to see if LAS is frequently associated with respiratory failure secondary to COVID-19 pneumonia in the absence of cardiac arrest. It is important to consider Lance-Adams syndrome as one of the emerging neurological complications of COVID-19 pneumonia.

15.
Neurocrit Care ; 41(2): 665-680, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38724864

RESUMEN

BACKGROUND: Sovateltide (IRL-1620), an endothelin B receptor agonist, has previously demonstrated neuroprotective and neuroregenerative effects in animal models of acute ischemic stroke. Recently, clinical trials indicated that it could also be effective in humans with stroke. Here, we systematically investigate whether IRL-1620 may be used for the treatment of ischemia-induced brain injury. METHODS: A systematic review was performed following the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. MEDLINE (PubMed) and Scopus databases were searched for eligible studies up to December 2022. The databases ClinicalTrials.gov and Pharmazz Inc. were screened for unpublished or ongoing trials. Only studies in English were evaluated for eligibility. Meta-analysis of the included studies was also conducted. RESULTS: Finally, seven studies were included in the review, all in animal rat models because of scarcity of clinical trials. Six studies, all in middle cerebral artery occlusion (MCAO) models, were selected for meta-analysis. In the two studies assessing mortality, no deaths were reported in the IRL-1620 group 24 h after MCAO, whereas the vehicle group had almost a five times higher mortality risk (risk ratio 5.3, 95% confidence interval 0.7-40.1, I2 = 0%). In all five studies evaluating outcome on day 7 after MCAO, IRL-1620 was associated with statistically significantly lower neurological deficit and improved motor performance compared with the vehicle. Infract volume, differentiation potential of neuronal progenitor cells, and mitochondrial fate also improved with IRL-1620 administration. CONCLUSIONS: According to the above, in animal MCAO models, IRL-1620 enhanced neurogenesis and neuroprotection and improved outcome. Future studies are needed to expand our understanding of its effects in human study participants with acute ischemic stroke as well as in other common causes of cerebral ischemia including cardiac arrest.


Asunto(s)
Fármacos Neuroprotectores , Animales , Fármacos Neuroprotectores/farmacología , Isquemia Encefálica/tratamiento farmacológico , Endotelinas/farmacología , Ratas , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Modelos Animales de Enfermedad , Humanos , Fragmentos de Péptidos
16.
Neurocase ; 30(1): 29-31, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38725351

RESUMEN

We report on a patient with delayed post-hypoxic leukoencephalopathy (DPHL) who showed akinetic mutism and gait disturbance, neural injuries that were demonstrated on diffusion tensor tractography (DTT). A patient was exposed to carbon monoxide (CO) and rapidly recovered; however, two weeks after onset, he began to show cognitive impairment and gait disturbance. At six weeks after CO exposure, he showed akinetic mutism and gait inability. DTT at 6-weeks post-exposure showed discontinuations in neural connectivities of the caudate nucleus to the medial prefrontal and orbitofrontal cortex in both hemispheres. In addition, the corticoreticulospinal tract revealed severe thinning in both hemispheres.


Asunto(s)
Mutismo Acinético , Imagen de Difusión Tensora , Trastornos Neurológicos de la Marcha , Leucoencefalopatías , Humanos , Mutismo Acinético/etiología , Mutismo Acinético/fisiopatología , Masculino , Leucoencefalopatías/etiología , Leucoencefalopatías/fisiopatología , Leucoencefalopatías/complicaciones , Leucoencefalopatías/diagnóstico por imagen , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/fisiopatología , Hipoxia Encefálica/complicaciones , Hipoxia Encefálica/diagnóstico por imagen , Persona de Mediana Edad , Adulto
17.
Am J Emerg Med ; 82: 8-14, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38749373

RESUMEN

INTRODUCTION: Collapse after out-of-hospital cardiac arrest (OHCA) can cause severe traumatic brain injury (TBI). We aimed to investigate the clinical characteristics and treatment strategies for patients with OHCA and TBI. METHODS: We analyzed a consecutive cohort of patients with intrinsic OHCA retrospectively treated between January 2011 and December 2021 at a single critical care center, and presented a case series of seven patients. Patients with collapse-related TBI were examined for the causes and situations of cardiac arrest, laboratory data, radiological images, targeted temperature management (TTM), coronary angiography (CAG), percutaneous coronary intervention (PCI), and extracorporeal cardiopulmonary resuscitation (ECPR). RESULTS: Of the 197 patients with intrinsic OHCA, 7 (3.6%) had TBI (age range: 49-70 years; 6 men). All seven patients presented with ventricular fibrillation in the initial electrocardiograms, with four refractory cases treated with ECPR. All patients underwent CAG under heparinization, and four underwent PCI with antiplatelet administration. Initial head computed tomography indicated an intracranial hemorrhage (ICH) in three patients. ICH appeared or was exacerbated in six patients after CAG with or without PCI, except in one who underwent delayed PCI. All patients displayed elevated plasma D-dimer levels, and four underwent neurosurgical procedures. Four patients survived (three with cerebral performance category [CPC] 2, one with CPC 3) and three died; two had hypoxic-ischemic brain injury and one had severe TBI. CONCLUSION: Delayed ICH occurred frequently. Individualized management is required based on the extent of brain and cardiac damage, including optimal TTM, PCI procedures, and antiplatelet medications. Early detection of ICH and emergency treatment are critical for multi-disciplinary collaboration.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Reanimación Cardiopulmonar , Angiografía Coronaria , Paro Cardíaco Extrahospitalario , Intervención Coronaria Percutánea , Humanos , Paro Cardíaco Extrahospitalario/terapia , Paro Cardíaco Extrahospitalario/etiología , Paro Cardíaco Extrahospitalario/complicaciones , Masculino , Persona de Mediana Edad , Femenino , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/terapia , Anciano , Estudios Retrospectivos , Oxigenación por Membrana Extracorpórea , Hipotermia Inducida
18.
Resusc Plus ; 18: 100644, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38708064

RESUMEN

Despite improvements in cardiopulmonary resuscitation (CPR), survival and neurologic recovery after cardiac arrest remain poor due to ischemia and subsequent reperfusion injury. As the likelihood of survival and favorable neurologic outcome decreases with increasing severity of ischemia during CPR, developing methods to measure the magnitude of ischemia during resuscitation is critical for improving overall outcomes. Cerebral oximetry, which measures regional cerebral oxygen saturation (rSO2) by near-infrared spectroscopy, has emerged as a potentially beneficial marker of cerebral ischemia during CPR. In numerous preclinical and clinical studies, higher rSO2 during CPR has been associated with improved cardiac arrest survival and neurologic outcome. There is also emerging evidence that this can be integrated with electroencephalogram (EEG) monitoring to provide a bimodal system of brain monitoring during CPR. In this method's review, we discuss the feasibility, application, and implications of this integrated monitoring approach, highlighting its significance for improving clinical outcomes in cardiac arrest management and guiding future research directions.

19.
Radiol Case Rep ; 19(6): 2408-2410, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38585389

RESUMEN

The white cerebellum sign is a concerning but uncommon radiological imaging result that is frequently seen in patients with severe, frequently irreversible anoxic-ischemic brain injury. Due to its frequent correlation with an unfavorable prognosis, radiologists must recognize this sign. We report the case of a 1 year old girl with history of epilepsy who presented with deterioration of conscious level and focal fits and brain computed tomography scan done on her revealed the white cerebellum sign.

20.
Resuscitation ; 199: 110226, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38685376

RESUMEN

PURPOSE: Perceived poor prognosis can lead to withdrawal of life-sustaining therapies (WLST) in patients who might otherwise recover. We characterized clinicians' approach to post-arrest prognostication in a multicenter clinical trial. METHODS: Semi-structured interviews were conducted with clinicians who treated a comatose post-cardiac arrest patient enrolled in the Influence of Cooling Duration on Efficacy in Cardiac Arrest Patients (ICECAP) trial (NCT04217551). Two authors independently analyzed each interview using inductive and deductive coding. The clinician reported how they arrived at a prognosis for the specific patient. We summarized the frequency with which clinicians reported using objective diagnostics to formulate their prognosis, and compared the reported approaches to established guidelines. Each respondent provided demographic information and described local neuroprognostication practices. RESULTS: We interviewed 30 clinicians at 19 US hospitals. Most claimed adherence to local hospital neuroprognostication protocols (n = 19). Prognostication led to WLST for perceived poor neurological prognosis in 15/30 patients, of whom most showed inconsistencies with guidelines or trial recommendations, respectively. In 10/15 WLST cases, clinicians reported relying on multimodal testing. A prevalent theme was the use of "clinical gestalt," defined as prognosticating based on a patient's overall appearance or a subjective impression in the absence of objective data. Many clinicians (21/30) reported using clinical gestalt for initial prognostication, with 9/21 expressing high confidence initially. CONCLUSION: Clinicians in our study state they follow neuroprognostication guidelines in general but often do not do so in actual practice. They reported clinical gestalt frequently informed early, highly confident prognostic judgments, and few objective tests changed initial impressions. Subjective prognostication may undermine well-designed trials.


Asunto(s)
Hipotermia Inducida , Humanos , Estados Unidos/epidemiología , Pronóstico , Masculino , Femenino , Hipotermia Inducida/métodos , Privación de Tratamiento/estadística & datos numéricos , Coma/etiología , Coma/diagnóstico , Paro Cardíaco/terapia , Paro Cardíaco/etiología , Persona de Mediana Edad , Reanimación Cardiopulmonar/métodos , Paro Cardíaco Extrahospitalario/terapia , Paro Cardíaco Extrahospitalario/mortalidad , Entrevistas como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA