Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.828
Filtrar
1.
J Ethnopharmacol ; 336: 118735, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39182701

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Melastoma dodecandrum Lour. (MD), a traditional Chinese medicine used by the She ethnic group, has been used to treat cerebral ischemia-reperfusion (CIR) injury due to its efficacy in promoting blood circulation and removing blood stasiss; however, the therapeutic effects and mechanisms of MD in treating CIR injury remain unclear. AIM: To investigate the protective effects of MD on CIR injury, in addition to its impact on oxidative stress, endoplasmic reticulum (ER) stress, and cell apoptosis. MATERIALS AND METHODS: The research was conducted using both cell experiments and animal experiments. The CCK-8 method, immunofluorescence staining, and flow cytometry were used to analyze the effects of MD-containing serum on oxygen-glucose deprivation/reperfusion (OGD/R)-induced PC12 cell viability, reactive oxygen species (ROS) clearance, anti-inflammatory, neuroprotection and inhibition of apoptosis. Furthermore, 2,3,5-Triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, Nissl staining, and immunohistochemistry were used to detect infarct size, pathological changes, Nissl corpuscula and neuronal protein expression in middle cerebral artery occlusion (MCAO) rats. Polymerase chain reaction and Western Blotting were conducted in cell and animal experiments to detect the expression levels of ER stress-related genes and proteins. RESULTS: The MD extract enhanced the viability of PC12 cells under OGD/R modeling, reduced ROS and IL-6 levels, increased MBP levels, and inhibited cell apoptosis. Furthermore, MD improved the infarct area in MCAO rats, increased the number of Nissl bodies, and regulated neuronal protein levels including Microtubule-Associated Protein 2 (MAP-2), Myelin Basic Protein (MBP), Glial Fibrillary Acidic Protein (GFAP), and Neurofilament 200 (NF200). Additionally, MD could regulate the expression levels of oxidative stress proteins malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), and catalase (CAT). Both cell and animal experiments demonstrated that MD could inhibit ER stress-related proteins (GRP78, ATF4, ATF6, CHOP) and reduce cell apoptosis. CONCLUSION: This study confirmed that the therapeutic mechanism of the MD extract on CIR injury was via the inhibition of oxidative stress and the ER stress pathway, in addition to the inhibition of apoptosis.


Asunto(s)
Apoptosis , Estrés del Retículo Endoplásmico , Fármacos Neuroprotectores , Estrés Oxidativo , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Estrés Oxidativo/efectos de los fármacos , Ratas , Células PC12 , Masculino , Fármacos Neuroprotectores/farmacología , Apoptosis/efectos de los fármacos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
2.
J Ethnopharmacol ; 336: 118721, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39173723

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The incidence and mortality of cerebrovascular diseases are increasing year by year. Cerebral ischemia-reperfusion injury (CIRI) is common in patients with ischemic stroke. Naoxintong (NXT) is composed of a variety of Chinese medicines and has the ability to treat CIRI. AIM OF THE STUDY: The aim of this study is to investigate whether NXT regulates mitophagy in CIRI based on network pharmacology analysis and experimental validation. MATERIALS AND METHODS: Oxygen and glucose deprivation/re-oxygenation (OGD/R, 2/22 h) model of PC12 cells and transient middle cerebral artery occlusion (tMCAO, 2/22 h) model of rats were established. Pharmacodynamic indicators include neurological deficit score, 2,3,5-triphenyte-trazoliumchloride (TTC) staining, hematoxylin-eosin (HE) staining and cell viability. Network pharmacology was used to predict pharmacological mechanisms. Pharmacological mechanism indexes include transmission electron microscopy (TEM), drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA), immunohistochemistry (IHC), western blot (WB) and immunofluorescence (IF). Kevetrin (an agonists of p53) and pifithrin-α (an inhibitor of p53) used to detect the key role of p53 in mitophagy of NXT. RESULTS: NXT (1% serum containing NXT and 110 mg/kg) improved the damage of OGD/R PC12 cells and tMCAO rats, and this protective effect was related to the anti-oxidation and ability to promote mitophagy of NXT. NXT and pifithrin-α increased the expression of promoting-mitophagy targets (PINK1, PRKN and LC3B) and inhibited the expression of inhibiting-mitophagy targets (p52) via restraining p53, and finally accelerated mitophagy caused by CIRI. CONCLUSION: This study demonstrates that NXT promotes mitophagy in CIRI through restraining p53 and promoting PINK1/PRKN in vivo and in vitro.


Asunto(s)
Medicamentos Herbarios Chinos , Mitofagia , Farmacología en Red , Proteínas Quinasas , Daño por Reperfusión , Proteína p53 Supresora de Tumor , Animales , Masculino , Ratas , Isquemia Encefálica/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Mitofagia/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Células PC12 , Proteínas Quinasas/metabolismo , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas
3.
EBioMedicine ; 108: 105330, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299005

RESUMEN

BACKGROUND: A better understanding of the molecular events during liver normothermic machine perfusion (NMP) is warranted to develop a data-based approach for the identification of biomarkers representative of graft quality and posttransplant outcome. We analysed the dynamic transcriptional changes during NMP and linked them to clinical and biochemical parameters. METHODS: 50 livers subjected to NMP for up to 24 h were enrolled. Bulk RNA sequencing was performed in serial biopsies collected pre and during NMP, and after reperfusion. Perfusate was sampled to monitor liver function. qPCR and immunohistochemistry were performed to validate findings. Molecular profiles were compared between transplanted and non-transplanted livers, and livers with and without early allograft dysfunction. FINDINGS: Pathways related to immune and cell stress responses, cell trafficking and cell regulation were activated during NMP, while cellular metabolism was downregulated over time. Anti-inflammatory responses and genes involved in tissue remodelling were induced at later time-points, suggesting a counter-response to the immediate damage. NMP strongly induced a gene signature associated with ischemia-reperfusion injury. A 7-gene signature corresponds with the benchmarking criteria for transplantation or discard at 6 h NMP (area under curve 0.99). CD274 gene expression (encoding programmed cell-death ligand-1) showed the highest predictive value. LEAP2 gene expression at 6 h NMP correlated with impaired graft function. INTERPRETATION: Assessment of gene expression markers could serve as a reliable tool to evaluate liver quality during NMP and predicts early graft function after transplantation. FUNDING: The research was supported by "In Memoriam Dr. Gabriel Salzner Stiftung", Tiroler Wissenschaftsfond, Jubiläumsfonds-Österreichische Nationalbank and MUI Start grant.

4.
Mol Med Rep ; 30(5)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39301623

RESUMEN

Following acute myocardial infarction, the recovery of blood flow leads to myocardial ischemia­reperfusion (MI/R) injury, which is primarily characterized by the activation of inflammatory signals, microvascular obstruction, increased oxidative stress and excessive Ca2+ overload. It has also been demonstrated that platelets can exacerbate MI/R injury by releasing reactive oxygen species, inflammatory factors and chemokines, while also obstructing microvessels through thrombus formation. As a bioactive molecule with proinflammatory and chemotactic properties, lipocalin 2 (LCN2) exhibits a positive correlation with obesity, hyperglycemia, hypertriglyceridemia and insulin resistance index, which are all significant risk factors for ischemic cardiomyopathy. Notably, the potential role of LCN2 in promoting atherosclerosis may be related to its influence on the function of macrophages, smooth muscle cells and endothelial cells, but its effect on platelet function has not yet been reported. In the present study, the effect of a high­fat diet (HFD) on LCN2 expression was determined by detecting LCN2 expression levels in the liver and serum samples of mice through reverse transcription­quantitative PCR and enzyme linked immunosorbent assay, respectively. The effect of LCN2 on platelet function was evaluated by examining whether LCN2 affected platelet activation, aggregation, adhesion, clot retraction and P­selectin expression. To determine whether LCN2 aggravated MI/R injury in HFD­fed mice by affecting platelet and inflammatory cell recruitment, wild­type and LCN2 knockout mice fed a HFD were subjected to MI/R injury, then hearts were collected for hematoxylin and eosin staining and 2,3,5­triphenyltetrazolium chloride staining, and immunohistochemistry was employed to detect the expression of CD42b, Ly6G, CD3 and B220. Based on observing the upregulation of LCN2 expression in mice fed a HFD, the present study further confirmed that LCN2 could accelerate platelet activation, aggregation and adhesion. Moreover, in vivo studies validated that knockout of LCN2 not only mitigated MI/R injury, but also inhibited the recruitment of platelets and inflammatory cells in myocardial tissue following ischemia­reperfusion. In conclusion, the current findings suggested that the effect of HFD­induced LCN2 on aggravating MI/R injury may totally or partially dependent on its promotion of platelet function.


Asunto(s)
Dieta Alta en Grasa , Lipocalina 2 , Daño por Reperfusión Miocárdica , Activación Plaquetaria , Animales , Dieta Alta en Grasa/efectos adversos , Lipocalina 2/metabolismo , Lipocalina 2/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/genética , Ratones , Masculino , Plaquetas/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados
5.
J Inflamm Res ; 17: 6203-6227, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39281774

RESUMEN

Purpose: Myocardial ischemia-reperfusion injury (MIRI) is characterized by inflammation and ferroptosis, but the precise mechanisms remain unknown. This study used single-cell transcriptomics technology to investigate the changes in various cell subtypes during MIRI and the regulatory network of ferroptosis-related genes and immune infiltration. Methods: Datasets GSE146285, GSE83472, GSE61592, and GSE160516 were obtained from Gene Expression Omnibus. Each cell subtype in the tissue samples was documented. The Seurat package was used for data preprocessing, standardization, and clustering. Cellphonedb was used to investigate the ligand-receptor interactions between cells. The hdWGCNA analysis was used to create a gene co-expression network. GSVA and GSEA were combined to perform functional enrichment and pathway analysis on the gene set. Furthermore, characteristic genes of the disease were identified using Lasso regression and SVM algorithms. Immune cell infiltration analysis was also performed. MIRI rat models were created, and samples were taken for RT-qPCR and Western blot validation. Results: The proportion of MIRI samples in the C2, C6, and C11 subtypes was significantly higher than that of control samples. Three genes associated with ferroptosis (CD44, Cfl1, and Zfp36) were identified as MIRI core genes. The expression of these core genes was significantly correlated with mast cells and monocyte immune infiltrating cells. The experimental validation confirmed the upregulation of Cd44 and Zfp36 expression levels in MIRI, consistent with current study trends. Conclusion: This study used single-cell transcriptomics technology to investigate the molecular mechanisms underpinning MIRI. Numerous important cell subtypes, gene regulatory networks, and disease-associated immune infiltration were also discovered. These findings provide new information and potential therapeutic targets for MIRI diagnosis and treatment.

6.
Front Bioeng Biotechnol ; 12: 1469393, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39286345

RESUMEN

Myocardial ischemia-reperfusion injury (MIRI) is a critical issue that arises when restoring blood flow after an ischemic event in the heart. Excessive reactive oxygen species (ROS) production during this process exacerbates cellular damage and impairs cardiac function. Recent therapeutic strategies have focused on leveraging the ROS microenvironment to design targeted drug delivery systems. ROS-responsive biomaterials have emerged as promising candidates, offering enhanced therapeutic efficacy with reduced systemic adverse effects. This review examines the mechanisms of ROS overproduction during myocardial ischemia-reperfusion and summarizes significant advancements in ROS-responsive biomaterials for MIRI treatment. We discuss various chemical strategies to impart ROS sensitivity to these materials, emphasizing ROS-induced solubility switches and degradation mechanisms. Additionally, we highlight various ROS-responsive therapeutic platforms, such as nanoparticles and hydrogels, and their unique advantages in drug delivery for MIRI. Preclinical studies demonstrating the efficacy of these materials in mitigating MIRI in animal models are reviewed, alongside their mechanisms of action and potential clinical implications. We also address the challenges and future prospects of translating these state of the art biomaterial-based therapeutics into clinical practice to improve MIRI management and cardiac outcomes. This review will provide valuable insights for researchers and clinicians working on novel therapeutic strategies for MIRI intervention.

7.
Heliyon ; 10(17): e37017, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296135

RESUMEN

Background: Non-compressible torso hemorrhage (NCTH) presents the ultimate challenge in pre-hospital care. While external hemorrhage control devices (EHCDs) such as the Abdominal Aortic and Junctional Tourniquet (AAJT) and SAM Junctional Tourniquet (SJT) have been invented, the current design and application strategy requires further improvement. Therefore, researchers devised a novel apparatus named Modified EHCD (M-EHCD) and implemented intermittent hemostasis (IH) as a preventive measure against ischemia-reperfusion injury. The objective of this study was to ascertain the combined effect of M-EHCD and IH on the hemostatic effect of NCTH. Methods: Eighteen swine were randomized to M-EHCD, AAJT or SJT. The NCTH model was established by inducing Class Ⅲ hemorrhagic shock and performing a hemi-transection of common femoral artery (CFA). EHCDs were rapidly fastened since the onset of free bleeding (T0min). The IH strategy was implemented by fully releasing M-EHCD at T40min, T70min and T100min, respectively, whereas AAJT and SJT maintained continuous hemostasis (CH) until T120min. All groups underwent CFA bridging at T110min, and EHCDs were removed at T120min. Reperfusion lasted for 60 min, after which euthanasia was performed. Hemodynamics, intra-vesical pressure (IVP), and blood samples were collected periodically. Histological examinations were also conducted. Results: M-EHCD demonstrated the fastest application time (M-EHCD: 26.38 ± 6.32s vs. SJT: 30.84 ± 5.62s vs. AAJT: 54.28 ± 5.45s, P < 0.001) and reduced free blood loss (M-EHCD: 17.77 ± 9.85g vs. SJT: 51.80 ± 33.70g vs. AAJT: 115.20 ± 61.36g, P = 0.011) compared to SJT and AAJT. M-EHCD exhibited inhibitory effects on heart rate (M-EHCD: 91.83 ± 31.61bpm vs. AAJT: 129.00 ± 32.32bpm vs. SJT: 135.17 ± 21.24bpm, P = 0.041) and shock index. The device's external pressure was lowest in M-EHCD and highest in SJT (P = 0.001). The resultant increase in IVP were still the lowest in M-EHCD (M-EHCD: -0.07 ± 0.45 mmHg vs. AAJT: 27.04 ± 5.03 mmHg vs. SJT: 5.58 ± 2.55 mmHg, P < 0.001). Furthermore, M-EHCD caused the least colonic injury (M-EHCD: 1.17 ± 0.41 vs. AAJT: 2.17 ± 0.41 vs. SJT: 2.17 ± 0.41, P = 0.001). The removal of M-EHCD showed the slightest impact on pH (P < 0.001), while AAJT group was more susceptible to the lethal triad based on the arterial lactate and thrombelastogram results. Conclusions: M-EHCD + IH protected the organs and reduced the risk of the lethal triad by decreasing disruptions to IVP, hemodynamics, acid-base equilibrium and coagulation. M-EHCD + IH was superior to the hemostatic safety and efficacy of AAJT/SJT + CH.

8.
Int J Ophthalmol ; 17(9): 1599-1605, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296572

RESUMEN

AIM: To investigate the antioxidant protective effect of Lycium barbarum glycopeptide (LbGP) pretreatment on retinal ischemia-reperfusion (I/R) injury (RIRI) in rats. METHODS: RIRI was induced in Sprague Dawley rats through anterior chamber perfusion, and pretreatment involved administering LbGP via gavage for 7d. After 24h of reperfusion, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and creatinine (CREA) levels, retinal structure, expression of Caspase-3 and Caspase-8, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) in the retina were measured. RESULTS: The pretreatment with LbGP effectively protected the retina and retinal tissue from edema and inflammation in the ganglion cell layer (GCL) and nerve fiber layer (NFL) of rats subjected to RIRI, as shown by light microscopy and optical coherence tomography (OCT). Serum AST was higher in the model group than in the blank group (P=0.042), but no difference was found in ALT, AST, and CREA across the LbGP groups and model group. Caspase-3 expression was higher in the model group than in the blank group (P=0.006), but no difference was found among LbGP groups and the model group. Caspase-8 expression was higher in the model group than in the blank group (P=0.000), and lower in the 400 mg/kg LbGP group than in the model group (P=0.016). SOD activity was lower in the model group than in the blank group (P=0.001), and the decrease was slower in the 400 mg/kg LbGP group than in the model group (P=0.003). MDA content was higher in the model group than in the blank group (P=0.001), and lower in the 400 mg/kg LbGP group than in the model group (P=0.016). The pretreatment with LbGP did not result in any observed liver or renal toxicity in the model. CONCLUSION: LbGP pretreatment exhibits dose-dependent anti-inflammatory, and antioxidative effects by reducing Caspase-8 expression, preventing declines of SOD activity, and decreasing MDA content in the RIRI rat model.

9.
BMC Urol ; 24(1): 197, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252077

RESUMEN

BACKGROUND: Open partial nephrectomy (OPN) has previously been considered the gold standard procedure for treatment of T1 localized renal tumors. After introduction of robot assisted partial nephrectomy (RAPN) as an alternative method to OPN, OPN was gradually abandoned at our department. The aim of the study was to retrospectively compare the results of patients treated with either OPN or RAPN for suspected renal carcinoma. METHODS: Patients who underwent either open or robotic assisted partial nephrectomy between January 1st 2010 and December 31st 2020 were retrospectively included in the study. Each tumor subjected to surgery was scored preoperatively by the RENAL nephrometry score. Complications within 30 days were assessed according to the Clavien-Dindo classification system. RESULTS: A total of 197 patients who underwent partial nephrectomy were identified; 75 were subjected to OPN and 122 were treated with RAPN. There were no significant differences between the groups with respect to age (OPN: 63 years ± 11, RAPN: 62 years ± 10), gender (OPN: 71/29%, RAPN: 67/33%), body mass index (OPN: 28 ± 5, RAPN: 28 ± 5), ASA score (OPN: 2.4 ± 0.6, RAPN: 2.2 ± 0.5), or nephrometry score (OPN: 6.6 ± 1.7, RAPN: 6.9 ± 1.7, p = 0.2). The operative time was significantly shorter in the OPN group (81 min) compared to the RAPN group (144.5 min, p < 0.001). Mean perioperative blood loss was 227 ± 162 ml in the OPN group compared to 189 ± 152 ml in the RAPN group (p = 0.1). Mean length of stay was shorter in the RAPN group (3 days) compared to the OPN group (6, days, p < 0.001). Positive surgical margin rate was significantly higher in the OPN group (21.6%) compared to the RAPN group (4.2%, p < 0.001). There were no differences in the number of Clavien-Dindo graded complications between the groups (p = 0.6). CONCLUSIONS: The introduction of RAPN at our department resulted in shorter length of stay and fewer positive surgical margins, without increasing complications.


Asunto(s)
Neoplasias Renales , Nefrectomía , Procedimientos Quirúrgicos Robotizados , Humanos , Nefrectomía/métodos , Procedimientos Quirúrgicos Robotizados/métodos , Persona de Mediana Edad , Femenino , Masculino , Estudios Retrospectivos , Neoplasias Renales/cirugía , Anciano , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Carcinoma de Células Renales/cirugía , Resultado del Tratamiento
10.
Int Immunopharmacol ; 142(Pt A): 113097, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260311

RESUMEN

Hydroxyl Safflower Yellow A (HSYA) is the primary bioactive compound derived from Safflower, which has been scientifically proven to possess anti-inflammatory, anti-apoptotic, and ameliorative properties against mitochondrial damage during acute myocardial ischemia-reperfusion injury (MIRI); however, its effects during the recovery stage remain unknown. Angiogenesis plays a crucial role in the rehabilitation process. AIM OF THE STUDY: The objective of this study was to investigate the long-term angiogenic effect of HSYA and its contribution to recovery after myocardial ischemia, as well as explore its underlying mechanism using non-targeted metabolomics and network pharmacology. MATERIALS AND METHODS: The MIRI model in rat was established by ligating the left anterior descending branch of the coronary artery. The effect of HSYA was assessed based on myocardial infarction volume and histopathology. Immunofluorescence staining was employed to evaluate angiogenesis, while ELISA was used to detect markers of myocardial injury. Additionally, a rat myocardial microvascular endothelial cell (CMECs) injury model was established using oxygen-glucose deprivation/reoxygenation (OGD/R), followed by scratch assays, migration assays, and tube formation experiments to assess angiogenesis. Western blot analysis was conducted to validate the underlying mechanism. RESULTS: Our findings provide compelling evidence for the therapeutic efficacy of HSYA in reducing myocardial infarction size, facilitating cardiac functional recovery, and reversing pathological alterations within the heart. Furthermore, we elucidate that HSYA exerts its effects on promoting migration and generation of myocardial microvascular endothelial cells through activation of the HIF-1α-VEGFA-Notch1 signaling pathway. CONCLUSION: These results underscore how HSYA enhances cardiac function via angiogenesis promotion and activation of the aforementioned signaling cascade.

11.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167490, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39236363

RESUMEN

Vascular endothelial inflammation is crucial in hepatic ischemia-reperfusion injury (IRI). Our previous research has shown that connective tissue growth factor (CTGF), secreted by endothelial cells, protects against acute liver injury, but its upstream mechanism is unclear. We aimed to clarify the protective role of CTGF in endothelial cell inflammation during IRI and reveal the regulation between endoplasmic reticulum stress-induced activating transcription factor 6 (ATF6) and CTGF. Hypoxia/reoxygenation in endothelial cells, hepatic IRI in mice and clinical specimens were used to examine the relationships between CTGF and inflammatory factors and determine how ATF6 regulates CTGF and reduces damage. We found that activating ATF6 promoted CTGF expression and reduced liver damage in hepatic IRI. In vitro, activated ATF6 upregulated CTGF and downregulated inflammation, while ATF6 inhibition had the opposite effect. Dual-luciferase assays and chromatin immunoprecipitation confirmed that activated ATF6 binds to the CTGF promoter, enhancing its expression. Activated ATF6 increases CTGF and reduces extracellular regulated protein kinase 1/2 (ERK1/2) phosphorylation, decreasing inflammatory factors. Conversely, inhibiting ATF6 decreases CTGF and increases the phosphorylation of ERK1/2, increasing inflammatory factor levels. ERK1/2 inhibition reverses this effect. Clinical samples have shown that CTGF increases after IRI, inversely correlating with inflammatory cytokines. Therefore, ATF6 activation during liver IRI enhances CTGF expression and reduces endothelial inflammation via ERK1/2 inhibition, providing a novel target for diagnosing and treating liver IRI.


Asunto(s)
Factor de Transcripción Activador 6 , Factor de Crecimiento del Tejido Conjuntivo , Hígado , Daño por Reperfusión , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/genética , Animales , Factor de Transcripción Activador 6/metabolismo , Factor de Transcripción Activador 6/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Humanos , Ratones , Masculino , Hígado/metabolismo , Hígado/patología , Inflamación/metabolismo , Inflamación/patología , Ratones Endogámicos C57BL , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167496, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39237046

RESUMEN

Liver ischemia-reperfusion (I/R) injury is a detrimental complication of organ transplantation, shock, and sepsis. However, the available drugs to mitigate I/R injury remain limited. Jujuboside A (JuA) is renowned for its antioxidant, anti-inflammatory, and anti-apoptotic properties; nevertheless, its potential in liver I/R injury remains unknown. Thus, this study aimed to explore the role and underlying mechanisms of JuA in liver I/R injury. Mouse models of I/R and AML12 cell models of hypoxia/reoxygenation (H/R) were constructed. Haematoxylin and eosin staining, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) detection, and cell viability analysis were used to assess liver injury. To evaluate oxidative stress, inflammation, apoptosis, and mitochondrial damage, immunofluorescence staining, transmission electron microscopy analysis, enzyme-linked immunosorbent assay, and flow cytometry were conducted. Moreover, molecular docking techniques and western blot were employed to identify downstream target molecules and pathways affected by JuA. The results showed that JuA pretreatment effectively attenuated liver necrosis and ALT and AST level elevations induced by I/R while enhancing AML12 cell viability following H/R. Furthermore, JuA pretreatment suppressed oxidative stress triggered by I/R and H/R, thereby inhibiting the level of pro-inflammatory factors and NLRP3 inflammasome activation. Notably, JuA pretreatment alleviated mitochondrial damage and apoptosis. Mechanistically, JuA pretreatment resulted in the activation of the AKT/NRF2/HO-1 signalling pathways, whereas MK2206, the inhibitor of AKT, partially reversed the hepatoprotective effects of JuA during liver I/R. Collectively, our findings illustrated that JuA mitigated oxidative stress, inflammation, apoptosis, and mitochondrial damage by facilitating the AKT/NRF2/HO-1 signalling pathway, thereby alleviating liver I/R injury.


Asunto(s)
Apoptosis , Hígado , Factor 2 Relacionado con NF-E2 , Proteínas Proto-Oncogénicas c-akt , Daño por Reperfusión , Transducción de Señal , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Masculino , Hígado/patología , Hígado/metabolismo , Hígado/efectos de los fármacos , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL , Hemo-Oxigenasa 1/metabolismo , Línea Celular , Proteínas de la Membrana/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo
13.
Ann Clin Lab Sci ; 54(4): 474-482, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39293850

RESUMEN

OBJECTIVE: To study the therapeutic effect and protective mechanism of granulocyte colony stimulating factor (G-CSF) and neurotrophin receptor (NTR) on cerebral ischemia-reperfusion injury. METHODS: Rat models of permanent focal middle cerebral artery occlusion (MCAO) were constructed by using a modified suture method, and the rats were assigned into three groups such as treatment group (the rats were injected with mixed G-CSF and NTR once), sham operation group and PBS control group. The volume of the cerebral infarction was detected using Triphenyltetrazolium Chloride (TTC) staining method; the motor function in rats was evaluated; and qRT-PCR detection, double immunofluorescence histochemistry and immunohistochemistry were performed to observe various effects. RESULTS: After G-CSF and NTR treatment, the infarct volume induced by MCAO in the treatment group was significantly lower than that in the PBS control group (P<0.05). The motor function in the treatment group was significantly improved on day 7 and day 14 compared to the PBS control group (P<0.05). The levels of MCP-1, TNF-α, TGF-ß and IL-10 mRNA in the treatment group decreased by 22% compared with PBS control group, and the difference was statistically significant (P<0.05). The Bcl-2 protein level in the treatment group was greater than that in the PBS control group, while the Bax level in the treatment group was lower than in the control group; and both the differences were statistically significant (P<0.05). The number of BrdU + cells in the treatment group was significantly greater than that in the PBS control group (P<0.05). CONCLUSION: G-CSF can promote the regeneration of neurons, promote the formation of new blood vessels, promote the reconstruction of neural network in rat MCAO models through anti apoptosis, anti-inflammation and mobilization of bone marrow hematopoietic cells to exert its powerful protective effect on neurons, and contribute to the repair of neural function and improvement of prognosis.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Factor Estimulante de Colonias de Granulocitos/farmacología , Ratas , Masculino , Proyectos Piloto , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Isquemia Encefálica/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad
14.
Inflamm Res ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294398

RESUMEN

OBJECTIVE: Corynoline has displayed pharmacological effects in reducing oxidative stress and inflammatory responses in many disorders. However, its effects on hepatic ischemia-reperfusion (I/R) injury remain unclear. This study aimed to investigate the protective effects of corynoline against hepatic I/R injury and the underlying mechanisms. METHODS: Rat models with hepatic I/R injury and BRL-3A cell models with hypoxia/reoxygenation (H/R) insult were constructed. Models were pretreated with corynoline and/or other inhibitors for functional and mechanistic examination. RESULTS: Corynoline pretreatment effectively mitigated hepatic I/R injury verified by reduced serum transaminase levels, improved histological damage scores, and decreased apoptosis rates. Additionally, corynoline pretreatment significantly inhibited I/R-triggered oxidative stress and inflammatory responses, as indicated by enhanced mitochondrial function, reduced levels of ROS and MDA, reduced neutrophil infiltration and suppressed proinflammatory cytokine release. In vitro experiments further showed that corynoline pretreatment increased cellular viability, decreased LDH activity, reduced cellular apoptosis, and inhibited oxidative stress and inflammatory injury in H/R-induced BRL-3A cells. Mechanistically, corynoline significantly increased Nrf2 nuclear translocation and expression levels of its target gene, HO-1. It also blocked NLRP3 inflammasome activation both in vivo and in vitro. Furthermore, pretreatment with Nrf2 inhibitor ML-385 counteracted the protective effect of corynoline on hepatic I/R injury. Ultimately, in vitro studies revealed that the NLRP3 activator nigericin could also nullified the protective effects of corynoline in BRL-3A cells, but had minimal impact on Nrf2 nuclear translocation. CONCLUSIONS: Corynoline can exert protective effects against hepatic I/R injury by inhibiting oxidative stress, inflammatory responses, and apoptosis. These effects may be associated with inhibiting ROS-induced NLRP3 inflammasome activation by enhancing Nrf2/HO-1 signaling. These data provide new understanding about the mechanism of corynoline action, suggesting it is a potential drug applied for the treatment and prevention of hepatic I/R injury.

15.
Skin Res Technol ; 30(9): e70022, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39221632

RESUMEN

BACKGROUND: Despite advancements in reconstructive procedures, ischemia-reperfusion (I/R) injury remains a significant challenge in reconstructive surgery, with mitochondrial dysfunction playing a pivotal role. Mitochondrial transplantation has emerged as a promising therapeutic strategy to address this issue. This study aims to evaluate the impact of umbilical cord mesenchymal stem cell-derived mitochondrial transplantation on skin flap I/R models in rats. MATERIAL AND METHODS: Twenty male rats underwent I/R injury on skin flaps, with or without mitochondrial transplantation administered via intravenous or subcutaneous routes. Analysis encompassed histopathology, inflammatory, apoptotic, oxidative stress, and hypoxia markers. RESULTS: Results revealed a reduction in inflammation, apoptosis, oxidative stress, and hypoxia in the transplantation group compared to controls. CONCLUSION: The findings suggest that umbilical cord mesenchymal stem cell-derived mitochondrial transplantation shows promise in enhancing flap viability and attenuating I/R injury, offering valuable insights for improved outcomes in reconstructive surgery. However, further exploration in larger animal models and refinement of delivery methods and dosage are warranted to fully elucidate its clinical translatability.


Asunto(s)
Modelos Animales de Enfermedad , Trasplante de Células Madre Mesenquimatosas , Mitocondrias , Daño por Reperfusión , Cordón Umbilical , Animales , Masculino , Ratas , Trasplante de Células Madre Mesenquimatosas/métodos , Cordón Umbilical/citología , Mitocondrias/trasplante , Mitocondrias/metabolismo , Ratas Sprague-Dawley , Células Madre Mesenquimatosas , Colgajos Quirúrgicos/patología , Estrés Oxidativo , Apoptosis
16.
Heliyon ; 10(16): e35936, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224379

RESUMEN

Aims: Cerebral ischemic preconditioning is a neuroprotective therapy against cerebral ischemia and ischemia-reperfusion injury. This study aims to demonstrate the alternation of gene expression in exosomes from brain tissue of mice after ischemic preconditioning and their potential functions. Methods: Ten mice were divided into the sham and the cerebral ischemic preconditioning groups. Their brain tissues were harvested, from which the exosomes were extracted. The characteristics and protective effects of exosomes were evaluated. Whole transcriptome sequencing was used to demonstrate the gene expression discrepancy between the exosomes from the two groups of mice brains. Volcano graphs and heatmaps were used to picture the difference in expression quantity of mRNA, lncRNA, and circRNA. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to demonstrate the functions of differentially expressed RNAs. Results: Exosomes were successfully extracted, and those from the cerebral ischemic preconditioning group had better protective effects on cells that received oxygen-glucose deprivation and restoration injury. A total of 306 mRNAs and 374 lncRNAs were significantly upregulated, and 320 mRNAs and 405 lncRNAs were significantly downregulated in the preconditioning group. No circRNAs were differentially expressed between the two groups. GO and KEGG pathway analysis indicated that the functions of differentially expressed RNAs were related to both neural protective and injurious effects. Conclusion: The brain-derived exosomes may participate in the neuroprotective effect of cerebral ischemic preconditioning. Thorough research is necessary to investigate exosome functions derived from the ischemic preconditioned brain.

17.
J Inflamm Res ; 17: 5741-5762, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224659

RESUMEN

Background: Cerebral ischaemia-reperfusion injury (CIRI) could worsen the inflammatory response and oxidative stress in brain tissue. According to previous studies, ferulic acid methyl ester (FAME), as the extract with the strongest comprehensive activity in the traditional Chinese medicine Huang Hua oil dot herb, has significant anti-oxidative stress and neuroprotective functions, and can effectively alleviate CIRI, but its mechanism of action is still unclear. Methods: Firstly, the pharmacological effects of FAME were investigated by in vitro oxidative stress and inflammatory experiments. Secondly, evaluate the therapeutic effects of FAME in the treatment of CIRI by brain histopathological staining and cerebral infarct area by replicating the in vivo MACO model. Thirdly, RNA-Seq and network pharmacology were utilized to predict the possible targets and mechanisms of FAME for CIRI at the molecular level. Finally, the expression of key target proteins, as well as the key regulatory relationships were verified by molecular docking visualization, Western Blotting and immunohistochemistry. Results: The results of in vitro experiments concluded that FAME could significantly reduce the content of TNF-α, IL-1ß and ROS, inhibiting COX-2 and iNOS protein expression in cells(p<0.01). FAME was demonstrated to have anti-oxidative stress and anti-inflammatory effects. The results of in vivo experiments showed that after the administration of FAME, the area of cerebral infarction in rats with CIRI was reduced, the content of Bcl-2 and VEGF was increased(p<0.05). Network pharmacology and RNA-Seq showed that the alleviation of CIRI by FAME may be through PI3K-AKT and HIF-1 signaling pathway. Enhanced expression of HIF-1α, VEGF, p-PI3K, p-AKT proteins in the brain tissues of rats in the FAME group was verified by molecular docking and Western Blotting. Conclusion: FAME possesses significant anti-inflammatory and anti-oxidative stress activities and alleviates CIRI through the PI3K/HIF-1α/VEGF signaling pathway.

18.
Hum Cell ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227518

RESUMEN

Reperfusion after cerebral ischemia leads to secondary damage to the nervous system, called cerebral ischemia/reperfusion injury (CIRI). The blood-brain barrier (BBB) consists of endothelial cells and tight junction (TJ) proteins, and its disruption aggravates CIRI. Two GSE datasets identified Tissue Factor Pathway Inhibitor 2 (TFPI2) as a differentially upregulated gene (Log2FC > 1, p < 0.01) in the cerebral cortex of ischemic rats, and TFPI2 affects angiogenesis of endothelial cells. Moreover, genes (c-Jun, c-Fos, FosL1) encoding subunits of Activator Protein-1 (AP-1), a transcription factor involved in IRI, were highly expressed in ischemic samples. Thus, the effects of the AP-1/TFPI2 axis on CIRI were explored. We determined increased TFPI2 expression in the cerebral cortex of rats receiving middle cerebral artery occlusion (MCAO) for 90 min and reperfusion (R) for 48 h. Then AAV2-shTFPI2 particles (5 × 1010 vg) were injected into the right lateral ventricle of rats 3 weeks before MCAO/R. TFPI2 knockdown decreased infarct size and neuronal injury in ischemic rats. It improved BBB integrity, demonstrated by reduced FITC-dextran leakage in brain tissues of MCAO/R-operated rats. Furthermore, it increased the expression of TJ proteins (Occludin, Claudin-5, TJP-1) in the cerebral cortex of rats with CIRI. Consistently, we found that TFPI2 knockdown mitigated cell damage in mouse endothelial bEND.3 cells with oxygen and glucose deprivation (ODG) for 6 h and reoxygenation (R) for 18 h (OGD/R) treatment. High co-expression of c-Jun and c-Fos significantly elevated TFPI2 promoter activity. c-Jun knockdown inhibited TFPI2 expression in OGD/R-treated bEND.3 cell. Collectively, our findings demonstrate that inhibition of the AP-1/TFPI2 axis alleviates CIRI.

19.
J Ethnopharmacol ; 337(Pt 1): 118738, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39222757

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dehydrocorydaline (DHC), an active component of Corydalis yanhusuo (Y.H. Chou & Chun C. Hsu) W.T. Wang ex Z.Y. Su & C.Y. Wu (Papaveraceae), exhibits protective and pain-relieving effects on coronary heart disease, but the underlying mechanism still remains unknown. AIM OF THE STUDY: Network pharmacology and experimental validation both in vivo and in vitro were applied to assess whether DHC can treat myocardial ischemia-reperfusion injury (MIRI) by regulating the forkhead box O (FoxO) signalling pathway to inhibit apoptosis. MATERIALS AND METHODS: DHC and MIRI targets were retrieved from various databases. Molecular docking and microscale thermophoresis (MST) determined potential binding affinity. An in vivo mouse model of MIRI was established by ligating the left anterior descending coronary artery. C57BL/6N mice were divided into sham, MIRI, and DHC (intraperitoneal injection of 5 mg/kg DHC) groups. Haematoxylin and eosin, Masson, and immunohistochemical stainings verified DHC treatment effects and the involved signalling pathways. In vitro, H9c2 cells were incubated with DHC and underwent hypoxia/reoxygenation. TUNEL, JC-1, and reactive oxygen species stainings and western blots were used to explore the protective effects of DHC and the underlying mechanisms. RESULTS: Venny analysis identified 120 common targets from 121 DHC and 23,354 MIRI targets. DHC exhibited high affinity for CCND1, CDK2, and MDM2 (<-7 kcal/mol). In vivo, DHC attenuated decreases in left ventricular ejection fraction and fractional shortening, reduced infarct sizes, and decreased cTnI and lactate dehydrogenase levels. In vitro, DHC alleviated apoptosis and oxidative stress in the hypoxia/reoxygenation model by attenuating ΔΨm disruption; reducing the production of reactive oxygen species; upregulating Bax and CCND1 via the FoxO signalling pathway, as well as cleaved-caspase 8; downregulating the apoptosis-associated proteins Bcl-2, Bid, cleaved-caspase 3, and cleaved-caspase 9; and promoting the phosphorylation of FOXO1A and MDM2. CONCLUSION: By upregulating the FoxO signaling pathway to inhibit apoptosis, DHC exerts a cardioprotective effect, which could serve as a potential therapeutic option for MIRI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA