Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Pharmaceutics ; 16(3)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38543205

RESUMEN

Breast cancer (BC) presents a growing global concern, mainly for the female population of working age. Their pathophysiology shows challenges when attempting to ensure conventional treatment efficacy without adverse effects. This study aimed to evaluate the efficacy of magneto-hyperthermia (MHT) therapy associated with supplementation with omega-3 polyunsaturated fatty acid (w-3 PUFA) and engagement in physical training (PT) for the triple-negative BC (TNBC) model. First, we assessed the physicochemical properties of iron oxide nanoparticles (ION) in biological conditions, as well as their heating potential for MHT therapy. Then, a bioluminescence (BLI) evaluation of the best tumor growth conditions in the TNBC model (the quantity of implanted cells and time), as well as the efficacy of MHT therapy (5 consecutive days) associated with the previous administration of 8 weeks of w-3 PUFA and PT, was carried out. The results showed the good stability and potential of ION for MHT using 300 Gauss and 420 kHz. In the TNBC model, adequate tumor growth was observed after 14 days of 2 × 106 cells implantation by BLI. There was a delay in tumor growth in animals that received w-3 and PT and a significant decrease associated with MHT. This pioneering combination therapy approach (MHT, omega-3, and exercise) showed a positive effect on TNBC tumor reduction and demonstrated promise for pre-clinical and clinical studies in the future.

2.
Polymers (Basel) ; 16(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38399941

RESUMEN

This study synthesizes magnetic iron oxide nanoparticles from agro-waste sweet pepper extract, exploring their potential as antioxidant additives and in food preservation. Iron (III) chloride hexahydrate is the precursor, with sweet pepper extract as both a reducing and capping agent at pH 7.5. Characterization techniques, including microscopy and spectroscopy, analyze the sweet pepper extract-magnetic iron oxide nanoparticles. Antioxidant capacities against 2,2-diphenyl-1-picrylhydrazyl are assessed, incorporating nanoparticles into banana-based bioplastic for grape preservation. Microscopy reveals cubic and quasi-spherical structures, and spectroscopy confirms functional groups, including Fe-O bonds. X-ray diffraction identifies cubic and monoclinic magnetite with a monoclinic hematite presence. Sweet pepper extract exhibits 100% inhibitory activity in 20 min, while sweet pepper extract-magnetic iron oxide nanoparticles show an IC50 of 128.1 µg/mL. Furthermore, these nanoparticles, stabilized with banana-based bioplastic, effectively preserve grapes, resulting in a 27.4% lower weight loss rate after 144 h compared to the control group (34.6%). This pioneering study encourages institutional research into the natural antioxidant properties of agro-waste sweet pepper combined with magnetic iron and other metal oxide nanoparticles, offering sustainable solutions for nanopackaging and food preservation. Current research focuses on refining experimental parameters and investigating diverse applications for sweet pepper extract-magnetic iron oxide nanoparticles in varied contexts.

3.
Plants (Basel) ; 13(3)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38337921

RESUMEN

Lettuce is a vegetable that contributes vitamins, minerals, fibre, phenolic compounds and antioxidants to the human diet. In the search for improving production conditions and crop health, the use of microorganisms with plant growth-promoting capabilities, such as soil yeasts (PGPY), in conjunction with nanotechnology could offer sustainable development of agroecosystems. This study evaluated the synthesis of health-promoting bioactive compounds in lettuce under the application of soil yeast and an iron nanoparticle (NP-Fe2O3) encapsulated in alginate beads. Two yeast strains, Candida guillermondii and Rhodotorula mucilaginosa, and a consortium of both yeasts were used in the presence and absence of Fe2O3-NPs. Phenolic compounds were identified and quantified via HPLC-ESI-Q-ToF and antioxidant activity. Ten phenolic compounds were identified, highlighting the chicoric acid isomer and two quercetin glycosides with high concentrations of up to 100 µg g-1 in treatments with C. guillermondii. Treatments with R. mucilaginosa and NPs-Fe2O3 presented an increase in antioxidant activity, mainly in TEAC, CUPRAC and DPPH activities in leaves, with significant differences between treatments. Therefore, the use of encapsulated soil yeasts is a viable alternative for application in vegetables to improve the biosynthesis and accumulation of phenolic compounds in lettuce and other crops.

4.
Pharmaceutics ; 15(9)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37765255

RESUMEN

Graphene-based nanomaterials (GBNMs), specifically graphene oxide (GO) and reduced graphene oxide (rGO), have shown great potential in cancer therapy owing to their physicochemical properties. As GO and rGO strongly absorb light in the near-infrared (NIR) region, they are useful in photothermal therapy (PTT) for cancer treatment. However, despite the structural similarities of GO and rGO, they exhibit different influences on anticancer treatment due to their different photothermal capacities. In this review, various characterization techniques used to compare the structural features of GO and rGO are first outlined. Then, a comprehensive summary and discussion of the applicability of GBNMs in the context of PTT for diverse cancer types are presented. This discussion includes the integration of PTT with secondary therapeutic strategies, with a particular focus on the photothermal capacity achieved through near-infrared irradiation parameters and the modifications implemented. Furthermore, a dedicated section is devoted to studies on hybrid magnetic-GBNMs. Finally, the challenges and prospects associated with the utilization of GBNM in PTT, with a primary emphasis on the potential for clinical translation, are addressed.

5.
Environ Sci Pollut Res Int ; 30(50): 109423-109437, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37775630

RESUMEN

Contamination of water by toxic dyes is a serious environmental problem. Adsorbents prepared by an environmentally safe route have stood out for application in pollutant removal. Herein, iron oxide-based nanomaterial composed of Fe(III)-OOH and Fe(II/III) bound to proanthocyanidins, with particles in the order of 20 nm, was prepared by green synthesis assisted by extract of açaí (Euterpe oleracea Mart.) berry seeds from an agro-industrial residue. The nanomaterial was applied in the adsorption of cationic dyes. Screening tests were carried out for methylene blue (MB), resulting in an outstanding maximum adsorption capacity of 531.8 mg g-1 at 343 K, pH 10, 180 min. The kinetics followed a pseudo-second-order model and the isotherm of Fritz-Schülnder provided the best fit. Thermodynamic data show an endothermic process with entropy increase, typical of chemisorption. The proposed mechanism is based on the multilayer formation over a heterogeneous adsorbent surface, with chemical and electrostatic interactions of MB with the iron oxide nanoparticles and with the proanthocyanidins. The high adsorption efficiency was attributed to the network formed by the polymeric proanthocyanidins that entangled and protected the iron oxide nanoparticles, which allowed the reuse of the nanomaterial for seven cycles without loss of adsorption efficiency.


Asunto(s)
Euterpe , Proantocianidinas , Contaminantes Químicos del Agua , Compuestos Férricos , Colorantes , Adsorción , Termodinámica , Cinética , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Azul de Metileno/química
6.
J Dent ; 138: 104699, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37716636

RESUMEN

OBJECTIVES: This study assembled and characterized a dual nanocarrier of chlorhexidine (CHX) and fluconazole (FLZ), and evaluated its antibiofilm and cytotoxic effects. METHODS: CHX and FLZ were added to iron oxide nanoparticles (IONPs) previously coated by chitosan (CS) and characterized by physical-chemical analyses. Biofilms from human saliva supplemented with Candida species were grown (72 h) on glass discs and treated (24 h) with IONPs-CS carrying CHX (at 39, 78, or 156 µg/mL) and FLZ (at 156, 312, or 624 µg/mL) in three growing associations. IONPs and CS alone, and 156 µg/mL CHX + 624 µg/mL FLZ (CHX156-FLZ624) were tested as controls. Next, microbiological analyses were performed. The viability of human oral keratinocytes (NOKsi lineage) was also determined (MTT reduction assay). Data were submitted to ANOVA or Kruskal-Wallis, followed by Fisher's LSD or Tukey's tests (α=0.05). RESULTS: Nanocarriers with spherical-like shape and diameter around 6 nm were assembled, without compromising the crystalline property and stability of IONPs. Nanocarrier at the highest concentrations was the most effective in reducing colony-forming units of Streptococcus mutans, Lactobacillus spp., Candida albicans, and Candida glabrata. The other carriers and CHX156-FLZ624 showed similar antibiofilm effects, and significantly reduced lactic acid production (p<0.001). Also, a dose-dependent cytotoxic effect against oral keratinocytes was observed for the dual nanocarrier. IONPs-CS-CHX-FLZ and CHX-FLZ significantly reduced keratinocyte viability at CHX and FLZ concentrations ≥7.8 and 31.25 µg/mL, respectively (p<0.05). CONCLUSION: The nanotherapy developed outperformed the effect of the combination CHX-FLZ on microcosm biofilms, without increasing the cytotoxic effect of the antimicrobials administered. CLINICAL SIGNIFICANCE: The dual nanocarrier is a promising topically-applied therapy for the management of oral candidiasis considering that its higher antibiofilm effects allow the use of lower concentrations of antimicrobials than those found in commercial products.


Asunto(s)
Quitosano , Fluconazol , Humanos , Fluconazol/farmacología , Clorhexidina/farmacología , Clorhexidina/química , Candida , Candida albicans , Biopelículas , Quitosano/farmacología , Queratinocitos , Streptococcus mutans
7.
Pharmaceutics ; 15(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36986690

RESUMEN

Bone marrow transplantation is a treatment for a variety of hematological and non-hematological diseases. For the transplant success, it is mandatory to have a thriving engraftment of transplanted cells, which directly depends on their homing. The present study proposes an alternative method to evaluate the homing and engraftment of hematopoietic stem cells using bioluminescence imaging and inductively coupled plasma mass spectrometry (ICP-MS) associated with superparamagnetic iron oxide nanoparticles. We have identified an enriched population of hematopoietic stem cells in the bone marrow following the administration of Fluorouracil (5-FU). Lately, the cell labeling with nanoparticles displayed the greatest internalization status when treated with 30 µg Fe/mL. The quantification by ICP-MS evaluate the stem cells homing by identifying 3.95 ± 0.37 µg Fe/mL in the control and 6.61 ± 0.84 µg Fe/mL in the bone marrow of transplanted animals. In addition, 2.14 ± 0.66 mg Fe/g in the spleen of the control group and 2.17 ± 0.59 mg Fe/g in the spleen of the experimental group was also measured. Moreover, the bioluminescence imaging provided the follow up on the hematopoietic stem cells behavior by monitoring their distribution by the bioluminescence signal. Lastly, the blood count enabled the monitoring of animal hematopoietic reconstitution and ensured the transplantation effectiveness.

8.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902198

RESUMEN

Magnetic nanoparticles based on iron oxides (MNPs-Fe) have been proposed as photothermal agents (PTAs) within antibacterial photothermal therapy (PTT), aiming to counteract the vast health problem of multidrug-resistant bacterial infections. We present a quick and easy green synthesis (GS) to prepare MNPs-Fe harnessing waste. Orange peel extract (organic compounds) was used as a reducing, capping, and stabilizing agent in the GS, which employed microwave (MW) irradiation to reduce the synthesis time. The produced weight, physical-chemical features and magnetic features of the MNPs-Fe were studied. Moreover, their cytotoxicity was assessed in animal cell line ATCC RAW 264.7, as well as their antibacterial activity against Staphylococcus aureus and Escherichia coli. We found that the 50GS-MNPs-Fe sample (prepared by GS, with 50% v/v of NH4OH and 50% v/v of orange peel extract) had an excellent mass yield. Its particle size was ~50 nm with the presence of an organic coating (terpenes or aldehydes). We believe that this coating improved the cell viability in extended periods (8 days) of cell culture with concentrations lower than 250 µg·mL-1, with respect to the MNPs-Fe obtained by CO and single MW, but it did not influence the antibacterial effect. The bacteria inhibition was attributed to the plasmonic of 50GS-MNPs-Fe (photothermal effect) by irradiation with red light (630 nm, 65.5 mW·cm-2, 30 min). We highlight the superparamagnetism of the 50GS-MNPs-Fe over 60 K in a broader temperature range than the MNPs-Fe obtained by CO (160.09 K) and MW (211.1 K). Therefore, 50GS-MNPs-Fe could be excellent candidates as broad-spectrum PTAs in antibacterial PTT. Furthermore, they might be employed in magnetic hyperthermia, magnetic resonance imaging, oncological treatments, and so on.


Asunto(s)
Citrus sinensis , Hipertermia Inducida , Nanopartículas de Magnetita , Animales , Antibacterianos/farmacología , Nanopartículas de Magnetita/química , Escherichia coli , Hierro/farmacología , Óxidos/farmacología
9.
Int J Pharm ; 636: 122866, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36934882

RESUMEN

Breast cancer is the most commonly diagnosed type of cancer among the female population worldwide. It is a disease with a high incidence and geographic distribution that negatively impacts global public health and deleteriously affect the quality of life of cancer patients. Among the new approaches, cancer immunotherapy is the most promising trend in oncology by stimulating the host's own immune system to efficiently destroy cancer cells. Recent evidence has indicated that iron oxide nanoparticles can promote the reprograming of M2 into M1 macrophages with anti-tumor effects in the tumor microenvironment. Thus, the aim of the present work was to evaluate the ability of polyaniline-coated maghemite (Pani/γ-Fe2O3) nanoparticles to modulate human macrophages in 2D monolayers and 3D multicellular breast cancer models. It was observed that Pani/γ-Fe2O3 NPs re-educated IL-10-stimulated macrophages towards a pro-inflammatory profile, decreasing the proportion of CD163+ and increasing the CD86+ proportion in 2D models. NPs were successfully taken-up by macrophages presented in the 3D model and were also able to induce an increasing in their CD86+ proportion in triple MCTs model. Overall, our findings open new perspectives on the use of Pani/γ-Fe2O3 NPs as an immunomodulatory therapy for macrophage reprogramming towards an anti-tumor M1 phenotype, providing a new tool for breast cancer immunotherapies.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Humanos , Femenino , Neoplasias de la Mama/terapia , Neoplasias de la Mama/patología , Macrófagos Asociados a Tumores/patología , Calidad de Vida , Nanopartículas Magnéticas de Óxido de Hierro , Microambiente Tumoral
10.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36555306

RESUMEN

A promise of cancer nanomedicine is the "targeted" delivery of therapeutic agents to tumors by the rational design of nanostructured materials. During the past several decades, a realization that in vitro and in vivo preclinical data are unreliable predictors of successful clinical translation has motivated a reexamination of this approach. Mathematical models of drug pharmacokinetics (PK) and biodistribution (BD) are essential tools for small-molecule drugs development. A key assumption underlying these models is that drug-target binding kinetics dominate blood clearance, hence recognition by host innate immune cells is not explicitly included. Nanoparticles circulating in the blood are conspicuous to phagocytes, and inevitable interactions typically trigger active biological responses to sequester and remove them from circulation. Our recent findings suggest that, instead of referring to nanoparticles as designed for active or passive "tumor targeting", we ought rather to refer to immune cells residing in the tumor microenvironment (TME) as active or passive actors in an essentially "cell-mediated tumor retention" process that competes with active removal by other phagocytes. Indeed, following intravenous injection, nanoparticles induce changes in the immune compartment of the TME because of nanoparticle uptake, irrespective of the nature of tumor targeting moieties. In this study, we propose a 6-compartment PK model as an initial mathematical framework for modeling this tumor-associated immune cell-mediated retention. Published in vivo PK and BD results obtained with bionized nanoferrite® (BNF®) nanoparticles were combined with results from in vitro internalization experiments with murine macrophages to guide simulations. As a preliminary approximation, we assumed that tumor-associated macrophages (TAMs) are solely responsible for active retention in the TME. We model the TAM approximation by relating in vitro macrophage uptake to an effective macrophage avidity term for the BNF® nanoparticles under consideration.


Asunto(s)
Nanopartículas , Nanoestructuras , Neoplasias , Ratones , Animales , Distribución Tisular , Macrófagos/metabolismo , Neoplasias/terapia , Nanopartículas/química , Microambiente Tumoral
11.
Polymers (Basel) ; 14(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36432981

RESUMEN

Herein, tetracycline adsorption employing magnetic chitosan (CS·Fe3O4) as the adsorbent is reported. The magnetic adsorbent was synthesized by the co-precipitation method and characterized through FTIR, XRD, SEM, and VSM analyses. The experimental data showed that the highest maximum adsorption capacity was reached at pH 7.0 (211.21 mg g-1). The efficiency of the magnetic adsorbent in tetracycline removal was dependent on the pH, initial concentration of adsorbate, and the adsorbent dosage. Additionally, the ionic strength showed a significant effect on the process. The equilibrium and kinetics studies demonstrate that Sips and Elovich models showed the best adjustment for experimental data, suggesting that the adsorption occurs in a heterogeneous surface and predominantly by chemical mechanisms. The experimental results suggest that tetracycline adsorption is mainly governed by the hydrogen bonds and cation-π interactions due to its pH dependence as well as the enhancement in the removal efficiency with the magnetite incorporation on the chitosan surface, respectively. Thermodynamic parameters indicate a spontaneous and exothermic process. Finally, magnetic chitosan proves to be efficient in TC removal even after several adsorption/desorption cycles.

12.
Nanomaterials (Basel) ; 12(18)2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-36144933

RESUMEN

Inflammasomes are cytosolic complexes composed of a Nod-like receptor, NLR, the adaptor protein, ASC, and a proteolytic enzyme, caspase-1. Inflammasome activation leads to caspase-1 activation and promotes functional maturation of IL-1ß and IL-18, two prototypical inflammatory cytokines. Besides, inflammasome activation leads to pyroptosis, an inflammatory type of cell death. Inflammasomes are vital for the host to cope with foreign pathogens or tissue damage. Herein, we show that quantum-dot-based iron oxide nanoparticles, MNP@QD, trigger NLRP3 inflammasome activation and subsequent release of proinflammatory interleukin IL-1ß by murine bone marrow-derived dendritic cells (BMDCs). This activation is more pronounced if these cells endocytose the nanoparticles before receiving inflammatory stimulation. MNP@QD was characterized by using imaging techniques like transmission electron microscopy, fluorescence microscopy, and atomic force microscopy, as well as physical and spectroscopical techniques such as fluorescence spectroscopy and powder diffraction. These findings may open the possibility of using the composite MNP@QD as both an imaging and a therapeutic tool.

14.
Mater Sci Eng C Mater Biol Appl ; 135: 112655, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35577690

RESUMEN

Magnetic bioactive glass-ceramics are biomaterials applied for magnetic hyperthermia in bone cancer treatment, thereby treating the bone tumor besides regenerating the damaged bone. However, combining high bioactivity and high saturation magnetization remains a challenge since the thermal treatment step employed to grow magnetic phases is also related to loss of bioactivity. Here, we propose a new nanocomposite made of superparamagnetic iron oxide nanoparticles (SPIONs) dispersed in a sol-gel-derived bioactive glass matrix, which does not need any thermal treatment for crystallization of magnetic phases. The scanning and transmission electron microscopies, X-ray diffraction, and dynamic light scattering results confirm that the SPIONs are actually embedded in a nanosized glass matrix, thus forming a nanocomposite. Magnetic and calorimetric characterizations evidence their proper behavior for hyperthermia applications, besides evidencing inter-magnetic nanoparticle interactions within the nanocomposite. Bioactivity and in vitro characterizations show that such nanocomposites exhibit apatite-forming properties similar to the highly bioactive parent glass, besides being osteoinductive. This methodology is a new alternative to produce magnetic bioactive materials to which the magnetic properties only rely on the quality of the SPIONs used in the synthesis. Thereby, these nanocomposites can be recognized as a new class of bioactive materials for applications in bone cancer treatment by hyperthermia.


Asunto(s)
Hipertermia Inducida , Nanocompuestos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Vidrio/química , Nanopartículas Magnéticas de Óxido de Hierro , Fenómenos Magnéticos , Nanocompuestos/química
15.
Environ Sci Pollut Res Int ; 29(31): 46813-46829, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35171415

RESUMEN

Triclosan (TCS) is widely used in the production of antibacterial products, being often found in wastewater. Therefore, this study developed new materials via soybean hulls (SBHF) and açaí seeds (AÇSF) functionalization with iron oxide nanoparticles to be applied in the TCS adsorption. The characterization confirmed the functionalization of the materials. The adsorption results indicated that the equilibrium of the process occurred after 480 and 960 min for SBHF and AÇSF, respectively. The maximum adsorptive capacity values were 158.35 and 155.09 mg g-1 for SBHF and AÇSF, respectively, at 318 K. The kinetic and isothermal data better fitted to the pseudo-second-order and Langmuir models. Thermodynamics indicated that the processes had an endothermic, spontaneous, and reversible character. The main adsorption mechanisms were H-bond and π-interactions. The pH and ionic strength studies indicated that the adsorption efficiency has not been reduced pronouncedly. The biosorbents reuse was effective for five cycles. In the synthetic mixture, the removal rate was satisfactory (92.53% and 57.02%, respectively for SBHF and AÇSF). These results demonstrate the biosorbents high potential for large-scale application.


Asunto(s)
Nanopartículas de Magnetita , Triclosán , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Magnetismo , Nanopartículas de Magnetita/química , Termodinámica , Contaminantes Químicos del Agua/análisis
16.
Polymers (Basel) ; 14(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35215665

RESUMEN

A broad spectrum of nanomaterials has been investigated for multiple purposes in recent years. Some of these studied materials are magnetics nanoparticles (MNPs). Iron oxide nanoparticles (IONPs) and superparamagnetic iron oxide nanoparticles (SPIONs) are MNPs that have received extensive attention because of their physicochemical and magnetic properties and their ease of combination with organic or inorganic compounds. Furthermore, the arresting of these MNPs into a cross-linked matrix known as hydrogel has attracted significant interest in the biomedical field. Commonly, MNPs act as a reinforcing material for the polymer matrix. In the present review, several methods, such as co-precipitation, polyol, hydrothermal, microemulsion, and sol-gel methods, are reported to synthesize magnetite nanoparticles with controllable physical and chemical properties that suit the required application. Due to the potential of magnetite-based nanocomposites, specifically in hydrogels, processing methods, including physical blending, in situ precipitation, and grafting methods, are introduced. Moreover, the most common characterization techniques employed to study MNPs and magnetic gel are discussed.

17.
Araçatuba; s.n; 2022. 79 p. ilus, tab, graf.
Tesis en Inglés | LILACS, BBO - Odontología | ID: biblio-1562927

RESUMEN

Os objetivos do presente estudo foram montar e caracterizar um novo nanocarreador dual de clorexidina (CLX) e fluconazol (FLZ), bem como avaliar seu efeito sobre biofilmes microcosmos e sua citotoxicidade sobre queratinócitos orais. Para montar o nanocarreador dual, CLX e FLZ foram adicionados a nanopartículas de óxido de ferro (NPsOF) previamente revestidas por quitosana (QTS), seguido de um processo de solubilização sob agitação magnética. O nanocarreador foi, então, caracterizado por microscopia eletrônica de transmissão, difração de raios X, espectroscopia no infravermelho por transformada de Fourier e análise termogravimétrica. A suscetibilidade de Candida albicans e Candida glabrata no estado planctônico ao nanocarreador dual foi determinada pelos valores de concentração inibitória mínima, utilizando o método da microdiluição em caldo. Um pool de saliva de 2 doadores saudáveis suplementado com espécies de Candida foi usado como inóculo para a formação de biofilmes microcosmos. Os biofilmes foram cultivados (72 h) sobre discos de vidro posicionados no Amsterdam Active Attachment model e tratados (24 h) com NPsOF-QTS carreando 39 µg/mL de CLX + 156 µg/mL de FLZ (NPsOF-QTS-CLX39-FLZ156), 78 µg/mL de CLX + 312 µg/mL de FLZ (NPsOF-QTS-CLX78-FLZ312) e 156 µg/mL de CLX + 624 µg/mL de FLZ (NPsOF-QTS-CLX156-FLZ624). NPsOF (218,5 µg/mL), QTS (218,5 µg/mL) e 156 µg/mL de CLX + 624 µg/mL de FLZ (CLX156-FLZ624) foram testados como controles. Posteriormente, foram realizadas as análises de quantificação das unidades formadoras de colônias (UFCs), produção de ácido lático (LA), composição da matriz extracelular (ME) e viabilidade celular por microscopia confocal de varredura a laser (MCVL). Para o ensaio de citotoxicidade, queratinócitos orais humanos (linhagem NOKsi) foram expostos a diferentes concentrações do nanocarreador dual, por 24 ou 48 h, e a viabilidade celular foi determinada pelo ensaio de redução de MTT. Os dados foram analisados por ANOVA ou teste de Kruskal-Wallis, seguidos dos testes de Fisher LSD ou Tukey (α = 0,05). Os testes de caracterização físico-química mostraram que um nanocarreador dual com dimensões em torno de 6 nm foi obtido, sem comprometer a propriedade cristalina e a estabilidade de NPsOF. Os compostos que formam o nanocarreador estabeleceram uma interação sinérgica em relação ao efeito sobre células planctônicas de Candida. Para os ensaios de biofilme, NPsOF-QTS-CLX156-FLZ624 foi o composto mais eficaz na redução de UFCs de Streptococcus mutans, Lactobacillus spp., C. albicans e C. glabrata, diferindo significativamente dos outros grupos, e esses achados foram confirmados por MCVL. NPsOF-QTS-CLX39-FLZ156, NPsOF-QTS-CLX78-FLZ312 e CLX156- FLZ624 mostraram efeitos antibiofilme similares. O nanocarreador dual também reduziu significativamente a produção de AL e a quantidade de carboidratos e ácidos nucleicos da ME. Um efeito citotóxico dose-dependente sobre queratinócitos orais foi observado para o nanocarreador dual, independentemente do período de exposição testado (24 ou 48 h). NPsOF-QTS-CLX-FLZ e CLX-FLZ reduziram significativamente a viabilidade dos queratinócitos em concentrações de CLX e FLZ iguais ou superiores a 7,8 e 31,25 µg/mL, respectivamente. Por fim, a nanoterapia testada no presente estudo é promissora e constitui um grande avanço dentro dos métodos alternativos aos antimicrobianos tradicionais para o controle da candidíase oral(AU)


The objectives of the present study were to assemble and characterize a new dual nanocarrier of chlorhexidine (CHX) and fluconazole (FLZ), and evaluate its effect on microcosm biofilms and its cytotoxicity against oral keratinocytes. To assemble the dual nanocarrier, CHX and FLZ were added to iron oxide nanoparticles (IONPs) previously coated by chitosan (CS), followed by a solubilization process under magnetic stirring. The nanocarrier was then characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The susceptibility of Candida albicans and Candida glabrata in the planktonic state to the dual nanocarrier was determined by the minimum inhibitory concentration values, using the broth microdilution method. A saliva pool from 2 healthy donors supplemented with Candida species was used as an inoculum for microcosm biofilm formation. Biofilms were grown (72 h) on glass discs positioned in the Amsterdam Active Attachment model and treated (24 h) with IONPs-CS carrying 39 µg/mL CHX + 156 µg/mL FLZ (IONPsCS-CHX39-FLZ156), 78 µg/mL CHX + 312 µg/mL FLZ (IONPs-CS-CHX78-FLZ312), and 156 µg/mL CHX + 624 µg/mL FLZ (IONPs-CS-CHX156-FLZ624). IONPs at 218.5 µg/mL, 218.5 µg/mL CS, and 156 µg/mL CHX + 624 µg/mL FLZ (CHX156-FLZ624) were tested as controls. Next, analyses of the quantification of colony-forming units (CFUs), lactic acid production (LA), composition of the extracellular matrix (EM), and viability by confocal laser scanning microscopy (CLSM) were performed. For the cytotoxicity assay, human oral keratinocytes (NOKsi lineage) were exposed to different concentrations of the dual nanocarrier, for 24 or 48 h, and cell viability was determined by the MTT reduction assay. Data were analyzed by ANOVA or Kruskal-Wallis test, followed by Fisher LSD or Tukey tests (α = 0.05). The physico-chemical characterization tests showed that a dual nanocarrier with dimensions around 6 nm was assembled, without compromising the crystalline property and stability of IONPs. The compounds that form the nanocarrier established a synergistic interaction in relation to the effect on Candida planktonic cells. Regarding biofilm assays, IONPs-CS-CHX156-FLZ624 was the most effective compound in reducing CFUs from Streptococcus mutans, Lactobacillus spp., C. albicans, and C. glabrata, differing significantly from the other groups, and these findings were confirmed by CLSM. IONPs-CS-CHX39-FLZ156, IONPs-CS-CHX78-FLZ312, and CHX156-FLZ624 showed similar antibiofilm effects. The dual nanocarrier also significantly reduced LA production and the amount of carbohydrates and nucleic acids from the EM. A dose-dependent cytotoxic effect against oral keratinocytes was observed for the dual nanocarrier, regardless of the exposure period tested (24 or 48 h). IONPs-CSCHX-FLZ and CHX-FLZ significantly reduced keratinocyte viability at CHX and FLZ concentrations equal to or greater than 7.8 and 31.25 µg/mL, respectively. In conclusion, the nanotherapy tested in the current study is promising and constitutes a major advance in alternative methods to traditional antimicrobials for oral candidiasis control(AU)


Asunto(s)
Fluconazol/toxicidad , Clorhexidina/toxicidad
18.
Nanomedicine (Lond) ; 16(29): 2633-2650, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34854309

RESUMEN

Cancer immunotherapy is the most promising trend in oncology, focusing on helping or activating the patient's immune system to identify and fight against cancer. In the last decade, interest in metabolic reprogramming of tumor-associated macrophages from M2-like phenotype (promoting tumor progression) to M1-like phenotypes (suppressing tumor growth) as a therapeutic strategy against cancer has increased considerably. Iron metabolism has been standing out as a target for the reprogramming of tumor-associated macrophages to M1-like phenotype with therapeutic purposes against cancer. Due to the importance of the iron levels in macrophage polarization states, iron oxide nanoparticles can be used to change the activation state of tumor-associated macrophages for a tumor suppressor phenotype and as an anti-tumor strategy.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Inmunoterapia , Macrófagos , Nanopartículas Magnéticas de Óxido de Hierro , Neoplasias/tratamiento farmacológico , Macrófagos Asociados a Tumores
19.
Pharmaceutics ; 13(8)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34452180

RESUMEN

This in vitro study aims to evaluate the magnetic hyperthermia (MHT) technique and the best strategy for internalization of magnetic nanoparticles coated with aminosilane (SPIONAmine) in glioblastoma tumor cells. SPIONAmine of 50 and 100 nm were used for specific absorption rate (SAR) analysis, performing the MHT with intensities of 50, 150, and 300 Gauss and frequencies varying between 305 and 557 kHz. The internalization strategy was performed using 100, 200, and 300 µgFe/mL of SPIONAmine, with or without Poly-L-Lysine (PLL) and filter, and with or without static or dynamic magnet field. The cell viability was evaluated after determination of MHT best condition of SPIONAmine internalization. The maximum SAR values of SPIONAmine (50 nm) and SPIONAmine (100 nm) identified were 184.41 W/g and 337.83 W/g, respectively, using a frequency of 557 kHz and intensity of 300 Gauss (≈23.93 kA/m). The best internalization strategy was 100 µgFe/mL of SPIONAmine (100 nm) using PLL with filter and dynamic magnet field, submitted to MHT for 40 min at 44 °C. This condition displayed 70.0% decreased in cell viability by flow cytometry and 68.1% by BLI. We can conclude that our study is promising as an antitumor treatment, based on intra- and extracellular MHT effects. The optimization of the nanoparticles internalization process associated with their magnetic characteristics potentiates the extracellular acute and late intracellular effect of MHT achieving greater efficiency in the therapeutic process.

20.
J Fungi (Basel) ; 7(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201635

RESUMEN

The contribution of different Candida species in oral fungal infections has stimulated the search for more effective therapies. This study assessed the antibiofilm effects of nanocarriers of miconazole (MCZ) or fluconazole (FLZ) on Candida biofilms, and their cytotoxic effects on murine fibroblasts. Three-species biofilms (Candida albicans/Candida glabrata/Candida tropicalis) were formed on 96-well plates, and they were treated with nanocarriers (iron oxide nanoparticles coated with chitosan-"IONPs-CS") of MCZ or FLZ at 39/78/156 µg/mL; antifungals alone at 156 µg/mL and artificial saliva were tested as positive and negative controls, respectively. Biofilms were analyzed by colony forming units (CFU), biomass, metabolic activity, and structure/viability. The cytotoxicity (L929 cells) of all treatments was determined via 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) reduction assay. Data were submitted to one- or two-way ANOVA, followed by Tukey's or Fisher LSD's tests (p < 0.05). IONPs-CS-MCZ at 78 µg/mL promoted similar antibiofilm and cytotoxic effects compared with MCZ at 156 µg/mL. In turn, IONPs-CS-FLZ at 156 µg/mL was overall the most effective FLZ antibiofilm treatment, surpassing the effects of FLZ alone; this nanocarrier was also less cytotoxic compared with FLZ alone. It can be concluded that both nanocarriers are more effective alternatives to fight Candida biofilms compared with their respective positive controls in vitro, being a promising alternative for the treatment of oral fungal infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA