Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
J Environ Sci (China) ; 147: 217-229, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003041

RESUMEN

Dissolved black carbon (DBC) plays a crucial role in the migration and bioavailability of iron in water. However, the properties of DBC releasing under diverse pyrolysis conditions and dissolving processes have not been systematically studied. Here, the compositions of DBC released from biochar through redox processes dominated by bacteria and light were thoroughly studied. It was found that the DBC released from straw biochar possess more oxygen-containing functional groups and aromatic substances. The content of phenolic and carboxylic groups in DBC was increased under influence of microorganisms and light, respectively. The concentration of phenolic hydroxyl groups increased from 10.0∼57.5 mmol/gC to 6.6 ∼65.2 mmol/gC, and the concentration of carboxyl groups increased from 49.7∼97.5 mmol/gC to 62.1 ∼113.3 mmol/gC. Then the impacts of DBC on pyrite dissolution and microalgae growth were also investigated. The complexing Fe3+ was proved to play a predominant role in the dissolution of ferrous mineral in DBC solution. Due to complexing between iron ion and DBC, the amount of dissolved Fe in aquatic water may rise as a result of elevated number of aromatic components with oxygen containing groups and low molecular weight generated under light conditions. Fe-DBC complexations in solution significantly promoted microalga growth, which might be attributed to the stimulating effect of dissolved Fe on the chlorophyll synthesis. The results of study will deepen our understanding of the behavior and ultimate destiny of DBC released into an iron-rich environment under redox conditions.


Asunto(s)
Carbono , Carbón Orgánico , Hierro , Oxidación-Reducción , Hierro/química , Carbón Orgánico/química , Carbono/química , Contaminantes Químicos del Agua/química
2.
ACS Appl Bio Mater ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302413

RESUMEN

Reactive nitrogen species (RNS) are more lethal than reactive oxygen species (ROS), which gives them a very promising future in the field of cancer treatment. However, there are still a few drugs available for RNS generation. In this work, two 5th-order nonlinear optical materials, FB-Fe(III)/SNP@PEG and FB-Fe(II)-FB/SNP@PEG, are synthesized. The outstanding nonlinear optical properties of FB-Fe(III)/SNP@PEG help to achieve generation of bounteous superoxide anions (O2•-) in deep tissues, while sodium nitroprusside (SNP) provides NO in the body, both of which are prerequisites for RNS generation. Meanwhile, type I and type II ROS were also generated under irradiation of a 1600 nm laser. Based on the synergistic effect of ROS and RNS, FB-Fe(III)/SNP@PEG induced mitochondrial damage and DNA fragmentation and inhibited tumor cells through apoptosis, possessing better therapeutic effects than FB-Fe(II)-FB/SNP@PEG. This work put forward an innovative strategy to achieve the cooperative release of RNS and ROS in deep tissues, which provides insights and ideas for applying nonlinear optical materials to RNS therapy.

3.
Bull Exp Biol Med ; 177(2): 212-216, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39093471

RESUMEN

The effect of a promising NO donor, a binuclear nitrosyl iron complex (NIC) with 3,4-dichlorothiophenolyls [Fe2(SC6H3Cl2)2(NO)4], on the adenylate cyclase and soluble guanylate cyclase enzymatic systems was studied. In in vitro experiments, this complex increased the concentration of important secondary messengers, such as cAMP and cGMP. An increase of their level by 2.4 and 4.5 times, respectively, was detected at NIC concentration of 0.1 mM. The ligand of the complex, 3,4-dichlorothiophenol, produced a less pronounced effect on adenylate cyclase. It was shown that the effect of this complex on the activity of soluble guanylate cyclase was comparable to the effect of anionic nitrosyl complex with thiosulfate ligands that exhibits vasodilating and cardioprotective properties.


Asunto(s)
AMP Cíclico , GMP Cíclico , GMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Animales , Hierro/metabolismo , Hierro/química , Adenilil Ciclasas/metabolismo , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/química , Guanilil Ciclasa Soluble/metabolismo , Óxidos de Nitrógeno/farmacología , Óxidos de Nitrógeno/metabolismo , Óxidos de Nitrógeno/química , Ratas
4.
Environ Sci Technol ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39116213

RESUMEN

Understanding the chemical nature of soil organic carbon (SOC) with great potential to bind iron (Fe) minerals is critical for predicting the stability of SOC. Organic ligands of Fe are among the top candidates for SOCs able to strongly sorb on Fe minerals, but most of them are still molecularly uncharacterized. To shed insights into the chemical nature of organic ligands in soil and their fate, this study developed a protocol for identifying organic ligands using ultrahigh-performance liquid chromatography-high-resolution tandem mass spectrometry (UHPLC-HRMS/MS) and metabolomic tools. The protocol was used for investigating the Fe complexes formed by model compounds of lignin-derived organic ligands, namely, caffeic acid (CA), p-coumaric acid (CMA), vanillin (VNL), and cinnamic acid (CNA). Isotopologue analysis of 54/56Fe was used to screen out the potential UHPLC-HRMS (m/z) features for complexes formed between organic ligands and Fe, with multiple features captured for CA, CMA, VNL, and CNA when 35/37Cl isotopologue analysis was used as supplementary evidence for the complexes with Cl. MS/MS spectra, fragment analysis, and structure prediction with SIRIUS were used to annotate the structures of mono/bidentate mono/biligand complexes. The analysis determined the structures of monodentate and bidentate complexes of FeLxCly (L: organic ligand, x = 1-4, y = 0-3) formed by model compounds. The protocol developed in this study can be used to identify unknown organic ligands occurring in complex environmental samples and shed light on the molecular-level processes governing the stability of the SOC.

5.
Redox Biol ; 75: 103257, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38955113

RESUMEN

Ferroptosis, a lipid peroxidation-driven cell death program kept in check by glutathione peroxidase 4 and endogenous redox cycles, promises access to novel strategies for treating therapy-resistant cancers. Chlorido [N,N'-disalicylidene-1,2-phenylenediamine]iron (III) complexes (SCs) have potent anti-cancer properties by inducing ferroptosis, apoptosis, or necroptosis through still poorly understood molecular mechanisms. Here, we show that SCs preferentially induce ferroptosis over other cell death programs in triple-negative breast cancer cells (LC50 ≥ 0.07 µM) and are particularly effective against cell lines with acquired invasiveness, chemo- or radioresistance. Redox lipidomics reveals that initiation of cell death is associated with extensive (hydroper)oxidation of arachidonic acid and adrenic acid in membrane phospholipids, specifically phosphatidylethanolamines and phosphatidylinositols, with SCs outperforming established ferroptosis inducers. Mechanistically, SCs effectively catalyze one-electron transfer reactions, likely via a redox cycle involving the reduction of Fe(III) to Fe(II) species and reversible formation of oxo-bridged dimeric complexes, as supported by cyclic voltammetry. As a result, SCs can use hydrogen peroxide to generate organic radicals but not hydroxyl radicals and oxidize membrane phospholipids and (membrane-)protective factors such as NADPH, which is depleted from cells. We conclude that SCs catalyze specific redox reactions that drive membrane peroxidation while interfering with the ability of cells, including therapy-resistant cancer cells, to detoxify phospholipid hydroperoxides.


Asunto(s)
Ferroptosis , Peroxidación de Lípido , Oxidación-Reducción , Fosfolípidos , Ferroptosis/efectos de los fármacos , Humanos , Peroxidación de Lípido/efectos de los fármacos , Línea Celular Tumoral , Fosfolípidos/metabolismo , Fosfolípidos/química , Hierro/metabolismo , Catálisis , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Ácido Araquidónico/metabolismo , Fenilendiaminas/farmacología , Fenilendiaminas/química , Antineoplásicos/farmacología , Ácidos Grasos Insaturados
6.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000305

RESUMEN

Nitrosyl iron complexes are remarkably multifactorial pharmacological agents. These compounds have been proven to be particularly effective in treating cardiovascular and oncological diseases. We evaluated and compared the antioxidant activity of tetranitrosyl iron complexes (TNICs) with thiosulfate ligands and dinitrosyl iron complexes (DNICs) with glutathione (DNIC-GS) or phosphate (DNIC-PO4-) ligands in hemoglobin-containing systems. The studied effects included the production of free radical intermediates during hemoglobin (Hb) oxidation by tert-butyl hydroperoxide, oxidative modification of Hb, and antioxidant properties of nitrosyl iron complexes. Measuring luminol chemiluminescence revealed that the antioxidant effect of TNICs was higher compared to DNIC-PO4-. DNIC-GS either did not exhibit antioxidant activity or exerted prooxidant effects at certain concentrations, which might have resulted from thiyl radical formation. TNICs and DNIC-PO4- efficiently protected the Hb heme group from decomposition by organic hydroperoxides. DNIC-GS did not exert any protective effects on the heme group; however, it abolished oxoferrylHb generation. TNICs inhibited the formation of Hb multimeric forms more efficiently than DNICs. Thus, TNICs had more pronounced antioxidant activity than DNICs in Hb-containing systems.


Asunto(s)
Antioxidantes , Hemoglobinas , Hierro , Fosfatos , Tiosulfatos , Tiosulfatos/farmacología , Tiosulfatos/química , Hemoglobinas/metabolismo , Hemoglobinas/química , Hierro/metabolismo , Hierro/química , Fosfatos/química , Fosfatos/metabolismo , Ligandos , Antioxidantes/farmacología , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/metabolismo , Oxidación-Reducción/efectos de los fármacos , Óxidos de Nitrógeno/química , Óxidos de Nitrógeno/farmacología , Óxidos de Nitrógeno/metabolismo , Glutatión/metabolismo , Animales
7.
Molecules ; 29(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38731615

RESUMEN

Interaction of the pre-organized complex of iron(II) trimethylacetate and 1,10-phenanthroline (phen) [Fe2(piv)4(phen)2] (1) (piv = (Me)3CCO2-)) with 1,6-diaminohexane (dahx) in anhydrous acetonitrile yielded a 1D coordination polymer [Fe3O(piv)6(dahx)1.5]n (2) and an organic salt of pivalic acid (H2dahx)(piv)2 (3). The structure of the obtained compounds was determined by single-crystal X-ray diffraction analysis. The phase purity of the complexes was determined by powder X-ray diffraction analysis. According to the single-crystal X-ray analysis, coordination polymer 2 is formed due to the binding of a triangular carboxylate core {Fe3(µ3-O)(µ-piv)6} with an aliphatic diamine ligand. Thermal behavior was investigated for compounds 1 and 2 in an argon atmosphere.

8.
Molecules ; 29(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38731630

RESUMEN

A series of novel amine triphenolate iron complexes were synthesized and characterized using UV, IR, elemental analysis, and high-resolution mass spectrometry. These complexes were applied to the ring-opening polymerization (ROP) of cyclohexene oxide (CHO), demonstrating excellent activity (TOF > 11050 h-1) in the absence of a co-catalyst. In addition, complex C1 maintained the dimer in the presence of the reaction substrate CHO, catalyzing the ring-opening polymerization of CHO to PCHO through bimetallic synergy. Furthermore, a two-component system consisting of iron complexes and TBAB displayed the ability to catalyze the reaction of CHO with CO2, resulting in the formation of cis-cyclic carbonate with high selectivity. Complex C4 exhibited the highest catalytic activity, achieving 80% conversion of CHO at a CHO/C4/TBAB molar ratio of 2000/1/8 and a CO2 pressure of 3 MPa for 16 h at 100 °C, while maintaining >99% selectivity of cis-cyclic carbonates, which demonstrated good conversion and selectivity.

9.
Molecules ; 29(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38611909

RESUMEN

Dinitrosyl iron complexes (DNICs) stabilize nitric oxide in cells and tissues and constitute an important form of its storage and transportation. DNICs may comprise low-molecular-weight ligands, e.g., thiols, imidazole groups in chemical compounds with low molecular weight (LMWDNICs), or high-molecular-weight ligands, e.g., peptides or proteins (HMWDNICs). The aim of this study was to investigate the role of low- and high-molecular-weight ligands in DNIC formation. Lysosomal and proteasomal proteolysis was inhibited by specific inhibitors. Experiments were conducted on human erythroid K562 cells and on K562 cells overexpressing a heavy chain of ferritin. Cell cultures were treated with •NO donor. DNIC formation was monitored by electron paramagnetic resonance. Pretreatment of cells with proteolysis inhibitors diminished the intensity and changed the shape of the DNIC-specific EPR signal in a treatment time-dependent manner. The level of DNIC formation was significantly influenced by the presence of protein degradation products. Interestingly, formation of HMWDNICs depended on the availability of LMWDNICs. The extent of glutathione involvement in the in vivo formation of DNICs is minor yet noticeable, aligning with our prior research findings.


Asunto(s)
Óxido Nítrico , Óxidos de Nitrógeno , Humanos , Proteolisis , Óxidos de Nitrógeno/farmacología , Hierro
10.
J Hazard Mater ; 469: 134081, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38522205

RESUMEN

Despite the occurrence of thallium (Tl) in the acidic mining-affected areas being highly positively correlated with iron (Fe) and arsenic (As), the effects of the two accompanying elements on Tl redox transformation and immobilization remain largely unknown. Here, we investigated the photochemical redox kinetics and immobilization efficiency of Tl for a wide range of As/Fe and As/Tl ratios under acidic conditions. We provided the first experimental confirmation of the complexation of Tl(III) with As(V) by the spectrophotometric method and revealed the role of Tl(III)-As(V) complexes in decreasing the photoreduction rate of Tl(III) under sunlight. Additionally, the negative impact of colloidal Fe(III)-As(V) and Fe(III)-As(III) complexes formation on decreasing photoactive Fe(III) speciation and thus the apparent quantum yield of •OH was highlighted, which consequently hindered the oxidative conversion of Tl(I) to Tl(III). We rationalize the kinetics results by developing the model which quantitatively describes the photochemistry of Tl. Furthermore, we demonstrated the colloid-facilitated immobilization of Tl(III) through the formation of Tl(III)-As(V) clusters and surface adsorption onto the complexes. This study broadens the mechanistic understanding of redox transformation and immobilization potential of Tl and aids in assessing Tl speciation as well as its coupled transformation with Fe and As species in the sunlit water environment.

11.
Mol Biol (Mosk) ; 57(6): 925-937, 2023.
Artículo en Ruso | MEDLINE | ID: mdl-38062950

RESUMEN

Experimental data were summarized to assume that dinitrosyl iron complexes (DNICs) with thiol-containing ligands are an endogenous "working form" of the nitric oxide (NO) system in living organisms. DNICs can function as donors of both neutral NO molecules, which are responsible for positive regulatory effects of the NO system on various physiological and biochemical processes in humans and animals, and nitrosonium cations (NO^(+)), which are responsible mostly for negative cytotoxic activity of the system. Special attention is paid to the finding that DNICs, especially in combination with dithiocarbamate derivatives, suppress SARS-CoV-2 infection in Syrian hamsters.


Asunto(s)
Óxido Nítrico , Compuestos de Sulfhidrilo , Humanos , Animales , Compuestos de Sulfhidrilo/química , Óxidos de Nitrógeno/química , Hierro/química , Ligandos
12.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38139065

RESUMEN

Dinitrosyl iron complexes (DNICs) are important physiological derivatives of nitric oxide. These complexes have a wide range of biological activities, with antioxidant and antiradical ones being of particular interest and importance. We studied the interaction between DNICs associated with the dipeptide L-carnosine or serum albumin and prooxidants under conditions mimicking oxidative stress. The ligands of these DNICs were histidine residues of carnosine or His39 and Cys34 in bovine serum albumin. Carnosine-bound DNICs reduced the level of piperazine free radicals in the reaction system containing tert-butyl hydroperoxide (t-BOOH), bivalent iron ions, a nitroxyl anion donor (Angeli's salt), and HEPES buffer. The ability of carnosine DNICs to intercept organic free radicals produced from t-BOOH decay could lead to this effect. In addition, carnosine DNICs reacted with the superoxide anion radical (O2•-) formed in the xanthine/xanthine oxidase enzymatic system. They also reduced the oxoferryl form of the heme group formed in the reaction of myoglobin with t-BOOH. DNICs associated with serum albumin were found to be rapidly destroyed in a model system containing metmyoglobin and t-BOOH. At the same time, these protein DNICs inhibited the t-BOOH-induced oxidative degradation of coenzymes Q9 and Q10 in rat myocardial homogenate. The possible mechanisms of the antioxidant and antiradical action of the DNICs studied and their role in the metabolism of reactive oxygen and nitrogen species are discussed.


Asunto(s)
Antioxidantes , Carnosina , Ratas , Animales , Antioxidantes/farmacología , Histidina , Carnosina/farmacología , Óxidos de Nitrógeno/química , Hierro/metabolismo , Óxido Nítrico/metabolismo , Radicales Libres , Superóxidos/metabolismo , Oxígeno , Albúmina Sérica
13.
Chemistry ; 29(70): e202302533, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37688430

RESUMEN

Herein, we report the synthesis and characterization of several chiral (cyclopentadienone)iron complexes (CICs) featuring either two (R)-BINOL-derived stereoaxes or a combination of one (R)-BINOL-derived stereoaxis and a stereogenic plane. The stereoplane-containing CICs were obtained as epimer mixtures, which were separated by flash column chromatography and assigned an absolute configuration based on XRD analysis, NMR and order of elution. The library was tested in the asymmetric hydrogenation of ketones showing good catalytic activity and a moderate stereoselectivity which, notably, is mostly imparted by the stereogenic plane. Indeed, the two epimers of each CIC possessing a stereoplane show opposite and equally strong stereochemical preference.

14.
ACS Chem Neurosci ; 14(16): 2922-2934, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37533298

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive impairment, memory loss, and behavioral deficits. ß-amyloid1-42 (Aß1-42) aggregation is a significant cause of the pathogenesis in AD. Despite the numerous types of research, the current treatment efficacy remains insufficient. Hence, a novel therapeutic strategy is required. Nitric oxide (NO) is a multifunctional gaseous molecule. NO displays a neuroprotective role in the central nervous system by inhibiting the Aß aggregation and rescuing memory and learning deficit through the NO signaling pathway. Targeting the NO pathway might be a therapeutic option; however, NO has a limited half-life under the biological system. To address this issue, a biomimetic dinitrosyl iron complex [(NO)2Fe(µ-SCH2CH2COOH)2Fe(NO)2] (DNIC-COOH) that could stably deliver NO was explored in the current study. To determine whether DNIC-COOH exerts anti-AD efficacy, DNIC-COOH was added to neuron-like cells and primary cortical neurons along with Aß1-42. This study found that DNIC-COOH protected neuronal cells from Aß-induced cytotoxicity, potentiated neuronal functions, and facilitated Aß1-42 degradation through the NO-sGC-cGMP-AKT-GSK3ß-CREB/MMP-9 pathway.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Humanos , Óxido Nítrico/metabolismo , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Hierro/metabolismo , Péptidos beta-Amiloides
15.
Membranes (Basel) ; 13(7)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37504981

RESUMEN

The high prevalence of type 2 diabetes mellitus (T2DM), and the lack of effective therapy, determine the need for new treatment options. The present study is focused on the NO-donors drug class as effective antidiabetic agents. Since numerous biological systems are involved in the pathogenesis and progression of T2DM, the most promising approach to the development of effective drugs for the treatment of T2DM is the search for pharmacologically active compounds that are selective for a number of therapeutic targets for T2DM and its complications: oxidative stress, non-enzymatic protein glycation, polyol pathway. The nitrosyl iron complex with thiosulfate ligands was studied in this work. Binuclear iron nitrosyl complexes are synthetic analogues of [2Fe-2S] centers in the regulatory protein natural reservoirs of NO. Due to their ability to release NO without additional activation under physiological conditions, these compounds are of considerable interest for the development of potential drugs. The present study explores the effects of tetranitrosyl iron complex with thiosulfate ligands (TNIC-ThS) on T2DM and its complications regarding therapeutic targets in vitro, as well as its ability to bind liposomal membrane, inhibit lipid peroxidation (LPO), and non-enzymatic glycation of bovine serum albumin (BSA), as well as aldose reductase, the enzyme that catalyzes the reduction in glucose to sorbitol in the polyol pathway. Using the fluorescent probe method, it has been shown that TNIC-ThS molecules interact with both hydrophilic and hydrophobic regions of model membranes. TNIC-ThS inhibits lipid peroxidation, exhibiting antiradical activity due to releasing NO (IC50 = 21.5 ± 3.7 µM). TNIC-ThS was found to show non-competitive inhibition of aldose reductase with Ki value of 5.25 × 10-4 M. In addition, TNIC-ThS was shown to be an effective inhibitor of the process of non-enzymatic protein glycation in vitro (IC50 = 47.4 ± 7.6 µM). Thus, TNIC-ThS may be considered to contribute significantly to the treatment of T2DM and diabetic complications.

16.
J Agric Food Chem ; 71(30): 11404-11417, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37462422

RESUMEN

Previous studies have shown that natural heteromolecular complexes might be an alternative to synthetic chelates to correct iron (Fe) deficiency. To investigate the mechanism of action of these complexes, we have studied their interaction with Ca2+ at alkaline pH, Fe-binding stability, Fe-root uptake in cucumber, and chemical structure using molecular modeling. The results show that a heteromolecular Fe complex including citric acid and lignosulfonate as binding ligands (Ls-Cit) forms a supramolecular system in solution with iron citrate interacting with the hydrophobic inner core of the lignosulfonate system. These structural features are associated with high stability against Ca2+ at basic pH. Likewise, unlike Fe-EDDHA, root Fe uptake from Ls-Cit implies the activation of the main root responses under Fe deficiency at the transcriptional level but not at the post-transcriptional level. These results are consistent with the involvement of some plant responses to Fe deficiency in the plant assimilation of complexed Fe in Ls-Cit under field conditions.


Asunto(s)
Quelantes del Hierro , Hierro , Hierro/metabolismo , Quelantes del Hierro/química , Raíces de Plantas/metabolismo , Concentración de Iones de Hidrógeno
17.
R Soc Open Sci ; 10(6): 230114, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37293362

RESUMEN

The oxidation of L-proline (Pro) by HO● radical in water and the influence of transition metal ions on this process has been revisited by using the density functional theory (DFT) method at the M05-2X/6-311 + + G(3df,3pd)//M05-2X/6-311 + + G(d,p) level of theory at the temperature of 298.15 K. The main reactive sites of the HO●-initiated oxidation of Pro via hydrogen atom transfer (HAT) reactions are at the ß- and γ-carbon, with the branching ratios being 44.6% and 39.5%, respectively. The overall rate constant at 298.15 K is 6.04 × 108 M-1 s-1. In addition, Pro tends to form stable complexes with both Fe and Cu ions via the -COO functional group of dipole-salt form. The most stable Cu(II)-Pro complexes have high oxidant risks in enhancing the HO● formation in the presence of reducing agents. Besides this, the high oxidation state metal complexes, i.e. Fe(III)-Pro and Cu(II)-Pro, may be oxidized by HO● radical via HAT reactions but with a lower rate constant than that of free-Pro. By contrast, the low oxidation state metal complexes (i.e. Fe(II)-Pro and Cu(I)-Pro) have higher oxidation risks than the free ligands, and thus, the complexation enhances the oxidation of Pro amino acid.

18.
J Inorg Biochem ; 246: 112280, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37352656

RESUMEN

Bacterial NO Reductase (NorBC or cNOR) is a membrane-bound enzyme found in denitrifying bacteria that catalyzes the two-electron reduction of NO to N2O and water. The mechanism by which NorBC operates is highly debated, due to the fact that this enzyme is difficult to work with, and no intermediates of the NO reduction reaction could have been identified so far. The unique active site of NorBC consists of a heme b3/non-heme FeB diiron center. Synthetic model complexes provide the opportunity to obtain insight into possible mechanistic alternatives for this enzyme. In this paper, we present three new synthetic model systems for NorBC, consisting of a tetraphenylporphyrin-derivative clicked to modified BMPA-based ligands (BMPA = bis(methylpyridyl)amine) that model the non-heme site in the enzyme. These complexes have been characterized by EPR, IR and UV-Vis spectroscopy. The reactivity with NO was then investigated, and it was found that the complex with the BMPA-carboxylate ligand as the non-heme component has a very low affinity for NO at the non-heme iron site. If the carboxylate functional group is replaced with a phenolate or pyridine group, reactivity is restored and formation of a diiron dinitrosyl complex was observed. Upon one-electron reduction of the nitrosylated complexes, following the semireduced pathway for NO reduction, formation of dinitrosyl iron complexes (DNICs) was observed in all three cases, but no N2O could be detected.


Asunto(s)
Química Clic , Óxido Nítrico , Óxido Nítrico/metabolismo , Hierro/química , Bacterias/metabolismo , Hemo/química , Oxidación-Reducción
19.
Molecules ; 28(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36985846

RESUMEN

The self-assembly reaction of the neutral dicyano-bis(1,10-phenanthroline) iron(II) complex with lanthanide ions (Ln = Eu(III), Gd(III), Er(III)) provided two different classes of heterometallic cyano-bridged 3d-4f architectures depending on the nature of the counteranion, irrespective of the size of the 4f metal ion. Tetranuclear oligomers with a squared Fe2Ln2 core were isolated when using nitrate salts, whereas unusual 1D polymeric chains were obtained when resorting to triflate salts under the same synthetic conditions. It is shown that the different structural motifs have a remarkable impact on the thermal stability and the optical properties of the compounds, which display a notable optical ipsochromism of the parent Fe(II) complex upon coordination with the Ln ion. This effect is significantly more pronounced in the polymeric chain than in the Fe2Ln2 oligomer both in solution and in the solid state. Structural evidence suggests that this behavior is likely related to the geometry of the CN-Ln bridge. On the other hand, more extended π-stacking interactions in the oligomer give rise to a broad charge-transfer absorption (600-1500 nm), making this compound promising as NIR absorber. Density Functional Theory calculations and electrochemical studies demonstrate that the observed negative chromism originates from the stabilization of a mixed metal/cyanide character HOMO with respect to a phenanthroline-centered LUMO.

20.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36901870

RESUMEN

Nitric oxide (NO) is a gaseous molecule which plays a key role in wound healing. Previously, we identified the optimal conditions for wound healing strategies using NO donors and an air plasma generator. The aim of this study was to compare the wound healing effects of binuclear dinitrosyl iron complexes with glutathione (B-DNIC-GSH) and NO-containing gas flow (NO-CGF) at their optimal NO doses (0.04 mmol for B-DNIC-GSH and 1.0 mmol for NO-CGF per 1 cm2) in a rat full-thickness wound model over a 3-week period. Excised wound tissues were studied by light and transmission electron microscopy and immunohistochemical, morphometrical and statistical methods. Both treatments had an identical stimulating impact on wound healing, which indicated a higher dosage effectiveness of B-DNIC-GSH compared to the NO-CGF. B-DNIC-GSH spray application reduced inflammation and promoted fibroblast proliferation, angiogenesis and the growth of granulation tissue during the first 4 days after injury. However, prolonged NO spray effects were mild compared to NO-CGF. Future studies should determine the optimal B-DNIC-GSH solution course for a more effective wound healing stimulation.


Asunto(s)
Óxido Nítrico , Óxidos de Nitrógeno , Ratas , Animales , Óxido Nítrico/química , Óxidos de Nitrógeno/química , Hierro/química , Cicatrización de Heridas , Glutatión/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA