Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Macromol Rapid Commun ; : e2400477, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254528

RESUMEN

Vanadium redox flow batteries (VRFBs) depend on the separator membrane for their efficiency and cycle life. Herein, two amphoteric ion exchange membranes are synthesized, based on sulfonic acid group-grafted poly(p-terphenyl piperidinium), for VRFBs. Using ether-free poly(p-terphenyl piperidine) (PTP) as the polymer matrix, and sodium 2-bromoethanesulphonate (ES) and 1,4-butane sultone (BS) as grafting agents, We achieve quaternization of PTP through an environmentally friendly process without alkaline catalysts. PTP-ES and PTP-BS membranes exhibit low area resistance, high H+ permeability, and significantly reduced vanadium ion permeability, leading to exceptional ion selectivity, which is 3.06 × 106 S min cm-3 and 4.34 × 106 S min cm-3, respectively, three orders of magnitude higher than that of Nafion115 (0.27 × 104 S min cm-3). The VRFB with PTP-BS achieves a self-discharge duration of 190 h, compared to 86 h for Nafion 115. Additionally, under current densities of 40-160 mA cm-2, PTP-BS shows coulombic efficiencies of 98.1-99.1% and energy efficiencies of 92.0-82.1%, outperforming Nafion 115. The VRFB with PTP-BS also demonstrates excellent cycle stability and discharge capacity retention over 300 cycles at 100 mA cm-2. Therefore, the amphoteric PTP-BS membrane shows remarkable performance, offering significant potential for VRFB applications.

2.
Proc Natl Acad Sci U S A ; 121(38): e2407479121, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39259593

RESUMEN

Human voltage-gated proton (hHv1) channels are crucial for regulating essential biological processes such as immune cell respiratory burst, sperm capacitation, and cancer cell migration. Despite the significant concentration difference between protons and other ions in physiological conditions, hHv1 demonstrates remarkable proton selectivity. Our calculations of single-proton, cation, and anion permeation free energy profiles quantitatively demonstrate that the proton selectivity of the wild-type channel originates from its strong proton affinity via the titration of the key residues D112 and D174, although the channel imposes similar kinetic blocking effects for protons compared to other ions. A two-proton knock-on model is proposed to mathematically explain the electrophysiological measurements of the pH-dependent proton conductance in the conductive state. Moreover, it is shown that the anion selectivity of the D112N mutant channel is tied to impaired proton transport and substantial anion leakage.


Asunto(s)
Canales Iónicos , Protones , Humanos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico , Canales Iónicos/química , Canales Iónicos/metabolismo , Mutación
3.
Nano Lett ; 24(37): 11756-11762, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39236070

RESUMEN

Developing a nanofluidic membrane with simultaneously enhanced ion selectivity and permeability for high-performance osmotic energy conversion has largely been unexplored. Here, we tackle this issue by the confinement of highly space-charged hydrogels within an orderedly aligned nanochannel array membrane. The nanoconfinement effect endows the hydrogel-based membrane with excellent antiswelling property. Furthermore, experimental and simulation results demonstrate that such a nanoconfined hydrogel membrane exhibits massively enhanced cation selectivity and ion transport properties. Consequently, an amazingly high power density up to ∼52.1 W/m2 with an unprecedented energy conversion efficiency of 37.5% can be reached by mixing simulated salt-lake water (5 M NaCl) and river water (0.01 M NaCl). Both efficiency indexes surpass those of most of the state-of-the-art nanofluidic membranes. This work offers insights into the design of highly ion-selective membranes to achieve ultrafast ion transport and high-performance osmotic energy harvesting.

4.
ACS Nano ; 18(33): 21633-21650, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39114876

RESUMEN

Synthetic membranes featuring confined nanostructures have emerged as a prominent category of leading materials that can selectively separate target ions from complex water matrices. Further advancements in these membranes will pressingly rely on the ability to elucidate the inherent connection between transmembrane ion permeation behaviors and the ion-selective nanostructures. In this review, we first abstract state-of-the-art nanostructures with a diversity of spatial confinements in current synthetic membranes. Next, the underlying mechanisms that govern ion permeation under the spatial nanoconfinement are analyzed. We then proceed to assess ion-selective membrane materials with a focus on their structural merits that allow ultrahigh selectivity for a wide range of monovalent and divalent ions. We also highlight recent advancements in experimental methodologies for measuring ionic permeability, hydration numbers, and energy barriers to transport. We conclude by putting forth the future research prospects and challenges in the realm of high-performance ion-selective membranes.

5.
Small ; : e2403593, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180252

RESUMEN

Confronting the impending exhaustion of traditional energy, it is urgent to devise and deploy sustainable clean energy alternatives. Osmotic energy contained in the salinity gradient of the sea-river interface is an innovative, abundant, clean, and renewable osmotic energy that has garnered considerable attention in recent years. Inspired by the impressively intelligent ion channels in nature, the developed angstrom-scale 2D channels with simple fabrication process, outstanding design flexibility, and substantial charge density exhibit excellent energy conversion performance, opening up a new era for osmotic energy harvesting. However, this attractive research field remains fraught with numerous challenges, particularly due to the complexities associated with the regulation at angstrom scale. In this review, the latest advancements in the design of angstrom-scale 2D channels are primarily outlined for harvesting osmotic energy. Drawing upon the analytical framework of osmotic power generation mechanisms and the insights gleaned from the biomimetic intelligent devices, the design strategies are highlighted for high-performance angstrom channels in terms of structure, functionalization, and application, with a particular emphasis on ion selectivity and ion transport resistance. Finally, current challenges and future prospects are discussed to anticipate the emergence of more anomalous properties and disruptive technologies that can promote large-scale power generation.

6.
Nano Lett ; 24(31): 9487-9493, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38949896

RESUMEN

Recent years have seen a growing interest in zero-dimensional (0D) transport phenomena occurring across two-dimensional (2D) materials for their potential applications to nanopore technology such as ion separation and molecular sensing. Herein, we investigate ion transport through 1 nm-wide nanopores in Ti3C2 MXene using molecular dynamics simulations. The high polarity and fish-bone arrangement of the Ti3C2 MXene offer a built-in potential and an atomic-scale distortion to the nanopore, causing an adsorption preference for cations. Our observation of variable cation-specific ion selectivity and Coulomb blockade highlights the complex interplay between adsorption affinity and cation size. The cation-specific ion selectivity can induce both the ion current and electro-osmotic water transmission, which can be regulated by tailoring the ions' preferential pathways through electric field tilting. Our finding underscores the pivotal role of the atomic arrangement of MXenes in 0D ion transport and provides fundamental insight into the application of 2D material in nanopores-based technologies.

7.
Nano Lett ; 24(28): 8650-8657, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38949785

RESUMEN

The ion permeability and selectivity of membranes are crucial in nanofluidic behavior, impacting industries ranging from traditional to advanced manufacturing. Herein, we demonstrate the engineering of ion-conductive membranes featuring angstrom-scale ion-transport channels by introducing ionic polyamidoamine (PAMAM) dendrimers for ion separation. The exterior quaternary ammonium-rich structure contributes to significant electrostatic charge exclusion due to enhanced local charge density; the interior protoplasmic channels of PAMAM dendrimer are assembled to provide additional degrees of free volume. This facilitates the monovalent ion transfer while maintaining continuity and efficient ion screening. The dendrimer-assembled hybrid membrane achieves high monovalent ion permeance of 2.81 mol m-2 h-1 (K+), reaching excellent mono/multivalent selectivity up to 20.1 (K+/Mg2+) and surpassing the permselectivities of state-of-the-art membranes. Both experimental results and simulating calculations suggest that the impressive ion selectivity arises from the significant disparity in transport energy barrier between mono/multivalent ions, induced by the "exterior-interior" synergistic effects of bifunctional membrane channels.

8.
Environ Sci Technol ; 58(29): 13120-13130, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38985512

RESUMEN

While flow-electrode capacitive deionization (FCDI) is recognized as an attractive desalination technology, its practical implementation has been hindered by the ease of scaling and energy-intensive nature of the single-cell FCDI system, particularly when treating brackish water with elevated levels of naturally coexisting SO42- and Ca2+. To overcome these obstacles, we propose and design an innovative ion-selective metathesis FCDI (ISM-FCDI) system, consisting of a two-stage tailored cell design. Results indicate that the specific energy consumption per unit volume of water for the ISM-FCDI is lower (by up to ∼50%) than that of a conventional single-stage FCDI due to the parallel circuit structure of the ISM-FCDI. Additionally, the ISM-FCDI benefits from a conspicuous disparity in the selective removal of ions at each stage. The separate storage of Ca2+ and SO42- by the metathesis process in the ISM-FCDI (46.25% Ca2+, 14.25% SO42- in electrode 1 and 4.75% Ca2+, 35.25% SO42- in electrode 2) can effectively prevent scaling. Furthermore, configuration-performance analysis on the ion-selective migration suggests that the properties of the ion exchange membrane, rather than the carbon species, govern the selectivity of ion removal. This work introduces system-level enhancements aimed at enhancing energy conservation and scaling prevention, providing critical optimization of the FCDI for brackish water softening.


Asunto(s)
Electrodos , Aguas Salinas , Purificación del Agua , Purificación del Agua/métodos , Aguas Salinas/química , Iones , Ablandamiento del Agua
9.
ACS Nano ; 18(27): 17521-17533, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38832758

RESUMEN

Selective transport of ions through nanometer-sized pores is fundamental to cell biology and central to many technological processes such as water desalination and electrical energy storage. Conventional methods for generating ion selectivity include placement of fixed electrical charges at the inner surface of a nanopore through either point mutations in a protein pore or chemical treatment of a solid-state nanopore surface, with each nanopore type requiring a custom approach. Here, we describe a general method for transforming a nanoscale pore into a highly selective, anion-conducting channel capable of generating a giant electro-osmotic effect. Our molecular dynamics simulations and reverse potential measurements show that exposure of a biological nanopore to high concentrations of guanidinium chloride renders the nanopore surface positively charged due to transient binding of guanidinium cations to the protein surface. A comparison of four biological nanopores reveals the relationship between ion selectivity, nanopore shape, composition of the nanopore surface, and electro-osmotic flow. Guanidinium ions are also found to produce anion selectivity and a giant electro-osmotic flow in solid-state nanopores via the same mechanism. Our sticky-ion approach to generate electro-osmotic flow can have numerous applications in controlling molecular transport at the nanoscale and for detection, identification, and sequencing of individual proteins.


Asunto(s)
Guanidina , Simulación de Dinámica Molecular , Nanoporos , Guanidina/química , Ósmosis , Iones/química
10.
Exploration (Beijing) ; 4(2): 20220110, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38855615

RESUMEN

Artificial nanofluidic networks are emerging systems for blue energy conversion that leverages surface charge-derived permselectivity to induce voltage from diffusive ion transport under salinity difference. Here the pivotal significance of electrostatic inter-channel couplings in multi-nanopore membranes, which impose constraints on porosity and subsequently influence the generation of large osmotic power outputs, is illustrated. Constructive interference is observed between two 20 nm nanopores of 30 nm spacing that renders enhanced permselectivity to osmotic power output via the recovered electroneutrality. On contrary, the interference is revealed as destructive in two-dimensional arrays causing significant deteriorations of the ion selectivity even for the nanopores sparsely distributed at an order of magnitude larger spacing than the Dukhin length. Most importantly, a scaling law is provided for deducing the maximal membrane area and porosity to avoid the selectivity loss via the inter-pore electrostatic coupling. As the electric crosstalk is inevitable in any fluidic network, the present findings can be a useful guide to design nanoporous membranes for scalable osmotic power generations.

11.
Micromachines (Basel) ; 15(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38930669

RESUMEN

Recently, various kinds of micro- and nanofluidic functional devices have been proposed, where a large surface-to-volume ratio often plays an important role in nanoscale ion transport phenomena. Ionic current analysis methods for ions, molecules, nanoparticles, and biological cells have attracted significant attention. In this study, focusing on ionic current rectification (ICR) caused by the separation of cation and anion transport in nanochannels, we successfully induce electrodiffusioosmosis with concentration differences between protons separated by nanochannels. The proton concentration in sample solutions is quantitatively evaluated in the range from pH 1.68 to 10.01 with a slope of 243 mV/pH at a galvanostatic current of 3 nA. Herein, three types of micro- and nanochannels are proposed to improve the stability and measurement accuracy of the current-voltage characteristics, and the ICR effects on pH analysis are evaluated. It is found that a nanochannel filled with polyethylene glycol exhibits increased impedance and an improved ICR ratio. The present principle is expected to be applicable to various types of ions.

12.
ACS Nano ; 18(19): 12580-12587, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38696339

RESUMEN

Osmotic energy from proton gradients in industrial acidic wastewater can be harvested and converted to electricity through membranes, making it a renewable and sustainable power source. However, the currently designed membranes for harvesting proton gradient energy in acidic wastewater cannot simultaneously achieve excellent chemical/mechanical stability and high power density under a large-scale area and require high cost and complex operations. Here, we demonstrate that commercial Nafion membranes with high chemical/mechanical stability and proton transport selectivity can generate a power density of 5.1 W/m2 for harvesting osmotic energy from proton gradients under a test area of 0.2 mm2, which exceeds the commercial goal of 5.0 W/m2. Even under a test area of 12.5 mm2, a power density of 2.1 W/m2 can be achieved under a strong acid condition. In addition, the heat can greatly promote proton transport, and the power density is increased, i.e., 8.1 W/m2 at 333 K (5.1 W/m2 at 293 K) under a test area of 0.2 mm2. By matching membranes with ion selectivity, our work demonstrates the potential of Nafion membranes for harvesting proton gradient energy in acidic wastewater and provides an approach for large-scale conversion of osmotic energy.

13.
Water Res ; 255: 121530, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38564897

RESUMEN

A huge chemical potential difference exists between the acid mine drainage (AMD) and the alkaline neutralization solution, which is wasted in the traditional AMD neutralization process. This study reports, for the first time, the harvest of this chemical potential energy through a controlled neutralization of AMD using H+-conductive films. Polyamide films with controllable thickness achieved much higher H+ conductance than a commercially available cation exchange membrane (CEM). Meanwhile, the optimal polyamide film had an excellent H+/Ca2+ selectivity of 63.7, over two orders of magnitude higher than that of the CEM (0.3). The combined advantages of fast proton transport and high proton/ion selectivity greatly enhanced the power generation of the AMD battery. The power density was 3.1 W m-2, which is over one order of magnitude higher than that of the commercial CEM (0.2 W m-2). Our study provides a new sustainable solution to address the environmental issues of AMD while simultaneously enabling clean energy production.

14.
Trends Biochem Sci ; 49(5): 417-430, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38514273

RESUMEN

Ion channels establish the voltage gradient across cellular membranes by providing aqueous pathways for ions to selectively diffuse down their concentration gradients. The selectivity of any given channel for its favored ions has conventionally been viewed as a stable property, and in many cation channels, it is determined by an ion-selectivity filter within the external end of the ion-permeation pathway. In several instances, including voltage-activated K+ (Kv) channels, ATP-activated P2X receptor channels, and transient receptor potential (TRP) channels, the ion-permeation pathways have been proposed to dilate in response to persistent activation, dynamically altering ion permeation. Here, we discuss evidence for dynamic ion selectivity, examples where ion selectivity filters exhibit structural plasticity, and opportunities to fill gaps in our current understanding.


Asunto(s)
Canales Iónicos , Humanos , Canales Iónicos/metabolismo , Canales Iónicos/química , Cationes/metabolismo , Cationes/química , Animales , Activación del Canal Iónico
15.
Water Res ; 255: 121469, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38493740

RESUMEN

Soil salinization poses a significant challenge to agricultural activities. To address this, the agricultural industry seeks an irrigation water solution that reduces both ionic conductivity and sodium adsorption rate (SAR), thereby diminishing the risks of soil sodification and fostering sustainable crop production. Capacitive deionization (CDI) is an attractive electrochemical technology to advance this search. Recently, a one-dimensional transient CDI model unveiled a capacitive ion-exchange mechanism presenting the potential to adjust the treated water composition by modifying monovalent and divalent cation concentrations, thereby influencing the SAR index. This behavior would be achieved by using electrodes rich in surface functional groups able to efficiently capture divalent cations during conditioning and releasing them during charging while capturing monovalent ions. Beyond the theoretical modelling, the current experimental research demonstrates, for the first time, the effectiveness of the capacitive ion-exchange mechanism in a CDI pilot plant using real water samples spiked with solutions containing specific mono and divalent ions. Electrosorption experiments and computational modeling, specifically Density-Functional Theory (DFT), were used along with the analysis of the surface functional groups present in the electrodes to describe the capacitive ion-exchange phenomenon and validate the steps involved on it, highlighting the conditioning as a critical step. Various operational and flow modes confirm the versatility of CDI technology, achieving separation factors (RMg/Na) of 5-6 in batch, raising production from 0.5 to 0.8 L m-2 h-1 (batch) to 8.0-8.1 L m-2 h-1 when using single pass although reducing RMg/Na to 2. The reliability of the CDI technology in reducing SAR was also successfully tested with different influent compositions, including magnesium and calcium. Finally, the robustness of the capacitive ion-exchange mechanism was validated by a second CDI laboratory 9-cell stack cycled over 350 cycles. Our results confirm the reported theoretical model and expands the conclusions through the experiments in a pilot plant showing direct implications for employing CDI in agricultural applications.

16.
Mol Plant ; 17(3): 409-422, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38335958

RESUMEN

Plant high-affinity K+ transporters (HKTs) mediate Na+ and K+ uptake, maintain Na+/K+ homeostasis, and therefore play crucial roles in plant salt tolerance. In this study, we present cryoelectron microscopy structures of HKTs from two classes, class I HKT1;1 from Arabidopsis thaliana (AtHKT1;1) and class II HKT2;1 from Triticum aestivum (TaHKT2;1), in both Na+- and K+-bound states at 2.6- to 3.0-Å resolutions. Both AtHKT1;1 and TaHKT2;1 function as homodimers. Each HKT subunit consists of four tandem domain units (D1-D4) with a repeated K+-channel-like M-P-M topology. In each subunit, D1-D4 assemble into an ion conduction pore with a pseudo-four-fold symmetry. Although both TaHKT2;1 and AtHKT1;1 have only one putative Na+ ion bound in the selectivity filter with a similar coordination pattern, the two HKTs display different K+ binding modes in the filter. TaHKT2;1 has three K+ ions bound in the selectivity filter, but AtHKT1;1 has only two K+ ions bound in the filter, which has a narrowed external entrance due to the presence of a Ser residue in the first filter motif. These structures, along with computational, mutational, and electrophysiological analyses, enable us to pinpoint key residues that are critical for the ion selectivity of HKTs. The findings provide new insights into the ion selectivity and ion transport mechanisms of plant HKTs and improve our understanding about how HKTs mediate plant salt tolerance and enhance crop growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Simportadores , Proteínas de Arabidopsis/metabolismo , Microscopía por Crioelectrón , Arabidopsis/metabolismo , Transporte Iónico , Iones/metabolismo , Potasio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
ACS Nano ; 18(9): 7161-7169, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38380884

RESUMEN

Engineered asymmetric heterogeneous ion-selective membranes have become a focal point for their improved efficiency in harnessing osmotic energy from ionic solutions with varying salinity. However, achieving both energy conversion efficiency and excellent chemical stability necessitates effectively mitigating the formation of detrimental interface cracks between two different layers. We develop a charge-gradient sulfonated poly(ether ether ketone) (SPEEK) membrane (CG-SPEEK) on a large-scale using a straightforward coating method. As an osmotic energy generator, CG-SPEEK membrane achieves an impressive output power density of 9.2 W m-2 and exhibits ultrahigh cation selectivity (0.99), with an energy conversion efficiency of 48% at a 50-fold NaCl concentration gradient. The results highlight the ion diode effects of CG-SPEEK, driven by a charge density gradient that accelerates cation transport while suppressing ion concentration polarization. Density functional theory simulations provide further insights, revealing that the energy barrier for Na+ ion transport through CG-SPEEK membrane is lower than that through a homogeneous SPEEK membrane. This work not only enhances our understanding of ion transport dynamics but also establishes the CG-SPEEK membrane as a promising candidate for efficient osmotic energy conversion applications.

18.
Molecules ; 29(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38398605

RESUMEN

Ion channels exhibit strong selectivity for specific ions over others under electrochemical potentials, such as KcsA for K+ over Na+. Based on the thermodynamic analysis, this study is focused on exploring the mechanism of ion selectivity in nanopores. It is well known that ions must lose part of their hydration layer to enter the channel. Therefore, the ion selectivity of a channel is due to the rearrangement of water molecules when entering the nanopore, which may be related to the hydrophobic interactions between ions and channels. In our recent works on hydrophobic interactions, with reference to the critical radius of solute (Rc), it was divided into initial and hydrophobic solvation processes. Additionally, the different dissolved behaviors of solutes in water are expected in various processes, such as dispersed and accumulated distributions in water. Correspondingly, as the ion approaches the nanopore, there seems to exist the "repulsive" or "attractive" forces between them. In the initial process (

19.
ACS Nano ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38320296

RESUMEN

Zero-dimensional pores spanning only a few angstroms in size in two-dimensional materials such as graphene are some of the most promising systems for designing ion-ion selective membranes. However, the key challenge in the field is that so far a crack-free macroscopic graphene membrane for ion-ion separation has not been realized. Further, methods to tune the pores in the Å-regime to achieve a large ion-ion selectivity from the graphene pore have not been realized. Herein, we report an Å-scale pore size tuning tool for single layer graphene, which incorporates a high density of ion-ion selective pores between 3.5 and 8.5 Å while minimizing the nonselective pores above 10 Å. These pores impose a strong confinement for ions, which results in extremely high selectivity from centimeter-scale porous graphene between monovalent and bivalent ions and near complete blockage of ions with the hydration diameter, DH, greater than 9.0 Å. The ion diffusion study reveals the presence of an energy barrier corresponding to partial dehydration of ions with the barrier increasing with DH. We observe a reversal of K+/Li+ selectivity at elevated temperature and attribute this to the relative size of the dehydrated ions. These results underscore the promise of porous two-dimensional materials for solute-solute separation when Å-scale pores can be incorporated in a precise manner.

20.
J Colloid Interface Sci ; 659: 993-1002, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38224631

RESUMEN

The efficient capture of copper ions (Cu2+) in wastewater has dual significance in pollution control and resource recovery. Prussian blue analog (PBA)-based pseudocapacitive materials with open frameworks and abundant metal sites have attracted considerable attention as capacitive deionization (CDI) electrodes for copper removal. In this study, the efficiency of copper hexacyanoferrate (CuHCF) as CDI electrode for Cu2+ treating was evaluated for the first time upon the successful synthesis of copper hexacyanoferrate/carbon sheet combination (CuHCF/C) by introducing carbon sheet as conductive substrate. CuHCF/C exhibited significant pseudocapacitance and high specific capacitance (52.92 F g-1) through the intercalation, deintercalation, and coupling of Cu+/Cu2+ and Fe2+/Fe3+ redox pairs. At 0.8 an applied voltage and CuSO4 feed liquid concentration of 100 mg L-1, the salt adsorption capacity was 134.47 mg g-1 higher than those of most reported electrodes. Moreover, CuHCF/C demonstrated excellent Cu2+ selectivity in multi-ion coexisting solutions and in actual wastewater experiments. Density functional theory (DFT) calculations were employed to elucidate the mechanism. This study not only reveals the essence of Cu2+ deionization by PBAs pseudocapacitance with promising potential applications but also provides a new strategy for selecting efficient CDI electrodes for Cu2+ removal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA