Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Exp Cell Res ; 442(2): 114237, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245197

RESUMEN

OBJECTIVE: Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial hyperplasia and progressive bone destruction. The tumor-like growth of fibroblast-like synoviocytes (FLSs) plays a crucial role in the pathogenesis of RA. The N6 methyladenine (m6A) mRNA methylation modification, regulated by methyltransferases (METTL3) and demethylation enzymes, is a novel epigenetic regulator in the development of RA. However, there is limited research on m6A methylation modifications in RA synovitis and a lack of mechanistic studies on their impact on the function of RA-FLSs. METHODS: This study utilized clinical synovial tissue specimens and FLSs as research subjects. The m6A methylation level and the expression of methyltransferases and demethylation enzymes were detected. RNA interference and gene overexpression methods were employed to investigate the mechanism of METTL3 in RA-FLSs. The study also examined the proliferation, apoptosis, migration, invasion, and cytokine levels of RA-FLSs, as well as the expression of METTL3 in RA animal models. RESULTS: In this study, we found that m6A methylation levels were elevated in synovial tissues and FLSs of RA patients. Immunohistochemical staining showed that METTL3 and METTL14 levels were up-regulated in synovial tissues of RA, the mRNA levels of METTL3, METTL14, WTAP, FTO, and ALKBH5 were significantly higher in synovial tissues and FLSs of RA patients. Overexpression of METTL3 could promote the proliferation, migration, and secretion of IL-6, RANKL of RA-FLSs; inhibition of METTL3 expression could inhibit the abnormal proliferation, migration, invasion, and secretion of IL-6, RANKL, at the same time promoted the apoptosis and secretion of OPG, thus inhibited RA-FLSs tumor-like growth. In CIA mice, the use of MTX and STM2457 reduced METTL3 expression, synovial hyperplasia and bone destruction. CONCLUSION: Abnormal modification of m6A methylation exists in synovial tissues and FLSs of RA patients, and inhibition of METTL3 can reduce synovitis and bone destruction. Our findings suggest that m6A methylation might control FLS-mediated tumor-like phenotype, and be a novel target for RA treatment.

2.
Transl Cancer Res ; 13(8): 4187-4204, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39262492

RESUMEN

Background: Breast cancer (BRCA) has surpassed lung cancer to become the malignant tumor with the highest incidence in female population. It occurs in malignant cells in breast tissue and is common worldwide. An increasing body of research indicates that M2 macrophages are critical to the occurrence and progression of BRCA. The aim of this work is to build a predictive model of genes related to invasion and migration of M2 macrophages, forecast the prognosis of patients with BRCA, and then evaluate the efficacy of some targeted treatments. Methods: The Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) database supplied the GSE20685 dataset, whereas the expression profile a clinical details of BRCA patients were obtained from The Cancer Genome Atlas (TCGA; https://portal.gdc.cancer.gov/) database. The genes linked to M2 macrophages and the differentially elevated genes of invasion and migration were found in GSE20685. To explore the prognosis-related invasion and migration M2 macrophage genes, the TCGA-BRCA dataset was merged with Cox regression and least absolute shrinkage and selection operator (LASSO) regression. GSE58812 was utilized for external validation. After calculating each patient's risk score, the prognostic model was examined by analyses of immune infiltration, medication sensitivity, mutation, and enrichment of the risk score. Results: The risk score had a strong correlation with both several immune cells and popular anti-tumor medications. Additionally, it was discovered that the risk score was a separate prognostic factor for BRCA. Conclusions: Based on invasion and migration-related M2 macrophage genes, we investigated and validated predictive characteristics in our study that may offer helpful insights into the progression and prognosis of BRCA.

3.
BMC Complement Med Ther ; 24(1): 309, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160561

RESUMEN

BACKGROUND: To investigate the effects of Isoorientin on the apoptosis, proliferation, invasion, and migration of human gastric cancer cells (HGC27 cells). METHODS: We used network pharmacology to predict the targets of drugs and diseases. The CCK-8 assay was used to determine the effects of Isoorientin on the proliferation of HGC27 cells. Flow cytometry was employed to analyze the effects of Isoorientin on cell apoptosis and cell cycle distribution of HGC27 cells. Scratch test and transwell chamber test were conducted to assess the effects of Isoorientin on invasion and migration, respectively. Additionally, qPCR and western blot were performed to examine the impact of Isoorientin on apoptosis-related genes and protein expression, respectively. RESULTS: The Isoorientin significantly inhibited the proliferation, migration, and invasion of HGC27 cells compared to the control group. Furthermore, Isoorientin induced apoptosis in HGC27 cells by upregulating the relative expression of Bax and caspase-3 while downregulating the relative expression of p-PI3K, p-AKT, and Bcl-2 proteins. CONCLUSION: The Isoorientin exhibits inhibitory effects on the proliferation, invasion, and migration of HGC27 cells, and induces apoptosis in gastric cancer cells.


Asunto(s)
Apoptosis , Movimiento Celular , Luteolina , Farmacología en Red , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Luteolina/farmacología , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Invasividad Neoplásica
4.
Exp Cell Res ; 442(1): 114192, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39127439

RESUMEN

N6-methyladenosine (m6A) alteration is an epigenetic regulator widely involved in the tumorigenicity of hepatocellular carcinoma (HCC). The role of YTH N6-methyladenosine RNA binding protein F3 (YTHDF3), an m6A reader in HCC, requires further investigation. Here, we aim to explore the biological properties of YTHDF3 in HCC and its potential mechanisms. The predictive risk model for HCC was developed by analyzing the expression of genes associated with m6A in HCC using online datasets. WB and qPCR were employed to assess YTHDF3 expression in HCC and its correlation with the disease's clinicopathological characteristics. Both in vitro and in vivo methods were utilized to evaluate the biological effects of YTHDF3 in HCC. The potential targets of YTHDF3 were identified and confirmed using RNA-seq, meRIP-seq, and linear amplification and sequencing of cDNA ends (Lace-seq). We confirmed that YTHDF3 is overexpressed in HCC. Patients with higher YTHDF3 expression had a greater risk of cancer recurrence. In both in vitro and in vivo settings, YTHDF3 boosts the migration and invasion capabilities of HCC cells. Through multi-omics research, we identified YTHDF3's downstream target genes as NKD inhibitors of the WNT signaling pathway 1 (NKD1) and the WNT/ß-catenin signaling pathway. With m6A modification, YTHDF3 suppresses the transcription and translation of NKD1. Additionally, NKD1 inhibited tumor growth by blocking the WNT/ß-catenin signaling pathway. The investigation found that the oncogene YTHDF3 stimulates the WNT/ß-catenin signaling pathway by m6A-dependently suppressing NKD1 expression in HCC cells. Our findings suggest that YTHDF3 regulates hepatocarcinogenesis, providing fresh perspectives on potential biomarkers and therapeutic targets for HCC.


Asunto(s)
Adenosina , Carcinoma Hepatocelular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Invasividad Neoplásica , Proteínas de Unión al ARN , Vía de Señalización Wnt , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Vía de Señalización Wnt/genética , Animales , Ratones , Adenosina/análogos & derivados , Adenosina/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Invasividad Neoplásica/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proliferación Celular/genética , Movimiento Celular/genética , Línea Celular Tumoral , Ratones Desnudos , beta Catenina/metabolismo , beta Catenina/genética , Ratones Endogámicos BALB C , Masculino , Metástasis de la Neoplasia , Proteínas de Unión al Calcio
5.
Thorac Cancer ; 15(23): 1749-1756, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38973201

RESUMEN

BACKGROUND: Clinically, most patients with lung cancer (LC) die from tumor spread and metastasis. Specific metastasis-related molecules can provide reference for clinical prediction of efficacy, evaluation of prognosis, and search for the best treatment plan. Troponin T1 (TNNT1) is highly expressed in various cancer tissues, which affects malignant behavior of tumor cells and is related to patients' survival and prognosis. However, the role and molecular mechanism of TNNT1 in LC invasion and metastasis have not yet been investigated. METHODS: Gene expression profiling interactive analysis (GEPIA) online analysis was used to analyze TNNT1 expression in LC tissues. Quantitative real-time-polymerase chain reaction (qRT-PCR) or western blot were performed to measure TNNT1 or epithelial-to-mesenchymal transition (EMT)-related and Wnt/ß-catenin pathway-related protein expression in LC cells. After TNNT1 knockdown, cell scratch healing and transwell assays were introduced to assess cell migration and invasion, respectively. RESULTS: TNNT1 expression in LC tissues and cells was increased. TNNT1 knockdown notably impaired LC cell migration, invasion and EMT. TNNT1 knockdown inhibited Wnt/ß-catenin pathway of LC cells. Lithium chloride (LiCl) addition partially restored the inhibition of TNNT1 knockdown on migration, invasion, EMT and Wnt/ß-catenin of LC cells. CONCLUSION: TNNT1 knockdown attenuated LC migration, invasion and EMT, possibly through Wnt/ß-catenin signaling.


Asunto(s)
Movimiento Celular , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Invasividad Neoplásica , Troponina T/metabolismo , Troponina T/genética , Vía de Señalización Wnt , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Pronóstico , Línea Celular Tumoral
6.
Cureus ; 16(6): e61941, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38978899

RESUMEN

Background Colorectal cancer (CRC) is a prevalent and deadly disease characterized by significant molecular complexity. Matrix metalloproteinase-2 (MMP2) has been implicated in cancer progression due to its role in extracellular matrix degradation, yet comprehensive studies linking MMP2 expression to CRC progression and its molecular mechanisms remain needed. Methodology This study involved 90 CRC patients, with tumor and adjacent normal tissues analyzed via immunohistochemistry (IHC) to assess MMP2 expression. The human CRC cell line SW480 was treated with an MMP2 inhibitor, ARP100, and evaluated for changes in cell migration, invasion, proliferation, and apoptosis using various assays, including MTT, wound-healing, transwell, caspase activity, and western blot analysis. Results High MMP2 expression was significantly associated with advanced tumor stages, lymph node involvement, and metastasis in CRC patients. Compared to normal tissues, MMP2 expression was markedly higher in cancerous tissues. Inhibition of MMP2 in SW480 cells resulted in reduced migration, invasion, and proliferation, and induced apoptosis, evidenced by increased caspase 3 and 9 activities and higher levels of cleaved caspase proteins. Conclusion Elevated MMP2 expression is correlated with advanced CRC and aggressive tumor characteristics. MMP2 inhibition can suppress CRC cell invasiveness, migration, and proliferation while promoting apoptosis, suggesting its potential as a therapeutic target in CRC treatment.

7.
Biol Reprod ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874283

RESUMEN

The transcription coactivator YAP1 mediates the major effects of the Hippo signaling pathway. The CCN family is a small group of glycoproteins known to be downstream effectors of YAP1 in diverse tissues. However, whether CCN family members mediate the effects of YAP1 in human trophoblasts is unknown. In this study, placental expression of both YAP1 and CCN1 was found to be impaired in pregnancies complicated by early-onset severe preeclampsia (sPE). CCN1 was expressed not only in cytotrophoblasts, trophoblast columns and mesenchymal cells, similar to active YAP1, but also in syncytiotrophoblasts of normal first-trimester placental villi; moreover, decidual staining of active YAP1 and CCN1 was found in both interstitial and endovascular extravillous trophoblasts. In cultured immortalized human trophoblastic HTR-8/SVneo cells, knockdown of YAP1 decreased CCN1 mRNA and protein expression and led to impaired cell invasion and migration. Also, CCN1 knockdown negatively affected HTR-8/SVneo cell invasion and migration but not viability. YAP1 knockdown was further found to impair HTR-8/SVneo cell viability via G0/G1 cell cycle arrest and apoptosis, while CCN1 knockdown had minimal effect on cell cycle arrest and no effect on apoptosis. Accordingly, treatment with recombinant CCN1 partially reversed the YAP1 knockdown-induced impairment in trophoblast invasion and migration but not in viability. Thus, CCN1 mediates the effects of YAP1 on human trophoblast invasion and migration but not apoptosis, and decreased placental expression of YAP1 and CCN1 in pregnancies complicated by early-onset sPE might contribute to the pathogenesis of this disease.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38801615

RESUMEN

Cancer invasion and migration play a pivotal role in tumor malignancy, which is a major cause of most cancer deaths. Rotating magnetic field (RMF), one of the typical dynamic magnetic fields, can exert substantial mechanical influence on cells. However, studying the effects of RMF on cell is challenging due to its complex parameters, such as variation of magnetic field intensity and direction. Here, we developed a systematic simulation method to explore the influence of RMF on tumor invasion and migration, including a finite element method (FEM) model and a cell-based hybrid numerical model. Coupling with the data of magnetic field from FEM, the cell-based hybrid numerical model was established to simulate the tumor cell invasion and migration. This model employed partial differential equations (PDEs) and finite difference method to depict cellular activities and solve these equations in a discrete system. PDEs were used to depict cell activities, and finite difference method was used to solve the equations in discrete system. As a result, this study provides valuable insights into the potential applications of RMF in tumor treatment, and a series of in vitro experiments were performed to verify the simulation results, demonstrating the model's reliability and its capacity to predict experimental outcomes and identify pertinent factors. Furthermore, these findings shed new light on the mechanical and chemical interplay between cells and the ECM, offering new insights and providing a novel foundation for both experimental and theoretical advancements in tumor treatment by using RMF.

9.
Cancer Genet ; 284-285: 48-57, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729078

RESUMEN

Although lncRNAs are recognized to contribute to the development of oral squamous-cell carcinoma (OSCC), their exact function in invasion and cell migration is not clear. In this research, we explored the molecular and cellular mechanisms of FOXD2-AS1 in OSCC. Prognostic and bioinformatics analyses were used to test for the differential expression of FOXD2-AS1-PLOD1. Following FOXD2-AS1 suppression or overexpression, changes in cell viability were measured using the CCK-8 test; changes in cell migration and invasion abilities were measured using the migration and the Transwell assay. The expression of associated genes and proteins was found using Western blot and RT-qPCR. Analysis of luciferase reporter genes was done to look for regulatory connections between various molecules. The FOXD2-AS1-PLOD1 pair, which was highly expressed in OSCC, was analyzed and experimentally verified to be closely related to the prognosis of OSCC, and a nomogram model and correction curve were constructed. The inhibition of FOXD2-AS1 resulted in the reduction of cell activity, migration, invasion ability and changes in genes related to invasion and migration. In vivo validation showed that inhibition of FOXD2-AS1 expression slowed tumor growth, and related proteins changed accordingly. The experiments verified that FOXD2-AS1 negatively regulated miR-185-5 p and that miR-185-5 p negatively regulated PLOD1. In addition, it was found that the expression of PLOD1, p-Akt and p-mTOR proteins in OSCC cells was reduced by the inhibition of FOXD2-AS1, and FOXD2-AS1 and PLOD1 were closely related to the Akt/mTOR pathway. Increased expression of FOXD2-AS1 promotes OSCC growth, invasion and migration, which is important in part by targeting miR-185-5 p/PLOD1/Akt/mTOR pathway activity.


Asunto(s)
Movimiento Celular , Proliferación Celular , MicroARNs , Neoplasias de la Boca , Invasividad Neoplásica , Proteínas Proto-Oncogénicas c-akt , ARN Largo no Codificante , Serina-Treonina Quinasas TOR , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Movimiento Celular/genética , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Proliferación Celular/genética , Ratones , Animales , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Línea Celular Tumoral , Transducción de Señal/genética , Regulación Neoplásica de la Expresión Génica , Femenino , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Masculino , Pronóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Ratones Desnudos
10.
Phytomedicine ; 129: 155614, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692078

RESUMEN

BACKGROUND: Cellular senescence is an emerging hallmark of cancers, primarily fuels cancer progression by expressing senescence-associated secretory phenotype (SASP). Caveolin-1 (CAV1) is a key mediator of cell senescence. Previous studies from our group have evidenced that the expression of CAV1 is downregulated by Celastrol (CeT). PURPOSE: To investigate the impact of CeT on cellular senescence and its subsequent influence on post-senescence-driven invasion, migration, and stemness of clear cell renal cell carcinoma (ccRCC). STUDY DESIGN AND METHODS: The expression levels of CAV1, canonical senescence markers, and markers associated with epithelial-mesenchymal transition (EMT) and stemness in clinical samples were assessed through Pearson correlation analysis. Senescent cell models were induced using DOX, and their impact on migration, invasion, and stemness was evaluated. The effects of CeT treatment on senescent cells and their pro-tumorigenic effects were examined. Subsequently, the underlying mechanism of CeT were explored using lentivirus transfection and CRISPR/Cas9 technology to silence CAV1. RESULTS: In human ccRCC clinical samples, the expression of the canonical senescence markers p53, p21, and p16 are associated with ccRCC progression. Senescent cells facilitated migration, invasion, and enhanced stemness in both ccRCC cells and ccRCC tumor-bearing mice. As expected, CeT treatment reduced senescence markers (p16, p53, p21, SA-ß-gal) and SASP factors (IL6, IL8, CXCL12), alleviating cell cycle arrest. However, it did not restore the proliferation of senescent cells. Additionally, CeT suppressed senescence-driven migration, invasion, and stemness. Further investigations into the underlying mechanism demonstrated that CAV1 is a critical mediator of cell senescence and represents a potential target for CeT to attenuate cellular senescence. CONCLUSIONS: This study presents a pioneering investigation into the intricate interplay between cellular senescence and ccRCC progression. We unveil a novel mechanism of CeT to mitigate cellular senescence by downregulating CAV1, thereby inhibiting the migration, invasion and stemness of ccRCC driven by senescent cells. These findings provide valuable insights into the underlying mechanisms of CeT and its potential as a targeted therapeutic approach for alleviating the aggressive phenotypes associated with senescent cells in ccRCC.


Asunto(s)
Carcinoma de Células Renales , Caveolina 1 , Senescencia Celular , Transición Epitelial-Mesenquimal , Triterpenos Pentacíclicos , Caveolina 1/metabolismo , Senescencia Celular/efectos de los fármacos , Humanos , Triterpenos Pentacíclicos/farmacología , Carcinoma de Células Renales/tratamiento farmacológico , Línea Celular Tumoral , Animales , Transición Epitelial-Mesenquimal/efectos de los fármacos , Triterpenos/farmacología , Movimiento Celular/efectos de los fármacos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/patología , Ratones
11.
Int J Biol Macromol ; 269(Pt 1): 131990, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704067

RESUMEN

Animal-derived venom, like snake venom, has been proven to be valuable natural resources for the drug development. Previously, snake venom was mainly investigated in its pharmacological activities in regulating coagulation, vasodilation, and cardiovascular function, and several marketed cardiovascular drugs were successfully developed from snake venom. In recent years, snake venom fractions have been demonstrated with anticancer properties of inducing apoptotic and autophagic cell death, restraining proliferation, suppressing angiogenesis, inhibiting cell adhesion and migration, improving immunity, and so on. A number of active anticancer enzymes and peptides have been identified from snake venom toxins, such as L-amino acid oxidases (LAAOs), phospholipase A2 (PLA2), metalloproteinases (MPs), three-finger toxins (3FTxs), serine proteinases (SPs), disintegrins, C-type lectin-like proteins (CTLPs), cell-penetrating peptides, cysteine-rich secretory proteins (CRISPs). In this review, we focus on summarizing these snake venom-derived anticancer components on their anticancer activities and underlying mechanisms. We will also discuss their potential to be developed as anticancer drugs in the future.


Asunto(s)
Antineoplásicos , Venenos de Serpiente , Humanos , Venenos de Serpiente/química , Antineoplásicos/farmacología , Antineoplásicos/química , Animales , Neoplasias/tratamiento farmacológico , L-Aminoácido Oxidasa/química , L-Aminoácido Oxidasa/farmacología , Apoptosis/efectos de los fármacos , Fosfolipasas A2/metabolismo , Fosfolipasas A2/química , Toxinas Biológicas/química , Toxinas Biológicas/farmacología
12.
Exp Cell Res ; 439(1): 114091, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38740168

RESUMEN

Resatorvid (TAK-242), a small-molecule inhibitor of Toll-like receptor 4 (TLR4), has the ability to cross the blood-brain barrier (BBB). In this study, we explored the role of TAK-242 on glioblastoma (GBM) invasion, migration, and proneural-mesenchymal transition (PMT). RNA sequencing (RNA-Seq) data and full clinical information of glioma patients were downloaded from the Chinese Glioma Genome Atlas (CGGA) and the Cancer Genome Atlas (TCGA) cohorts and then analyzed using R language; patients were grouped based on proneural (PN) and mesenchymal (MES) subtypes. Bioinformatics analysis was used to detect the difference in survival and TLR4-pathway expression between these groups. Cell viability assay, wound-healing test, and transwell assay, as well as an intracranial xenotransplantation mice model, were used to assess the functional role of TAK-242 in GBM in vitro and in vivo. RNA-Seq, Western blot, and immunofluorescence were employed to investigate the possible mechanism. TLR4 expression in GBM was significantly higher than in normal brain tissue and upregulated the expression of MES marker genes. Moreover, TAK-242 inhibited GBM progression in vitro and in vivo via linking with PMT, which could be a novel treatment strategy for inhibiting GBM recurrence.


Asunto(s)
Neoplasias Encefálicas , Movimiento Celular , Transición Epitelial-Mesenquimal , Glioblastoma , Transducción de Señal , Sulfonamidas , Receptor Toll-Like 4 , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/genética , Humanos , Animales , Ratones , Sulfonamidas/farmacología , Transición Epitelial-Mesenquimal/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Invasividad Neoplásica , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Proliferación Celular , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Front Microbiol ; 15: 1327464, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585690

RESUMEN

Colorectal cancer (CRC), one of the most common malignancies in the world, urgently requires more treatment strategies. Although there has been much research on probiotics, limited research has been done in treating cancer. The purpose of this study was to investigate the role of Bifidobacterium longum (B. longum) in the prevention and treatment of CRC. Through Cell Counting Kit-8 and Colony Formation Assays, 8 h and a B. longum count of 1 × 108 CFU/ml were chosen as the best cocultivation conditions with CRC cells. The role of B. longum in inhibiting the progression of CRC cells was verified by a series of functional and immunofluorescence assays. For instance, in vivo assays have verified that B. longum could alleviate CRC progression. In addition, according to the results of in vivo assays and clinical statistical analysis, B. longum could reduce diarrhea symptoms. Mechanistically, by 16S and RNA sequencing, it was found that B. longum could affect the development of CRC by regulating the composition of gut microbes and enhancing immune function. The B. longum might inhibit the occurrence and development of CRC and relieve diarrhea symptoms by regulating intestinal microbes and immune function.

14.
Gene ; 913: 148375, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38490509

RESUMEN

Deregulation of calcium/calmodulin-dependent protein kinase II (CAMK2) inhibitor 1 (CAMK2N1) has been reported to be associated with the development of several malignancies. To date, there have been few studies on the role of CAMK2N1 in lung cancer. This study aimed to investigate the relationship between CAMK2N1 and the progression of non-small cell lung cancer (NSCLC). Methodological quality was assessed using the ARRIVE guidelines. CAMK2N1 was expressed at low levels in NSCLC tissues. Overexpression of CAMK2N1 in NSCLC cell lines resulted in changes such as proliferation inhibition, metastasis inhibition, autophagy increase, and apoptosis. Mechanistic studies revealed the regulatory role of CAMK2N1/CAMK2 in AKT/mTOR signaling. Upregulation of CAMK2N1 decreased the expression levels of phosphorylated calmodulin kinase 2 (p-CaMK2), phosphorylated Akt (p-Akt), and phosphorylated-mTOR (p-mTOR). In contrast, CAMK2 overexpression increased p-AKT and p-mTOR levels. Inhibition of autophagy or activation of AKT signaling reduced CAMK2N1-mediated tumor suppression. The tumorigenic ability of CAMK2N1 overexpressing cells significantly diminished in nude mice. In conclusion, this study demonstrated the cancer suppressive function of CAMK2N1 in NSCLC and showed that CAMK2N1/CAMK2 exerted anti-cancer effects by inhibiting the AKT/mTOR signaling pathway to promote autophagy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Pulmonares/patología , Ratones Desnudos , Angiogénesis , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Apoptosis/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina , Autofagia/genética , Proliferación Celular , Línea Celular Tumoral
15.
Cell Signal ; 118: 111126, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38453126

RESUMEN

Cancer stem-like cells (CSLCs) and anoikis resistance play crucial roles in the metastasis of cancers. However, it remains unclear whether CSLCs are related to anoikis resistance in intrahepatic cholangiocarcinoma (ICC). Here we identified a group of stemness-related anoikis genes (SRAGs) via bioinformatic analysis of public data. Accordingly, a novel anoikis-related classification was established and it divided ICC into C1 and C2 type. Different type ICC displayed distinct prognosis, molecular as well immune characteristics. Furthermore, we found one key SRAGs via several machine learning algorithms. HK2 was up-regulated in tumor-repopulating cells (TRCs) of ICC, a kind of CSLCs with a potent resistance to anoikis. Its up-regulation may be caused by the activation of MTORC1 signaling in ICC-TRCs. And inhibition of HK2 significantly increased anoikis and decreased migration as well invasion in ICC-TRCs. Our studies provide an insight into the molecular mechanism underlying the resistance of ICC-TRCs to anoikis and enhance the evidences for targeting HK2 in ICC.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Anoicis , Línea Celular Tumoral , Colangiocarcinoma/genética , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/genética , Proliferación Celular/genética
16.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338955

RESUMEN

Successful implantation requires coordinated migration and invasion of trophoblast cells into a receptive endometrium. Reduced forkhead box M1 (FOXM1) expression limits trophoblast migration and angiogenesis in choriocarcinoma cell lines, and in a rat model, placental FOXM1 protein expression was significantly upregulated in the early stages of pregnancy compared to term pregnancy. However, the precise role of FOXM1 in implantation events remains unknown. By analyzing mice blastocysts at embryonic day (E3.5), we have demonstrated that FOXM1 is expressed as early as the blastocyst stage, and it is expressed in the trophectoderm of the blastocyst. Since controlled oxygen tension is determinant for achieving normal implantation and placentation and a chronic hypoxic environment leads to shallow trophoblast invasion, we evaluated if FOXM1 expression changes in response to different oxygen tensions in the HTR-8/SVneo first trimester human trophoblast cell line and observed that FOXM1 expression was significantly higher when trophoblast cells were cultured at 3% O2, which coincides with oxygen concentrations in the uteroplacental interface at the time of implantation. Conversely, FOXM1 expression diminished in response to 1% O2 that resembles a hypoxic environment in utero. Migration and angiogenesis were assessed following FOXM1 knockdown and overexpression at 3% O2 and 1% O2, respectively, in HTR-8/SVneo cells. FOXM1 overexpression increased transmigration ability and tubule formation. Using a 3D trophoblast invasion model with trophospheres from HTR-8/SVneo cells cultured on a layer of MATRIGEL and of mesenchymal stem cells isolated from menstrual fluid, we observed that trophospheres obtained from 3D trophoblast invasion displayed higher FOXM1 expression compared with pre-invasion trophospheres. Moreover, we have also observed that FOXM1-overexpressing trophospheres increased trophoblast invasion compared with controls. HTR-8/SVneo-FOXM1-depleted cells led to a downregulation of PLK4, VEGF, and MMP2 mRNA expression. Our current findings suggest that FOXM1 participates in embryo implantation by contributing to trophoblast migration and early trophoblast invasion, by inducing transcription activation of genes involved in these processes. Maternal-fetal communication is crucial for trophoblast invasion, and maternal stromal cells may induce higher levels of FOXM1 in trophoblast cells.


Asunto(s)
Proteína Forkhead Box M1 , Placenta , Trofoblastos , Animales , Femenino , Humanos , Ratones , Embarazo , Ratas , Movimiento Celular , Implantación del Embrión , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Oxígeno/metabolismo , Placenta/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Trofoblastos/metabolismo
17.
J Orthop Surg Res ; 19(1): 65, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218891

RESUMEN

BACKGROUND: Wu Mei Pills (WMP) is a traditional Chinese medication that exhibits considerable anti-inflammatory effects. While WMP has been documented for its efficacy in treating RA, its mechanism of action on the condition remains unestablished. METHODS: The chemical composition of WMP was analyzed through UPLC-MS. Next, the enzyme-linked immunosorbent assay, cell scratch, Transwell, and Western blotting techniques were used to investigate its intrinsic mechanism. Lastly, the effect of WMP in inhibiting RA was explored by applying it to CIA rats. RESULT: UPLC-MS analysis detected 181 compounds in WMP. RA-FLS migration and invasion mechanisms were significantly hindered by serum containing WMP (2%, 8%). Moreover, WMP (0.5 g/kg, 2 g/kg) restricted arthritis and immune organ indices in CIA rats with type II collagen-induced rheumatoid arthritis by blocking TLR4-NF-κB inflammatory pathway activation. CONCLUSIONS: WMP is valuable in mitigating the course of RA through inhibiting the classical TLR4-NF-κB inflammatory pathway and reducing the secretion of inflammatory factors in the serum of RA-FLS and CIA rats. Moreover, it regulates the dynamic balance of MMP-2/TIMP-2, MMP-9/TIMP-1, modulates the mechanism of RA-FLS invasion, and safeguards articular cartilage tissues in RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Ratas , Animales , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Artritis Reumatoide/metabolismo , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Fibroblastos/metabolismo , Membrana Sinovial/metabolismo , Células Cultivadas
18.
BMC Cancer ; 24(1): 58, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200443

RESUMEN

BACKGROUND: Fermitin family member 1 (FERMT1) is highly expressed in many tumors and acts as an oncogene. Nonetheless, the precise function of FERMT1 in non-small cell lung cancer (NSCLC) has not been clearly elucidated. METHODS: Bioinformatics software predicted the FERMT1 expression in NSCLC. Transwell assays facilitated the detection of NSCLC cell migration and invasion. Western blotting techniques were employed to detect the protein levels regulated by FERMT1. RESULTS: FERMT1 exhibited high expression levels in NSCLC and was linked to the patients' poor prognosis, as determined by a variety of bioinformatics predictions combined with experimental verification. FERMT1 promoted the migration and invasion of NSCLC and regulated epithelial to mesenchymal transition (EMT) -related markers. Further studies showed that FERMT1 could up-regulate the expression level of plakophilin 3(PKP3). Further research has indicated that FERMT1 can promote cell migration and invasion via up-regulating PKP3 expression. By exploring downstream signaling pathways, we found that FERMT1 has the capability to activate the p38 mitogen-activated protein kinases (p38 MAPK) signaling pathway, and knocking down PKP3 can counteract the activation induced by FERMT1 overexpression. CONCLUSIONS: FERMT1 was highly expressed in NSCLC and can activate the p38 MAPK signaling pathway through up-regulation of PKP3, thus promoting the invasion and migration of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/genética , Procesos Neoplásicos , Movimiento Celular/genética , Proteínas Quinasas p38 Activadas por Mitógenos , Proteínas de la Membrana/genética , Proteínas de Neoplasias , Placofilinas/genética
19.
Int Immunopharmacol ; 126: 111200, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37988913

RESUMEN

Tumor-associated macrophages (TAMs) are a highly abundant cell population within the tumor microenvironment of oral squamous cell carcinomas (OSCC). Recent studies have identified an intricate cross-talk between cancer cells and macrophages in the tumor microenvironment. However, the underlying mechanism remains unclear. High-mobility group box 1 (HMGB1) was linked to metastasis and an unfavorable prognosis in head and neck squamous cell carcinoma. Furthermore, it was significantly upregulated in moderately differentiated OSCC tissues and the OSCC cell lines CAL27 and SCC9. HMGB1 knockdown impedes the ability of TAMs to induce invasion and migration of OSCC cells. Phenotypic changes in macrophages were measured after incubation of supernatant from OSCC cells transfected with HMGB1 siRNA or supplemented with recombinant HMGB1. HMGB1 induced M1 polarization of macrophages and the secretion of IL-6 via the NF-κB pathway, contributing to the OSCC malignant migration. HMGB1 originating from OSCC cells, along with its downstream signaling pathways, holds promise as a potential therapeutic target for mitigating metastasis and improving the survival rate of OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Proteína HMGB1 , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Carcinoma de Células Escamosas/genética , FN-kappa B/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Interleucina-6 , Macrófagos Asociados a Tumores/metabolismo , Proteína HMGB1/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Microambiente Tumoral
20.
Cytokine Growth Factor Rev ; 75: 12-30, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37949685

RESUMEN

The chemokine CXCL12, also known as stromal cell-derived factor 1 (SDF1), has emerged as a pivotal regulator in the intricate molecular networks driving cancer progression. As an influential factor in the tumor microenvironment, CXCL12 plays a multifaceted role that spans beyond its traditional role as a chemokine inducing invasion and metastasis. Indeed, CXCL12 has been assigned functions related to epithelial-to-mesenchymal transition, cancer cell stemness, angiogenesis, and immunosuppression, all of which are currently viewed as specialized biological programs contributing to the "metastatic cascade" among other cancer hallmarks. Its interaction with its cognate receptor, CXCR4, initiates a cascade of events that not only shapes the metastatic potential of tumor cells but also defines the niches within the secondary organs that support metastatic colonization. Given the profound implications of CXCL12 in the metastatic cascade, understanding its mechanistic underpinnings is of paramount importance for the targeted elimination of rate-limiting steps in the metastatic process. This review aims to provide a comprehensive overview of the current knowledge surrounding the role of CXCL12 in cancer metastasis, especially its molecular interactions rationalizing its potential as a therapeutic target.


Asunto(s)
Neoplasias , Receptores CXCR , Humanos , Quimiocina CXCL12 , Receptores CXCR4 , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA