Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Anim Ecol ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289851

RESUMEN

Research Highlight: Sivault, E., Kollross, J., Jorge, L., Finnie, S., Diez Mendez, D., Fernandez Garzon, S., Maraia, H., Lenc, J., Libra, M., Masashi, M., Nakaji, T., Nakamura, M., Sreekar, R., Sam, L., Abe, T., Weiss, M., & Sam, K. (2024). Insectivorous birds and bats outperform ants in the top-down regulation of arthropods across strata of a Japanese temperate forest. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.14146. Top-down predators exert strong effects on prey populations. Theoretical and empirical studies investigating the cascading effects of predators on biodiversity dynamics and ecosystem functionality have been central to advancing ecology and conservation biology. Yet, how intraguild predation and niche overlap drive the strength and direction of trophic cascades across forest strata is still barely understood. In a study published in this issue, Sivault et al. (2024) investigated the impacts of excluding vertebrate (birds and bats) and invertebrate (ants) predators on arthropod herbivores and plant damage in understory and canopy forest strata. The study finds that birds and bats (but not ants) have negative impacts on herbivore density, which, in turn, benefits plants by reducing leaf damage. Additionally, the effects of vertebrate predators are similar across strata. The authors also show that herbivore density and herbivory are greater in the understory compared to the canopy strata. Sivault et al. (2024) demonstrate that intraguild predation and niche overlap dictate the strength and direction of trophic cascades in forest ecosystems. In addition, these findings shed new light on forest ecology and conservation, especially considering the potential negative effects of climate change on top predators.

2.
Ecol Evol ; 14(9): e70148, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39279791

RESUMEN

In many intact African savannah ecosystems, martial eagles are the top avian predator, while lions are the top terrestrial predator. Here, we report seven records of martial eagle predation or attempted predation of lion cubs in the greater Mara region, Kenya. These events resulted in the death of nine lion cubs, most of which were at least partially consumed, and are the first detailed records of this behaviour to be published. While these observations represent intraguild interactions, we suggest that they reflect neither intraguild predation nor interspecific killing. Rather, the ecology of both species coupled with the details of our records suggest that martial eagles opportunistically kill lion cubs purely to eat them. We hope that by publishing these records we will encourage others to share their observations of raptors predating on large mammalian carnivores, thus improving our understanding of a behaviour that we suspect may be more widespread than the current lack of evidence suggests.

3.
Eur J Protistol ; 95: 126114, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39190947

RESUMEN

This study investigated the dynamics of reciprocal phenotypic plasticity entailing inducible defense and offense in freshwater ciliate communities in response to altered resource supply and the extent of intraspecific trait variation. Communities consisted of Euplotes octocarinatus (intraguild prey) capable of inducible defense to escape predation, Stylonychia mytilus (intraguild predator) capable of inducible offense to expand its prey spectrum, and Cryptomonas sp. (algal resource). The extent of inducible defense was tested in ten different Euplotes strains in response to freeze-killed Stylonychia concentrate, revealing significant differences in their width and length development. In a subsequent 30-day experiment, four strains were incubated in monoculture and mixture with Stylonychia under continuous and pulsed microalgae supply. The polyclonal Euplotes population outperformed the monoclonal populations, except one, which developed the most pronounced inducible defense and retained the highest biovolume. Stylonychia fluctuated in size, but dominated all communities irrespective of clonal composition. Pulsed resource supply promoted biovolume production of both species. However, periods of resource depletion resulted in more Stylonychia resting cysts, allowing Euplotes to resume growth. Our study provides new insights into interactions of induced defense and intraguild predation under variable environmental conditions, emphasizing the relevance of intraspecific trait variation for predator-prey interactions and community dynamics.

4.
Insects ; 15(8)2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39194815

RESUMEN

To date, evaluating the diets of natural enemies like carabids has largely been limited to spatially explicit and short-term sampling. This leaves a knowledge gap for the intra-annual dynamics of carabid diets, and the provision and timing of delivery of natural pest control services. Season-long pitfall trapping of adult carabids was conducted in conventional winter wheat fields, from November 2018 to June 2019, in five French departments. Diagnostic Multiplex PCR of carabid gut contents was used to determine the dynamics of carabid diets. The overall detection rate of target prey DNA was high across carabid individuals (80%) but varied with the prey group. The rate of detection was low for pests, at 8.1% for slugs and 9.6% for aphids. Detection of intraguild predation and predation on decomposers was higher, at 23.8% for spiders, 37.9% for earthworms and 64.6% for springtails. Prey switching was high at the carabid community level, with pest consumption and intraguild predation increasing through the cropping season as the availability of these prey increased in the environment, while the detection of decomposer DNA decreased. Variation in diet through the cropping season was characterized by: (i) complementary predation on slug and aphid pests; and (ii) temporal complementarity in the predominant carabid taxa feeding on each pest. We hypothesize that natural pest control services delivered by carabids are determined by complementary contributions to predation by the different carabid taxa over the season.

5.
J Econ Entomol ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042518

RESUMEN

The predatory gall midge, Aphidoletes aphidimyza (Rondani), and tobacco aphid cocoon wasp, Aphidius gifuensis Ashmead, are important natural enemies of Myzus persicae (Sulzer) (Hemiptera: Aphididae). Predation by A. aphidimyza and A. gifuensis can regulate M. persicae; however, how interspecific interference competition affects their foraging efficiency is unknown. Here, we investigated the consumption and parasitization abilities of A. aphidimyza 3rd instar larva and A. gifuensis adults under various conditions. Consumption of parasitized aphids by A. aphidimyza 3rd instar larvae was significantly lower than that of nonparasitized controls, with a substantial increase in handling time. The presence of A. gifuensis adults did not significantly affect the predation capacity of A. aphidimyza larvae. Relative to controls, A. aphidimyza larvae predation trace (PT) and imago activity significantly decreased A. gifuensis parasitism rates at different aphid densities. Further, A. aphidimyza larvae PT increased the A. gifuensis handling time of M. persicae, whereas the presence of A. aphidimyza adults had the opposite effect. Coexistence with heterospecific natural enemies reduced the parasitic capacity of A. gifuensis, whereas A. aphidimyza larvae predation capability was influenced to a lesser extent. Our results demonstrate that intraguild interactions strongly influence the predatory and parasitic efficacy of A. aphidimyza and A. gifuensis, although the effect on A. gifuensis was more pronounced. For effective biological control of M. persicae using A. aphidimyza and A. gifuensis, we recommend releasing A. aphidimyza first to mitigate intraguild predation and enhance the overall success of the pest control program.

6.
Insects ; 15(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39057229

RESUMEN

Over recent decades, intraguild predation (IGP) has attracted special attention, both from the theoretical and practical standpoints. The present paper addresses the interference competition between two Trichogramma species (egg parasitoids)-on the one hand, the extrinsic interactions (i.e., the indirect competition between female T. achaeae and T. brassicae), and on the other, the intrinsic interactions between the larvae of both species. Furthermore, T. achaeae is a better competitor than T. brassicae due to a dual mechanism-the former acts as a facultative hyperparasitoid of the latter, exclusively considering parasitism relationships as well as presenting predation activity by host feeding, which gives preference to eggs previously parasitized by T. brassicae over non-parasitized eggs. Both mechanisms are dependent on the prey density, which is demonstrated by a change in the functional response (i.e., the relationship between the numbers of prey attacked at different prey densities) of T. achaeae adult female-it changes from type II (i.e., initial phase in which the number of attacked targets increases hyperbolically and then reaches an asymptote, reflecting the handling capacity of the predator), in the absence of competition (an instantaneous search rate of a' = 9.996 ± 4.973 days-1 and a handling time of Th = 0.018 ± 0.001 days), to type I (i.e., linear increase in parasitism rate as host densities rise, until reaching a maximum parasitism rate, and an instantaneous search rate of a' = 0.879 ± 0.072 days-1 and a handling time of Th ≈ 0) when interference competition is present. These results show that there is a greater mortality potential of this species, T. achaeae, in conditions of competition with other species, T. brassicae in this case. Based on this, their implications in relation to the biological control of pests by parasitoid species are discussed.

7.
Bull Math Biol ; 86(7): 79, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777905

RESUMEN

Consumers respond differently to external nutrient changes than producers, resulting in a mismatch in elemental composition between them and potentially having a significant impact on their interactions. To explore the responses of herbivores and omnivores to changes in elemental composition in producers, we develop a novel stoichiometric model with an intraguild predation structure. The model is validated using experimental data, and the results show that our model can well capture the growth dynamics of these three species. Theoretical and numerical analyses reveal that the model exhibits complex dynamics, including chaotic-like oscillations and multiple types of bifurcations, and undergoes long transients and regime shifts. Under moderate light intensity and phosphate concentration, these three species can coexist. However, when the light intensity is high or the phosphate concentration is low, the energy enrichment paradox occurs, leading to the extinction of ciliate and Daphnia. Furthermore, if phosphate is sufficient, the competitive effect of ciliate and Daphnia on algae will be dominant, leading to competitive exclusion. Notably, when the phosphorus-to-carbon ratio of ciliate is in a suitable range, the energy enrichment paradox can be avoided, thus promoting the coexistence of species. These findings contribute to a deeper understanding of species coexistence and biodiversity.


Asunto(s)
Cilióforos , Daphnia , Cadena Alimentaria , Conceptos Matemáticos , Modelos Biológicos , Conducta Predatoria , Animales , Daphnia/fisiología , Cilióforos/fisiología , Fosfatos/metabolismo , Simulación por Computador , Dinámica Poblacional , Biodiversidad , Fósforo/metabolismo
8.
Ecology ; 105(5): e4281, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38507266

RESUMEN

We present a mechanistic model of coexistence among a mycorrhizal fungus and one or two plant species that compete for a single nutrient. Plant-fungal coexistence is more likely if the fungus is better at extracting the environmental nutrient than the plant and the fungus acquires carbon from the plant above a minimum rate. When they coexist, their interaction can shift from mutualistic to parasitic at high nutrient availability. The fungus is a second nutrient source for plants and can promote the coexistence of two plant competitors if one is better at environmental nutrient extraction and the other is better at acquiring the nutrient from the fungus. Because it extracts carbon from both plants, the fungus also serves as a conduit of apparent competition between the plants. Consequently, the plant with the lower environmental nutrient extraction rate can drive the plant with the higher environmental nutrient extraction rate extinct at high carbon supply rates. This model illustrates mechanisms to explain several observed patterns, including shifts in plant-mycorrhizal growth responses and coexistence along nutrient gradients, equivocal results among experiments testing the effect of mycorrhizal fungi on plant diversity, and differences in plant diversity among ecosystems dominated by different mycorrhizal groups.


Asunto(s)
Modelos Biológicos , Micorrizas , Plantas , Micorrizas/fisiología , Plantas/microbiología
9.
Oecologia ; 204(3): 653-660, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38461225

RESUMEN

Group-living animals sometimes cooperatively protect their offspring against predators. This behavior is observed in a wide range of taxa but, to the best of our knowledge, this is the first report of its occurrence in arthropods that are not eusocial. Adult female predatory mites Gynaeseius liturivorus protect their eggs against egg predators, the predatory mite species Neoseiulus californicus. In the field, several adult female G. liturivorus were often found on the same plant structures such as folded leaves. We tested whether these females might protect their eggs cooperatively, focusing on kinship between the females. When two adult female G. liturivorus were kept in the absence of egg predators, their reproduction was not affected by their kinship. The presence of egg predators reduced the number of G. liturivorus eggs. However, reproduction of two G. liturivorus sisters was higher than that of two non-sisters. Together, sisters guarded the oviposition site longer than non-sisters. We further tested if non-sisters increased egg guarding by having developed together from eggs to adults and found no such effect. Although it remains unclear how adult female G. liturivorus recognize conspecifics as kin or sisters, our results suggest that G. liturivorus sisters reduced predation on their offspring by cooperatively guarding their eggs.


Asunto(s)
Ácaros , Animales , Femenino , Conducta Predatoria , Oviposición , Reproducción , Hojas de la Planta
10.
Ecol Lett ; 27(2): e14370, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38348631

RESUMEN

Species coexistence in ecological communities is a central feature of biodiversity. Different concepts, i.e., contemporary niche theory, modern coexistence theory, and the unified neutral theory, have identified many building blocks of such ecological assemblies. However, other factors, such as phenotypic plasticity and stochastic inter-individual variation, have received little attention, in particular in animals. For example, how resource polyphenisms resulting in predator-prey interactions affect coexistence is currently unknown. Here, we present an integrative theoretical-experimental framework using the nematode plasticity model Pristionchus pacificus with its well-studied mouth-form dimorphism resulting in cannibalism. We develop an individual-based model that relies upon synthetic data based on our empirical measurements of fecundity and polyphenism to preserve demographic heterogeneity. We demonstrate how the interplay between plasticity and individual stochasticity result in all-or-nothing outcomes at the local level. Coexistence is made possible when spatial structure is introduced.


Asunto(s)
Nematodos , Conducta Predatoria , Animales , Fertilidad , Biota , Dinámica Poblacional
11.
Behav Processes ; 216: 105002, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336239

RESUMEN

Predators and parasitoids often encounter parasitized prey or hosts during foraging. While the outcomes of such encounters have been extensively studied for insect parasitoids, the consequences of a predator encountering parasitized prey have received less attention. One extreme example involves the potter wasp Delta dimidiatipenne that frequently provision their nest with parasitized caterpillars, despite the low suitability of this prey for consumption by their offspring. This raises two main questions: (1) why do female potter wasps continue collecting parasitized caterpillars? and (2) is this an exceptional example, or do predatory insects often suffer from fitness costs due to encounters with parasitized prey? We addressed the first question using a probabilistic mathematical model predicting the value of discrimination between parasitized and unparasitized prey for the potter wasp, and the second question by surveying the literature for examples in which the parasitism status of prey affected prey susceptibility, suitability, or prey choice by a predator. The model demonstrates that only under certain conditions is discrimination against parasitized prey beneficial in terms of the potter wasp's lifetime reproductive success. The literature survey suggests that the occurrence of encounters and consumption of parasitized prey is common, but the overall consequences of such interactions have rarely been quantified. We conclude that the profitability and ability of a predator to discriminate against parasitized prey under natural conditions may be limited and call for additional studies quantifying the outcome of such interactions.


Asunto(s)
Avispas , Animales , Femenino , Conducta Predatoria , Modelos Estadísticos , Reproducción
12.
J Econ Entomol ; 117(1): 145-155, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38167994

RESUMEN

The introduction of the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), into Thailand has significantly altered the dynamics of maize pests. It has overshadowed Ostrinia furnacalis (Guenée) (Asian corn borer) (Lepidoptera: Crambidae), previously the most severe maize insect in Thailand. This transition is postulated to stem from the superior intraguild predation (IGP) capabilities of S. frugiperda. To validate this supposition, we assessed the co-distribution patterns and damage locales of both pests within maize fields and analyzed the IGP's repercussions on their larval growth, survival, and fecundity. Our findings demonstrate that: (i) incidence of O. furnacalis in maize fields is markedly reduced following the introduction of S. frugiperda; (ii) abundance of S. frugiperda and O. furnacalis is negatively correlated in field; (iii) interspecific interactions affect the spatial distributions of S. frugiperda and O. furnacalis on shared plants; (iv) S. frugiperda has lower generation time and higher fecundity; and (v) IGP amplifies the growth rate of S. frugiperda and elevates mortality in O. furnacalis. Moreover, in response to the competitive pressure exerted by S. frugiperda, O. furnacalis exhibited expedited molting and growth without a commensurate increase in size. Our data suggest IGP proficiency underpins S. frugiperda's dominance in Thai maize fields. We propose a niche differentiation on spatiotemporal distribution facilitating the coexistence of S. frugiperda and O. furnacalis. The impact of S. frugiperda on pest management strategies is discussed.


Asunto(s)
Mariposas Nocturnas , Conducta Predatoria , Animales , Spodoptera , Larva , Zea mays
13.
J Fish Biol ; 103(5): 1232-1236, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37492980

RESUMEN

We investigated an interaction between bitterlings and a parasitic leech Hemiclepsis kasmiana in freshwater mussel hosts. We found that leeches fed on bitterling eggs and embryos; this may exert a considerable negative effect on bitterling fitness. Host choices by females of three bitterling species may be differently affected by the presence of leeches within mussels; Tanakia limbata apparently avoided laying eggs in infested mussels while T. lanceolata and Acheilognathus rhombeus did not. Our novel findings suggest that relationships between the parasitic leech and the host mussel may be context dependent.


Asunto(s)
Bivalvos , Cyprinidae , Sanguijuelas , Parásitos , Femenino , Animales , Agua Dulce , Cyprinidae/parasitología , Bivalvos/parasitología
14.
Math Biosci Eng ; 20(7): 12750-12771, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37501465

RESUMEN

Intraguild predation is a common ecological phenomenon that manifests itself by the aggression of one predator by another to obtain a shared prey species. In this paper, we develop a discrete analog of a stoichiometric continuous-time intraguild predation model. We analyze the dynamics of the discrete-time model, such as boundedness and invariance, stability of equilibria, and features of ecological matrices. The dynamic behavior of the two models is compared and analyzed through numerical analysis. We observe the same coexistence region of populations and stoichiometric effects of food quality of the shared prey in both models. Obvious differences between the discrete- and continuous-time models can be observed with intermediate and high levels of light intensity. The multistability characteristics and the existence interval of chaos differ among the different time scale models. This study provides evidence of the importance of time scales on intraguild predation.

15.
J Biol Dyn ; 17(1): 2222142, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37306450

RESUMEN

An intraguild predator-prey model including prey refuge and hunting cooperation is investigated in this paper. First, for the corresponding ordinary differential equation model, the existence and stability of all equilibria are given, and the existence of Hopf bifurcation, direction and stability of bifurcating periodic solutions are investigated. Then, for partial differential equation model, the diffusion-driven Turing instability is obtained. What is more, the existence and non-existence of the non-constant positive steady state of the reaction-diffusion model are established by the Leray-Schauder degree theory and some priori estimates. Next, some numerical simulations are performed to support analytical results. The results showed that prey refuge can change the stability of model and even have a stabilizing effect on this model, meanwhile the hunting cooperation can make such model without diffusion unstable, but make such model with diffusion stable. Lastly, a brief conclusion is concluded in the last section.


Asunto(s)
Modelos Biológicos , Conducta Predatoria , Difusión
16.
Insects ; 14(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37367377

RESUMEN

The predatory mites Neoseiulus barkeri (Hughes) and the predatory thrips Scolothrips takahashii (Priesner) are known as potential biocontrol agents for the two-spotted spider mite Tetranychus urticae (Koch). These two predator species occur simultaneously on crops in agricultural ecosystems and are proved to be involved in life-stage specific intraguild predation. The intraguild prey may play a role in securing the persistence of the intraguild predators during food shortage periods. To understand the potential of intraguild prey as food source for intraguild predators in the N. barkeri and S. takahashii guild at low T. urticae densities, the survival, development and reproduction of both predators was determined when fed on heterospecific predators. The choice tests were conducted to determine the preference of the intraguild predator between the intraguild prey and the shared prey. Results showed that 53.3% N. barkeri and 60% S. takahashii juveniles successfully developed when fed on heterospecific predators. Female intraguild predators of both species fed on intraguild prey survived and laid eggs throughout the experiment. In the choice test, both intraguild predator species preferred their extraguild prey T. urticae. This study suggested that intraguild prey served as an alternative prey for intraguild predators prolonged survival and ensured the reproduction of intraguild predators during food shortage, ultimately decreasing the need for the continual release of the predators.

17.
Int J Mol Sci ; 24(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37240102

RESUMEN

The fall armyworm (FAW), Spodoptera frugiperda, has become one of the most important pests on corn in China since it invaded in 2019. Although FAW has not been reported to cause widespread damage to rice plants in China, it has been sporadically found feeding in the field. If FAW infests rice in China, the fitness of other insect pests on rice may be influenced. However, how FAW and other insect pests on rice interact remains unknown. In this study, we found that the infestation of FAW larvae on rice plants prolonged the developmental duration of the brown planthopper (BPH, Nilaparvata lugens (Stål)) eggs and plants damaged by gravid BPH females did not induce defenses that influenced the growth of FAW larvae. Moreover, co-infestation by FAW larvae on rice plants did not influence the attractiveness of volatiles emitted from BPH-infested plants to Anagrus nilaparvatae, an egg parasitoid of rice planthoppers. FAW larvae were able to prey on BPH eggs laid on rice plants and grew faster compared to those larvae that lacked available eggs. Studies revealed that the delay in the development of BPH eggs on FAW-infested plants was probably related to the increase in levels of jasmonoyl-isoleucine, abscisic acid and the defensive compounds in the rice leaf sheaths on which BPH eggs were laid. These findings indicate that, if FAW invades rice plants in China, the population density of BPH may be decreased by intraguild predation and induced plant defenses, whereas the population density of FAW may be increased.


Asunto(s)
Hemípteros , Oryza , Animales , Femenino , Larva , Crecimiento Demográfico , Spodoptera
18.
Pest Manag Sci ; 79(9): 3354-3363, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37132322

RESUMEN

BACKGROUND: The invasive fall armyworm (FAW) Spodoptera frugiperda (Lepidoptera: Noctuidae) has widely colonized the tropics and subtropics of Asia. However, the impact on the succession of the Asiatic corn borer (ACB) Ostrinia furnacalis (Lepidoptera: Pyralidae), a perennial dominant stemborer of maize in these areas, remains elusive. Here we analyzed the predation relationship, mimicked population competition, and surveyed the pest populations in the border area of Yunnan (southwestern China). RESULTS: Laboratory assays revealed that the 2nd to 6th instar larvae of FAW preyed on ACB, and only the 4th and 5th instar larvae of ACB preyed on FAW (1st instar larvae only, 50% predation rate). The 6th instar FAW preyed on the 1st to 5th instar ACB with a theoretical maximum of 14.5-58.8 ACB individuals (per maize leaf) and 4.8-25.6 individuals (per tassel). When maize plants were infested with eggs of either FAW or ACB in field cage trials, maize damage was 77.6% and 50.6%, respectively, compared with 77.9% and 2.8% upon co-infestation. In field surveys conducted in 2019-2021, FAW density was significantly greater than that of ACB, which took a great impact on maize growth. CONCLUSION: Our findings indicate that FAW can outcompete ACB at both the individual and population levels, which may result in FAW becoming the dominant pest. These results provide a scientific basis for further analysis of the mechanism by which FAW invades new agricultural areas and offers early-warning strategies for pest management. © 2023 Society of Chemical Industry.


Asunto(s)
Zea mays , Humanos , Animales , Spodoptera , Zea mays/genética , China , Larva , Plantas Modificadas Genéticamente
19.
Am Nat ; 201(5): 712-724, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37130230

RESUMEN

AbstractIntraguild predation (IGP), a system in which species compete for resources and prey on each other, is more common than existing theory predicts. In theory, an IG predator and its prey can coexist if the IG predator is a weaker competitor for a shared resource and the predator directly benefits from consuming the prey. However, many species that are IG predators also consume members of their own species (cannibalism). Here, we ask whether cannibalism can help resolve the paradox of IGP systems. Our approach differs from previous work on IGP and cannibalism by explicitly considering the size dependence of predatory interactions and how the benefits of predation are allocated to survival, growth, and fecundity of the predator or cannibal. Our results show that cannibalism facilitates coexistence under conditions that are opposite of those predicted by standard IGP theory: species can coexist when the cannibal is a better competitor on the shared resources, directly benefits little from consuming conspecifics, and allocates resources from predation more toward growth and fecundity over survival. Because the effects of IGP and cannibalism are opposite, when an IGP predator is also a cannibal, coexistence between the IGP predator and its prey is not possible and instead depends on the operation of other coexistence mechanisms (e.g., resource partitioning). These results point to the importance of understanding the relative rates of IGP and cannibalism as well as the resource allocation strategy of the IG predator in determining the likelihood of species coexistence.


Asunto(s)
Cadena Alimentaria , Conducta Predatoria , Animales , Canibalismo
20.
Biology (Basel) ; 12(4)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37106778

RESUMEN

Intraguild predation (IGP) can have a significant impact on phytoplankton biomass, but its effects on their diversity and assemblage composition are not well understood. In this study, we constructed an IGP model based on the common three-trophic food chain of "fish (or shrimp)-large branchiopods (Daphnia)-phytoplankton", and investigated the effects of IGP on phytoplankton assemblage composition and diversity in outdoor mesocosms using environmental DNA high-throughput sequencing. Our results indicated that the alpha diversities (number of amplicon sequence variants and Faith's phylogenetic diversity) of phytoplankton and the relative abundance of Chlorophyceae increased with the addition of Pelteobagrus fulvidraco, while similar trends were found in alpha diversities but with a decrease in the relative abundance of Chlorophyceae in the Exopalaemon modestus treatment. When both predators were added to the community, the strength of collective cascading effects on phytoplankton alpha diversities and assemblage composition were weaker than the sum of the individual predator effects. Network analysis further showed that this IGP effect also decreased the strength of collective cascading effects in reducing the complexity and stability of the phytoplankton assemblages. These findings contribute to a better understanding of the mechanisms underlying the impacts of IGP on lake biodiversity, and provide further knowledge relevant to lake management and conservation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA