Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Control Release ; 374: 454-465, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39181163

RESUMEN

Antimicrobial resistance is considered one of the biggest threats to public health worldwide. Methicillin-resistant S. aureus is the causative agent of a number of infections and lung colonization in people suffering from cystic fibrosis. Moreover, a growing body of evidence links the microbiome to the development of cancer, as well as to the success of the treatment. In this view, the development of novel antibiotics is of critical importance, and SV7, a novel antibiotic active against MRSA at low concentrations, represents a promising candidate. However, the low aqueous solubility of SV7 hampers its therapeutic translation. In this study, SV7 was encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) to improve the solubility profile, to ensure sustained release and eventually support deposition in the airways. Furthermore, PLGA NPs were formulated as dry powder to extend their shelf-life and were shown to efficiently target intracellular infections. After identifying a formulation with suitable physico-chemical characteristics, SV7-loaded NPs were investigated in vitro in terms of inhibitory activity against MRSA, and their safety profile in lung epithelial cells. Subsequently, the activity against MRSA intracellular infections was investigated in a co-culture model of MRSA and macrophages. To test the translatability of our findings, SV7-loaded NPs were tested in vivo in a Galleria mellonella infection model. In conclusion, SV7-loaded NPs showed a safe profile and efficient inhibitory activity against MRSA at low concentrations. Furthermore, their activity against intracellular infections was confirmed, and was retained in vivo, rendering them a promising candidate for treatment of MRSA lung infections.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Infecciones Estafilocócicas , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Animales , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Humanos , Mariposas Nocturnas/microbiología , Portadores de Fármacos/química , Liberación de Fármacos , Células A549
2.
Methods Mol Biol ; 2813: 321-370, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38888787

RESUMEN

RNA-based vaccines have sparked a paradigm shift in the treatment and prevention of diseases by nucleic acid medicines. There has been a notable surge in the development of nucleic acid therapeutics and vaccines following the global approval of the two messenger RNA-based COVID-19 vaccines. This growth is fueled by the exploration of numerous RNA products in preclinical stages, offering several advantages over conventional methods, i.e., safety, efficacy, scalability, and cost-effectiveness. In this chapter, we provide an overview of various types of RNA and their mechanisms of action for stimulating immune responses and inducing therapeutic effects. Furthermore, this chapter delves into the varying delivery systems, particularly emphasizing the use of nanoparticles to deliver RNA. The choice of delivery system is an intricate process involved in developing nucleic acid medicines that significantly enhances their stability, biocompatibility, and site-specificity. Additionally, this chapter sheds light on the current landscape of clinical trials of RNA therapeutics and vaccines against intracellular pathogens.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Nanopartículas/química , Animales , ARN/genética , ARN/inmunología , Vacunas de ARNm
3.
Infect Immun ; 92(6): e0002024, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38775488

RESUMEN

The endocannabinoid system (ECS), initially identified for its role in maintaining homeostasis, particularly in regulating brain function, has evolved into a complex orchestrator influencing various physiological processes beyond its original association with the nervous system. Notably, an expanding body of evidence emphasizes the ECS's crucial involvement in regulating immune responses. While the specific role of the ECS in bacterial infections remains under ongoing investigation, compelling indications suggest its active participation in host-pathogen interactions. Incorporating the ECS into the framework of bacterial pathogen infections introduces a layer of complexity to our understanding of its functions. While some studies propose the potential of cannabinoids to modulate bacterial function and immune responses, the outcomes inherently hinge on the specific infection and cannabinoid under consideration. Moreover, the bidirectional relationship between the ECS and the gut microbiota underscores the intricate interplay among diverse physiological processes. The ECS extends its influence far beyond its initial discovery, emerging as a promising therapeutic target across a spectrum of medical conditions, encompassing bacterial infections, dysbiosis, and sepsis. This review comprehensively explores the complex roles of the ECS in the modulation of bacteria, the host's response to bacterial infections, and the dynamics of the microbiome. Special emphasis is placed on the roles of cannabinoid receptor types 1 and 2, whose signaling intricately influences immune cell function in microbe-host interactions.


Asunto(s)
Infecciones Bacterianas , Cannabinoides , Endocannabinoides , Microbioma Gastrointestinal , Interacciones Huésped-Patógeno , Endocannabinoides/metabolismo , Humanos , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Animales , Interacciones Huésped-Patógeno/inmunología , Cannabinoides/metabolismo , Cannabinoides/farmacología
4.
Pathogens ; 12(12)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38133271

RESUMEN

The bacillus Calmette-Guérin (BCG) is an attenuated bacterium derived from virulent Mycobacterium bovis. It is the only licensed vaccine used for preventing severe forms of tuberculosis in children. Besides its specific effects against tuberculosis, BCG administration is also associated with beneficial non-specific effects (NSEs) following heterologous stimuli in humans and mice. The NSEs from BCG could be related to both adaptive and innate immune responses. The latter is also known as trained immunity (TI), a recently described biological feature of innate cells that enables functional improvement based on metabolic and epigenetic reprogramming. Currently, the mechanisms related to BCG-mediated TI are the focus of intense research, but many gaps are still in need of elucidation. This review discusses the present understanding of TI induced by BCG, exploring signaling pathways that are crucial to a trained phenotype in hematopoietic stem cells and monocytes/macrophages lineage. It focuses on BCG-mediated TI mechanisms, including the metabolic-epigenetic axis and the inflammasome pathway in these cells against intracellular pathogens. Moreover, this study explores the TI in different immune cell types, its ability to protect against various intracellular infections, and the integration of trained innate memory with adaptive memory to shape next-generation vaccines.

5.
Small ; 19(37): e2207510, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37231552

RESUMEN

Intracellular bacterial pathogens hiding in host cells tolerate the innate immune system and high-dose antibiotics, resulting in recurrent infections that are difficult to treat. Herein, a homing missile-like nanotherapeutic (FeSAs@Sa.M) composed of a single-atom iron nanozyme (FeSAs) core coated with infected macrophage membrane (Sa.M) is developed for in situ elimination of intracellular methicillin-resistant S. aureus (MRSA). Mechanically, the FeSAs@Sa.M initially binds to the extracellular MRSA via the bacterial recognition ability of the Sa.M component. Subsequently, the FeSAs@Sa.M can be transported to the intracellular MRSA-located regions in the host cell like a homing missile under the guidance of the extracellular MRSA to which it is attached, generating highly toxic reactive oxygen species (ROS) for intracellular MRSA killing via the enzymatic activities of the FeSAs core. The FeSAs@Sa.M is far superior to FeSAs in killing intracellular MRSA, proposing a feasible strategy for treating intracellular infections by in situ generating ROS in bacterial residing regions.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Especies Reactivas de Oxígeno , Dominio Catalítico , Infecciones Estafilocócicas/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
6.
Trends Immunol ; 44(1): 22-31, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36494273

RESUMEN

Prophylactic vaccination strategies designed to prevent diseases caused by pathogens using the phagolysosome of innate immune cells as a site of intracellular replication and survival have been largely ineffective. These include Mycobacterium tuberculosis (Mtb), Leishmania spp., and Cryptococcus spp. These failed strategies have traditionally targeted CD4+ T helper (Th) 1 cell-mediated immune memory, deeming it crucial for vaccine efficacy. This failure warrants an investigation of alternative mediators of protection. Here, we suggest three novel approaches to activate phagocytic cells prior to or at the time of infection. We hypothesize that preventing the formation of the pathogen niche within the phagolysosome is essential for preventing disease, and a greater emphasis on the timing of phagocyte activation should generate more effective prophylactic treatment options.


Asunto(s)
Mycobacterium tuberculosis , Humanos , Memoria Inmunológica , Linfocitos T Colaboradores-Inductores , Fagosomas
7.
Small ; 18(28): e2201853, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35691939

RESUMEN

In this work, levofloxacin (LVX), a third-generation fluoroquinolone antibiotic, is encapsulated within amphiphilic polymeric nanoparticles of a chitosan-g-poly(methyl methacrylate) produced by self-assembly and physically stabilized by ionotropic crosslinking with sodium tripolyphosphate. Non-crosslinked nanoparticles display a size of 29 nm and a zeta-potential of +36 mV, while the crosslinked counterparts display 45 nm and +24 mV, respectively. The cell compatibility, uptake, and intracellular trafficking are characterized in the murine alveolar macrophage cell line MH-S and the human bronchial epithelial cell line BEAS-2B in vitro. Internalization events are detected after 10 min and the uptake is inhibited by several endocytosis inhibitors, indicating the involvement of complex endocytic pathways. In addition, the nanoparticles are detected in the lysosomal compartment. Then, the antibacterial efficacy of LVX-loaded nanoformulations (50% w/w drug content) is assessed in MH-S and BEAS-2B cells infected with Staphylococcus aureus and the bacterial burden is decreased by 49% and 46%, respectively. In contrast, free LVX leads to a decrease of 8% and 5%, respectively, in the same infected cell lines. Finally, intravenous injection to a zebrafish larval model shows that the nanoparticles accumulate in macrophages and endothelium and demonstrate the promise of these amphiphilic nanoparticles to target intracellular infections.


Asunto(s)
Quitosano , Nanopartículas , Animales , Antibacterianos/farmacología , Humanos , Macrófagos/metabolismo , Ratones , Pez Cebra
8.
Methods Mol Biol ; 2451: 671-689, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35505040

RESUMEN

Pathogens such as Staphylococcus aureus are able to survive in many types of host cells including phagocytes such as neutrophils and macrophages, thereby resulting in intracellular infections. Treatment of intracellular infections by conventional antimicrobials (e.g., antibiotics) is often ineffective due to low intracellular efficacy of the drugs. Thus, novel techniques which can enhance the activity of antimicrobials within cells are highly demanded. Our recent studies have shown that photochemical internalization (PCI) is a promising approach for improving the efficacy of antibiotics such as gentamicin against intracellular staphylococcal infection. In this chapter, we describe the protocols aiming to study the potential of PCI-antibiotic treatment for intracellular infections in vitro and in vivo using a RAW 264.7 cell infection model and a zebrafish embryo infection model. Proof of concept of this approach is demonstrated. The protocols are expected to prompt further development of PCI-antimicrobial based novel therapies for clinically challenging infectious diseases associated with intracellular survival of pathogens.


Asunto(s)
Antiinfecciosos , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus , Pez Cebra
9.
Drug Deliv Transl Res ; 11(4): 1634-1654, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33694082

RESUMEN

Recalcitrant respiratory tract infections caused by bacteria have emerged as one of the greatest health challenges worldwide. Aerosolized antimicrobial therapy is becoming increasingly attractive to combat such infections, as it allows targeted delivery of high drug concentrations to the infected organ while limiting systemic exposure. However, successful aerosolized antimicrobial therapy is still challenged by the diverse biological barriers in infected lungs. Nanoparticle-mediated pulmonary drug delivery is gaining increasing attention as a means to overcome the biological barriers and accomplish site-specific drug delivery by controlling release of the loaded drug(s) at the target site. With the aim to summarize emerging efforts in combating respiratory tract infections by using nanoparticle-mediated pulmonary delivery strategies, this review provides a brief introduction to the bacterial infection-related pulmonary diseases and the biological barriers for effective treatment of recalcitrant respiratory tract infections. This is followed by a summary of recent advances in design of inhalable nanoparticle-based drug delivery systems that overcome the biological barriers and increase drug bioavailability. Finally, challenges for the translation from exploratory laboratory research to clinical application are also discussed and potential solutions proposed.


Asunto(s)
Infecciones Bacterianas , Nanopartículas , Infecciones del Sistema Respiratorio , Antibacterianos , Infecciones Bacterianas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Humanos , Pulmón , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/microbiología
10.
Drug Deliv Transl Res ; 11(4): 1598-1624, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33675007

RESUMEN

Bacterial infections are an imminent global healthcare threat evolving from rapidly advancing bacterial defence mechanisms that antibiotics fail to overcome. Antibiotics have been designed for systemic administration to target planktonic bacteria, leading to difficulties in reaching the site of localized bacterial infection and an inability to overcome the biological, chemical and physical barriers of bacteria, including biofilms, intracellular infections and antimicrobial resistance. The amphiphilic, biomimetic and antimicrobial properties of lipids provide a promising toolbox to innovate and advance antimicrobial therapies, overcoming the barriers presented by bacteria in order to directly and effectively treat recalcitrant infections. Nanoparticulate lipid-based drug delivery systems can enhance antibiotic permeation through the chemical and physical barriers of bacterial infections, as well as fuse with bacterial cell membranes, release antibiotics in response to bacteria and act synergistically with loaded antibiotics to enhance the total antimicrobial efficacy. This review explores the barriers presented by bacterial infections that pose bio-pharmaceutical challenges to antibiotics and how different structural and functional mechanisms of lipids can enhance antimicrobial therapies. Different nanoparticulate lipid-based systems are presented as valuable drug delivery systems to advance the efficacy of antibiotics, including liposomes, liquid crystalline nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers and lipid nanocarriers. In summary, liquid crystalline nanoparticles are emerging with the greatest potential for clinical applications and commercial success as an "all-rounder" advanced lipid-based antimicrobial therapy that overcomes the multiple biological, chemical and physical barriers of bacteria.


Asunto(s)
Antiinfecciosos , Nanopartículas , Antibacterianos , Antiinfecciosos/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Liposomas , Nanopartículas/química
11.
ACS Infect Dis ; 6(11): 2887-2900, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32897045

RESUMEN

Exploring the structure-activity relationship (SAR) at the cationic part of arylthiazole antibiotics revealed hydrazine as an active moiety. The main objective of the study is to overcome the inherited toxicity associated with the free hydrazine. A series of hydrocarbon bridges was inserted in between the groups, to separate the two amino groups. Hence, the aminomethylpiperidine-containing analog 16 was identified as a new promising antibacterial agent with efficient antibacterial and pharmacokinetic profiles. Briefly, compound 16 outperformed vancomycin in terms of the antibacterial spectrum against vancomycin-resistant staphylococcal and enterococcal strains with minimum inhibitory concentrations (MICs) ranging from 2 to 4 µg/mL, which is a faster bactericidal mode of action, completely eradicating the high staphylococcal burden within 6-8 h, and it has a unique ability to completely clear intracellular staphylococci. In addition, the initial pharmacokinetic assessment confirmed the high metabolic stability of compound 16 (biological half-life >4 h); it had a good extravascular distribution and maintained a plasma concentration higher than the average MIC value for over 12 h. Moreover, compound 16 significantly reduced MRSA burden in an in vivo MRSA skin infection mouse experiment. These attributes collectively suggest that compound 16 is a good therapeutic candidate for invasive staphylococcal and enterococcal infections. From a mechanistic point of view, compound 16 inhibited undecaprenyl diphosphate phosphatase (UppP) with an IC50 value of 29 µM.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus , Vancomicina
12.
Molecules ; 25(16)2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32824757

RESUMEN

Polymeric nanocarriers (PNs) have demonstrated to be a promising alternative to treat intracellular infections. They have outstanding performance in delivering antimicrobials intracellularly to reach an adequate dose level and improve their therapeutic efficacy. PNs offer opportunities for preventing unwanted drug interactions and degradation before reaching the target cell of tissue and thus decreasing the development of resistance in microorganisms. The use of PNs has the potential to reduce the dose and adverse side effects, providing better efficiency and effectiveness of therapeutic regimens, especially in drugs having high toxicity, low solubility in the physiological environment and low bioavailability. This review provides an overview of nanoparticles made of different polymeric precursors and the main methodologies to nanofabricate platforms of tuned physicochemical and morphological properties and surface chemistry for controlled release of antimicrobials in the target. It highlights the versatility of these nanosystems and their challenges and opportunities to deliver antimicrobial drugs to treat intracellular infections and mentions nanotoxicology aspects and future outlooks.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Sistemas de Liberación de Medicamentos , Nanomedicina , Nanopartículas/química , Preparaciones Farmacéuticas/química , Polímeros/química , Animales , Humanos , Nanopartículas/administración & dosificación
13.
Eur J Med Chem ; 185: 111830, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31718945

RESUMEN

Compounds with high lipophilic properties are often associated with bad physicochemical properties, triggering many off-targets, and less likely to pass clinical trials. Two metabolically stable phenylthiazole antibiotic scaffolds having notable high lipophilic characters, one with alkoxy side chain and the other one with alkynyl moiety, were derivatized by inserting a cyclic amine at the lipophilic tail with the objective of improving physicochemical properties and the overall pharmacokinetic behavior. Only alkynyl derivatives with 4- or 5-membered rings showed remarkable antibacterial activity. The azetidine-containing compound 8 was the most effective and it revealed a potent antibacterial effect against 15 multi-drug resistant (MDR)-Gram positive pathogens including Staphylococcus aureus, Streptococcus pneumoniae, Staphylococcus epidermidis and enterococci. Compound 8 was also highly effective in clearing 99.7% of the intracellular methicillin-resistant S. aureus (MRSA) harbored inside macrophages. In addition to the remarkable enhancement in aqueous solubility, the in vivo pharmacokinetic study in rats indicated that compound 8 can penetrate gut cells and reach plasma at a therapeutic concentration within 15 min and maintain effective plasma concentration for around 12 h. Interestingly, the main potential metabolite (compound 9) was also active as an antibacterial agent with potent antibiofilm activity.


Asunto(s)
Antibacterianos/farmacología , Staphylococcus/efectos de los fármacos , Tiazoles/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Biopelículas/efectos de los fármacos , Células CACO-2 , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Macrófagos/efectos de los fármacos , Masculino , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química
14.
Antibiotics (Basel) ; 8(2)2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30979069

RESUMEN

Infectious diseases remain a major burden in today's world, causing high mortality rates and significant economic losses, with >9 million deaths per year predicted by 2030. Invasion of host cells by intracellular bacteria poses treatment challenges due to the poor permeation of antimicrobials into the infected cells. To overcome these limitations, mesoporous silica nanoparticles (MSNP) loaded with the antibiotic rifampicin were investigated as a nanocarrier system for the treatment of intracellular bacterial infection with specific interest in the influence of particle size on treatment efficiency. An intracellular infection model was established using small colony variants (SCV) of S. aureus in macrophages to systemically evaluate the efficacy of rifampicin-loaded MSNP against the pathogen as compared to a rifampicin solution. As hypothesized, the superior uptake of MSNP by macrophages resulted in an enhanced treatment efficacy of the encapsulated rifampicin as compared to free antibiotic. This study provides a potential platform to improve the performance of currently available antibiotics against intracellular infections.

15.
Front Microbiol ; 9: 2172, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30258426

RESUMEN

Increasing antibiotic resistance in pathogenic microorganisms has led to renewed interest in bacteriophage therapy in both humans and animals. A "Trojan Horse" approach utilizing liposome encapsulated phages may facilitate access to phagocytic cells infected with intracellular pathogens residing therein, e.g., to treat infections caused by Mycobacterium tuberculosis, Listeria, Salmonella, and Staphylococcus sp. Additionally, liposome encapsulated phages may adhere to and diffuse within mucosa harboring resistant bacteria which are challenges in treating respiratory and gastrointestinal infections. Orally delivered phages tend to have short residence times in the gastrointestinal tract due to clinical symptoms such as diarrhea; this may be addressed through mucoadhesion of liposomes. In the present study we have evaluated the use of a microfluidic based technique for the encapsulation of bacteriophages in liposomes having mean sizes between 100 and 300 nm. Encapsulation of two model phages was undertaken, an Escherichia coli T3 podovirus (size ~65 nm) and a myovirus Staphylococcus aureus phage K (capsid head ~80 nm and phage tail length ~200 nm). The yield of encapsulated T3 phages was 109 PFU/ml and for phage K was much lower at 105 PFU/ml. The encapsulation yield for E. coli T3 phages was affected by aggregation of T3 phages. S. aureus phage K was found to interact with the liposome lipid bilayer resulting in large numbers of phages bound to the outside of the formed liposomes instead of being trapped inside them. We were able to inactivate the liposome bound S. aureus K phages whilst retaining the activity of the encapsulated phages in order to estimate the yield of microfluidic encapsulation of large tailed phages. Previous published studies on phage encapsulation in liposomes may have overestimated the yield of encapsulated tailed phages. This overestimation may affect the efficacy of phage dose delivered at the site of infection. Externally bound phages would be inactivated in the stomach acid resulting in low doses of phages delivered at the site of infection further downstream in the gastrointestinal tract.

16.
Molecules ; 23(4)2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29670009

RESUMEN

Hyaluronan (HA) is among the most important bioactive polymers in mammals, playing a key role in a number of biological functions. In the last decades, it has been increasingly studied as a biomaterial for drug delivery systems, thanks to its physico-chemical features and ability to target and enter certain cells. The most important receptor of HA is 'Cluster of Differentiation 44' (CD44), a cell surface glycoprotein over-expressed by a number of cancers and heavily involved in HA endocytosis. Moreover, CD44 is highly expressed by keratinocytes, activated macrophages and fibroblasts, all of which can act as 'reservoirs' for intracellular pathogens. Interestingly, both CD44 and HA appear to play a key role for the invasion and persistence of such microorganisms within the cells. As such, HA is increasingly recognised as a potential target for nano-carriers development, to pursuit and target intracellular pathogens, acting as a 'Trojan Horse'. This review describes the biological relationship between HA, CD44 and the entry and survival of a number of pathogens within the cells and the subsequent development of HA-based nano-carriers for enhancing the intracellular activity of antimicrobials.


Asunto(s)
Materiales Biocompatibles/farmacología , Ácido Hialurónico/farmacología , Espacio Intracelular/microbiología , Polímeros/farmacología , Animales , Sistemas de Liberación de Medicamentos , Humanos , Ácido Hialurónico/química , Distribución Tisular/efectos de los fármacos
17.
Adv Healthc Mater ; 7(12): e1701483, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29696813

RESUMEN

Staphylococcus aureus is one of the most significant human pathogens that is frequently isolated in a wide range of superficial and systemic infections. The ability of S. aureus to invade and survive within host cells such as keratinocytes and host immune cells has been increasingly recognized as a potential factor in persistent infections and treatment failures. The incorporation of antibiotics into hyaluronan-cholesterol nanohydrogels represents a novel paradigm in the delivery of therapeutic agents against intracellular bacteria. The work presented herein shows that NHs quickly enter human keratinocytes and accumulate into lysosomes. When used for targeting intracellular S. aureus the antimicrobial activity of loaded levofloxacin is enhanced, possibly changing the antibiotic intracellular fate from cytosol to lysosome. Indeed, gentamicin, an antibiotic that predominantly accumulates in lysosomes, shows significant and equal antibacterial activity when entrapped into NHs. These results strongly suggest that lysosomal formulations may display preferential activity toward intracellular S. aureus, opening new avenues for the use of HA-based NHs for treatment of such skin infections.


Asunto(s)
Sistemas de Liberación de Medicamentos , Ácido Hialurónico , Hidrogeles , Queratinocitos/microbiología , Levofloxacino , Nanoestructuras , Infecciones Cutáneas Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/crecimiento & desarrollo , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/farmacocinética , Ácido Hialurónico/farmacología , Hidrogeles/química , Hidrogeles/farmacocinética , Hidrogeles/farmacología , Queratinocitos/patología , Levofloxacino/química , Levofloxacino/farmacocinética , Levofloxacino/farmacología , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Infecciones Cutáneas Estafilocócicas/metabolismo , Infecciones Cutáneas Estafilocócicas/patología
18.
Int J Biol Macromol ; 110: 2-6, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29355638

RESUMEN

Intracellular infections are tricky to treat, the reason being the poor penetration of antibiotics/antimycotics into the microbial niche (host cell). Macrophages are primary targets of facultative and obligate intracellular bacteria/fungi to be abused as host cells. The need for drugs with better intracellular penetration led to the development of endocytosable drug carriers, which can cross the cell membrane of the host cells (macrophages) by imitating the entry path of the pathogens. Therefore, the drugs can be targeted to macrophages ensuring enhanced therapeutic effect. This review discusses the exploitation of various nanocarriers for targeted delivery of drugs to the macrophages in the last two decades.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Endocitosis , Infecciones/tratamiento farmacológico , Macrófagos/metabolismo , Animales , Sistemas de Liberación de Medicamentos/tendencias , Humanos , Infecciones/metabolismo
19.
Colloids Surf B Biointerfaces ; 160: 40-47, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28922635

RESUMEN

Salmonella infections and their gallstone associated biofilm infections are difficult to treat due to poor penetration of antibiotics into the intracellular compartments of macrophages and within biofilms. Here we developed ciprofloxacin loaded chitosan nanoparticles (cCNPs) and fucoidan (Fu) coated cCNPs (Fu-cCNPs). Characterizations of these nanoparticles were carried out using Dynamic Light Scattering , Transmission electron microscopy and Fourier transform infrared spectroscopy. The prepared cCNPs and Fu-cCNPs have the size range of 124±7nm and 320±18nm, respectively. Both nanoparticles were found to be non-hemolytic and cytocompatible. In vitro sustained release of ciprofloxacin was observed from both cCNPs and Fu-cCNPs over a period of 2 weeks. The antimicrobial activity of cCNPs and Fu-cCNPs was tested under in vitro and in vivo conditions. The intracellular anti-Salmonella activity of Fu-cCNPs was 2 fold higher than cCNPs and 6 fold higher than ciprofloxacin alone. Fluorescence microscopic images confirmed enhanced delivery of Fu-cCNPs than the cCNPs within the intracellular compartment of macrophages. Both cCNPs and Fu-cCNPs are found to be equally effective in dispersing Salmonella Paratyphi A gallstone biofilms. The in vivo antibacterial activities of Fu-cCNPs were superior to cCNPs which we have validated using Salmonella Paratyphi A infected Drosophila melanogaster fly model. Our overall results showed that (1) Fu-cCNPs are more effective in eradicating Salmonella infections than cCNPs; (2) both cCNPs and Fu-cCNPs were equally effective in dispersing Salmonella gallstone biofilms.


Asunto(s)
Biopelículas/efectos de los fármacos , Quitosano/química , Ciprofloxacina/farmacología , Nanopartículas/química , Polisacáridos/química , Salmonella/efectos de los fármacos , Animales , Antibacterianos/administración & dosificación , Antibacterianos/química , Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Ciprofloxacina/administración & dosificación , Ciprofloxacina/química , Drosophila melanogaster/microbiología , Sistemas de Liberación de Medicamentos/métodos , Femenino , Humanos , Masculino , Ratones , Microscopía Electrónica , Nanopartículas/ultraestructura , Células RAW 264.7 , Salmonella/fisiología , Infecciones por Salmonella/tratamiento farmacológico , Infecciones por Salmonella/microbiología , Espectroscopía Infrarroja por Transformada de Fourier
20.
Curr Top Med Chem ; 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28730957

RESUMEN

This article reviews the innovative and original concept the "squalenoylation", a technology allowing the formulation of a wide range of drug molecules (both hydrophilic and lipophilic) as nanoparticles. The "squalenoylation" approach is based on the covalent linkage between the squalene, a natural and biocompatible lipid belonging to the terpenoid family, and a drug, in order to increase its pharmacological efficacy. Fundamentally, the dynamically folded conformation of squalene triggers the resulting squalene-drug bioconjugates to self-assemble as nanoparticles of 100-300 nm. In general, these nanoparticles showed long blood circulation times after intravenous administration and improved pharmacological activity with reduced side effects and toxicity. This flexible and generic technique opens exciting perspectives in the drug delivery field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA