Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 721
Filtrar
1.
Glycoconj J ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39300054

RESUMEN

Obesity is an epidemic associated with platelet and vascular disorders. Platelet O-GlcNAcylation has been poorly studied in obese subjects. We aimed to evaluate O-linked N-acetyl-glucosamine (O-GlcNAc) levels and platelet activity in obese insulin-resistant (ObIR) subjects. Six healthy and six insulin-resistant obese subjects with a body mass index of 22.6 kg/m2 (SD ± 2.2) and 35.6 kg/m2 (SD ± 3.8), respectively, were included. Flow cytometry was used to measure markers of platelet activity, expression of P-selectin (CD62P antibody), glycoprotein IIb/IIIa (integrins αIIbß3 binding to PAC-1 antibody), and thrombin stimulation. O-GlcNAc was determined in the platelets of all test subjects by cytofluometry, intracellular calcium, percentage of platelet aggregation, and immunofluorescence microscopy and Western blot were used to assess O-GlcNAc and OGT (O-GlcNAc transferase) in platelets. Platelets from ObIR subjects had on average 221.4 nM intracellular calcium, 81.89% PAC-1, 22.85% CD62P, 57.48% OGT, and 66.62% O-GlcNAc, while platelets from healthy subjects had on average 719.2 nM intracellular calcium, 4.99% PAC-1, 3.17% CD62P, 18.38% OGT, and 23.41% O-GlcNAc. ObIR subjects showed lower platelet aggregation than healthy subjects, 13.83% and 54%, respectively. The results show that ObIR subjects have increased O-GlcNAc, and increased intraplatelet calcium associated with platelet hyperactivity and compared to healthy subjects, suggesting that changes in platelet protein O-GlcNAcylation and platelet activity might serve as a possible prognostic tool for insulin resistance, prediabetes and its progression to type 2 diabetes mellitus.

2.
J Control Release ; 375: 142-154, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39218159

RESUMEN

Sonoporation-based delivery has great promise for noninvasive drug and gene therapy. After short-term membrane resealing, the long-term function recovery of sonoporated cells affects the efficiency and biosafety of sonoporation-based delivery. It is necessary to identify the key early biological signals that influence cell fate and to develop strategies for manipulating the long-term fates of sonoporated cells. Here, we used a customized experimental platform with a single cavitating microbubble induced by a single ultrasound pulse (frequency: 1.5 MHz, pulse length:13.33 µs, peak negative pressure: ∼0.40 MPa) to elicit single-site reversible sonoporation on a single HeLa cell model. We used a living-cell microscopic imaging system to trace the long-term fates of sonoporated HeLa cells in real-time for 48 h. Fluorescence from intracellular propidium iodide and Fluo-4 was used to evaluate the degree of sonoporation and intracellular calcium fluctuation (ICF), respectively. Changes in cell morphology were used to assess the long-term cell fates (i.e., proliferation, arrest, or death). We found that heterogeneously sonoporated cells had different long-term fates. With increasing degree of sonoporation, the probability of normal (proliferation) and abnormal fates (arrest and death) in sonoporated cells decreased and increased, respectively. We identified ICF as an important early event for triggering different long-term fates. Reversibly sonoporated cells exhibited stronger proliferation and restoration at lower extents of ICF. We then regulated ICF dynamics in sonoporated cells using 2-APB or BAPTA treatment to reduce calcium release from intracellular organelles and enhance intracellular calcium clearance, respectively. This significantly enhanced the proliferation and restoration of sonoporated cells and reduced the occurrence of cell-cycle arrest and death. Finally, we found that the long-term fates of sonoporated cells at multiple sites and neighboring cells were also dependent on the extent of ICF, and that 2-APB significantly enhanced their viability and reduced death. Thus, using a single HeLa cell model, we demonstrated that regulating intracellular calcium can effectively enhance the proliferation and restoration capabilities of sonoporated cells, therefore rescuing the long-term viability of sonoporated cells. These findings add to our understanding of the biophysical process of sonoporation and help design new strategies for improving the efficiency and biosafety of sonoporation-based delivery.

3.
Mol Brain ; 17(1): 66, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267102

RESUMEN

TRPM4 is a non-selective cation channel activated by intracellular Ca2+ but only permeable to monovalent cations, its activation regulates membrane potential and intracellular calcium. This channel participates in the migration and adhesion of non-excitable cells and forms an integral part of the focal adhesion complex. In neurons, TRPM4 expression starts before birth and its function at this stage is not clear, but it may function in processes such as neurite development. Here we investigate the role of TRPM4 in neuritogenesis. We found that neurons at DIV 0 express TRPM4, the inhibition of TRPM4 using 9-Ph reduces neurite number and slows the progression of neurite development, keeping neurons in stage 1. The genetic suppression of TRPM4 using an shRNA at later stages (DIV2) reduces neurite length. Conversely, at DIV 0, TRPM4 inhibition augments the Cch-induced Ca2 + i increase, altering the calcium homeostasis. Together, these results show that TRPM4 participates in progression of neurite development and suggest a critical role of the calcium modulation during this stage of neuronal development.


Asunto(s)
Calcio , Corteza Cerebral , Neuritas , Neurogénesis , Canales Catiónicos TRPM , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPM/antagonistas & inhibidores , Animales , Neuritas/metabolismo , Neuritas/efectos de los fármacos , Calcio/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Neuronas/metabolismo
4.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39201299

RESUMEN

The receptor-receptor interaction (RRI) of G protein-coupled receptors (GPCRs) leads to new functional entities that are conceptually distinct from the simple addition of signals mediated by the activation of the receptors that form the heteromers. Focusing on astrocytes, there is evidence for the existence of inhibitory and facilitatory RRIs, including the heteromers formed by the adenosine A2A and the dopamine D2 receptors, by A2A and the oxytocin receptor (OTR), and the D2-OTR heteromers. The possible involvement of these receptors in mosaicism has never been investigated in striatal astrocytes. By biophysical and functional approaches, we focused our attention on the existence of an A2A-D2-OTR high-order receptor complex and its role in modulating cytosolic calcium levels and endogenous glutamate release, when striatal astrocyte processes were stimulated with 4-aminopyridine. Functional data indicate a permissive role of OTR on dopamine signaling in the regulation of the glutamatergic transmission, and an inhibitory control mediated by A2A on both the D2-mediated signaling and on the OTR-facilitating effect on D2. Imaging biochemical and bioinformatic evidence confirmed the existence of the A2A-D2-OTR complex and its ternary structure in the membrane. In conclusion, the D2 receptor appears to be a hotspot in the control of the glutamate release from the astrocytic processes and may contribute to the regulation and integration of different neurotransmitter-mediated signaling in the striatum by the A2A-D2-OTR heterotrimers. Considering the possible selectivity of allosteric interventions on GPCRs organized as receptor mosaics, A2A-D2-OTR heterotrimers may offer selective pharmacological targets in neuropsychiatric disorders and neurodegenerative diseases.


Asunto(s)
Astrocitos , Cuerpo Estriado , Dopamina , Receptor de Adenosina A2A , Receptores de Dopamina D2 , Transducción de Señal , Astrocitos/metabolismo , Animales , Receptor de Adenosina A2A/metabolismo , Cuerpo Estriado/metabolismo , Cuerpo Estriado/citología , Receptores de Dopamina D2/metabolismo , Dopamina/metabolismo , Receptores de Oxitocina/metabolismo , Receptores de Oxitocina/genética , Humanos , Calcio/metabolismo , Ácido Glutámico/metabolismo , Ratones
5.
IUBMB Life ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135342

RESUMEN

Cyclic ADP-ribose (cADPR) has emerged as a calcium-regulating second messenger in smooth muscle cells. CD38 protein possesses ADP-ribosyl cyclase and cADPR hydrolase activities and mediates cADPR synthesis and degradation. We have previously shown that CD38 expression is regulated by estrogen and progesterone in the myometrium. Considering hormonal regulation in gestation, the objective of the present study was to determine the role of CD38/cADPR signaling in the regulation of intracellular calcium upon contractile agonist stimulation using immortalized pregnant human myometrial (PHM1) cells. Western blot, immunofluorescence, and biochemical studies confirmed CD38 expression and the presence of ADP-ribosyl cyclase (2.6 ± 0.1 pmol/mg) and cADPR hydrolase (26.8 ± 6.8 nmoles/mg/h) activities on the PHM1 cell membrane. Oxytocin, PGF2α, and ET-1 elicited [Ca2+]i responses, and 8-Br-cADPR, a cADPR antagonist significantly attenuated agonist-induced [Ca2+]i responses between 20% and 46% in average. The findings suggest that uterine contractile agonists mediate their effects in part through CD38/cADPR signaling to increase [Ca2+]i and presumably uterine contraction. As studies in humans are limited by the availability of myometrium from healthy donors, PHM1 cells form an in vitro model to study human myometrium.

6.
Oral Dis ; 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155466

RESUMEN

OBJECTIVES: The objectives of current study were to investigate the role and related mechanism of Ginsenoside Rb1 (GRb1) on regulating apical periodontitis (AP) prognosis. MATERIALS AND METHODS: Clinical specimens were used to determine the involvement of calcium overload-induced macrophage pyroptosis in periapical tissues. Next, a calcium ion-chelating agent (BAPTA-AM) was applied to detect the suppression of intracellular calcium overload in macrophage pyroptosis. Then, network pharmacology, western blot (WB) analysis, and Fluo-4 calcium assay were conducted to explore the role of GRb1 on intracellular calcium overload. To gain a better understanding of GRb1 in calcium overload-induced macrophage pyroptosis linked AP, GRb1-treated AP models were established. RESULTS: We discovered clinically and experimentally that calcium overload-dependent macrophage pyroptosis is involved in AP pathogenesis, and reducing calcium overload greatly decreased macrophage pyroptosis in an AP cell model. Next, based on GRb1's inhibitory role in aberrant intracellular calcium accumulation, we discovered that GRb1 alleviates AP by suppressing calcium-dependent macrophage pyroptosis in both in vitro and in vivo models. CONCLUSIONS: GRb1 is an effective therapeutic strategy to rescue the periapical tissues from inflammation due to its anti-pyroptosis function. Thus, the present study supports further investigation of GRb1 as an adjuvant therapy for AP.

7.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39191664

RESUMEN

Calcium ions (Ca2+) play crucial roles in almost every cellular process, making the detection of changes in intracellular Ca2+ essential to understanding cell function. The fluorescence indicator method has garnered widespread application due to its exceptional sensitivity, rapid analysis, cost-effectiveness, and user-friendly nature. It has successfully delineated the spatial and temporal dynamics of Ca2+ signaling across diverse cell types. However, it is vital to understand that different indicators have varying levels of accuracy, sensitivity, and stability, making choosing the right inspection method crucial. As optical detection technologies advance, they continually broaden the horizons of scientific inquiry. This primer offers a systematic synthesis of the current fluorescence indicators and optical imaging modalities utilized for the detection of intracellular Ca2+. It elucidates their practical applications and inherent limitations, serving as an essential reference for researchers seeking to identify the most suitable detection methodologies for their calcium-centric investigations.


Asunto(s)
Calcio , Colorantes Fluorescentes , Imagen Óptica , Calcio/metabolismo , Calcio/análisis , Humanos , Imagen Óptica/métodos , Animales , Señalización del Calcio/fisiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-39001792

RESUMEN

The central nervous system (CNS) plays a role in regulating heart rate and myocardial contractility through sympathetic and parasympathetic nerves, and the heart can impact the functional equilibrium of the CNS through feedback signals. Although heart and brain diseases often coexist and mutually influence each other, the potential links between heart and brain diseases remain unclear due to a lack of reliable models of these relationships. Induced pluripotent stem cells (iPSCs), which can differentiate into multiple functional cell types, stem cell biology and regenerative medicine may offer tools to clarify the mechanisms of these relationships and facilitate screening of effective therapeutic agents. Because calcium ions play essential roles in regulating both the cardiovascular and nervous systems, this review addresses how recent iPSC disease models reveal how dysregulation of intracellular calcium might be a common pathological factor underlying the relationships between heart and brain diseases.

9.
Brain Sci ; 14(7)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39061409

RESUMEN

Gi-coupled receptors, particularly cannabinoid receptors (CBRs), are considered perspective targets for treating brain pathologies, including epilepsy. However, the precise mechanism of the anticonvulsant effect of the CBR agonists remains unknown. We have found that WIN 55,212-2 (a CBR agonist) suppresses the synchronous oscillations of the intracellular concentration of Ca2+ ions (epileptiform activity) induced in the neurons of rat hippocampal neuron-glial cultures by bicuculline or NH4Cl. As we have demonstrated, the WIN 55,212-2 effect is mediated by CB1R receptors. The agonist suppresses Ca2+ inflow mediated by the voltage-gated calcium channels but does not alter the inflow mediated by NMDA, AMPA, and kainate receptors. We have also found that phospholipase C (PLC), protein kinase C (PKC), and G-protein-coupled inwardly rectifying K+ channels (GIRK channels) are involved in the molecular mechanism underlying the inhibitory action of CB1R activation against epileptiform activity. Thus, our results demonstrate that the antiepileptic action of CB1R agonists is mediated by different intracellular signaling cascades, including non-canonical PLC/PKC-associated pathways.

10.
Neurochem Int ; 178: 105793, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38880232

RESUMEN

Calcium dyshomeostasis, oxidative stress, autophagy and apoptosis are the pathogenesis of selective dopaminergic neuronal loss in Parkinson's disease (PD). Earlier, we reported that A2A R modulates IP3-dependent intracellular Ca2+ signalling via PKA. Moreover, A2A R antagonist has been reported to reduce oxidative stress and apoptosis in PD models, however intracellular Ca2+ ([Ca2+]i) dependent autophagy regulation in the 6-OHDA model of PD has not been explored. In the present study, we investigated the A2A R antagonists mediated neuroprotective effects in 6-OHDA-induced primary midbrain neuronal (PMN) cells and unilateral lesioned rat model of PD. 6-OHDA-induced oxidative stress (ROS and superoxide) and [Ca2+]i was measured using Fluo4AM, DCFDA and DHE dye respectively. Furthermore, autophagy was assessed by Western blot of p-m-TOR/mTOR, p-AMPK/AMPK, LC3I/II, Beclin and ß-actin. Apoptosis was measured by Annexin V-APC-PI detection and Western blot of Bcl2, Bax, caspase3 and ß-actin. Dopamine levels were measured by Dopamine ELISA kit and Western blot of tyrosine hydroxylase. Our results suggest that 6-OHDA-induced PMN cell death occurred due to the interruption of [Ca2+]i homeostasis, accompanied by activation of autophagy and apoptosis. A2A R antagonists prevented 6-OHDA-induced neuronal cell death by decreasing [Ca2+]i overload and oxidative stress. In addition, we found that A2A R antagonists upregulated mTOR phosphorylation and downregulated AMPK phosphorylation thereby reducing autophagy and apoptosis both in 6-OHDA induced PMN cells and 6-OHDA unilateral lesioned rat model. In conclusion, A2A R antagonists alleviated 6-OHDA toxicity by modulating [Ca2+]i signalling to inhibit autophagy mediated by the AMPK/mTOR pathway.


Asunto(s)
Autofagia , Calcio , Oxidopamina , Serina-Treonina Quinasas TOR , Animales , Masculino , Ratas , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/efectos de los fármacos , Autofagia/fisiología , Calcio/metabolismo , Células Cultivadas , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Oxidopamina/toxicidad , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo
11.
Cell Biol Int ; 48(9): 1266-1284, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38837523

RESUMEN

Platelets are essential component of circulation that plays a major role in hemostasis and thrombosis. During activation and its demise, platelets release platelet-derived microvesicles, with lysophosphatidylcholine (LPC) being a prominent component in their lipid composition. LPC, an oxidized low-density lipoprotein, is involved in cellular metabolism, but its higher level is implicated in pathologies like atherosclerosis, diabetes, and inflammatory disorders. Despite this, its impact on platelet function remains relatively unexplored. To address this, we studied LPC's effects on washed human platelets. A multimode plate reader was employed to measure reactive oxygen species and intracellular calcium using H2DCF-DA and Fluo-4-AM, respectively. Flow cytometry was utilized to measure phosphatidylserine expression, mitochondrial membrane potential (ΔΨm), and mitochondrial permeability transition pore (mPTP) formation using FITC-Annexin V, JC-1, and CoCl2/calcein-AM, respectively. Additionally, platelet morphology and its ultrastructure were observed via phase contrast and electron microscopy. Sonoclot and light transmission aggregometry were employed to examine fibrin formation and platelet aggregation, respectively. The findings demonstrate that LPC induced oxidative stress and increased intracellular calcium in platelets, resulting in increased phosphatidylserine expression and reduced ΔΨm. LPC triggered caspase-independent platelet death and mPTP opening via cytosolic and mitochondrial calcium, along with microvesiculation and reduced platelet counts. LPC increased the platelet's size, adopting a balloon-shaped morphology, causing membrane fragmentation and releasing its cellular contents, while inducing a pro-coagulant phenotype with increased fibrin formation and reduced integrin αIIbß3 activation. Conclusively, this study reveals LPC-induced oxidative stress and calcium-mediated platelet death, necrotic in nature with pro-coagulant properties, potentially impacting inflammation and repair mechanisms during vascular injury.


Asunto(s)
Plaquetas , Calcio , Muerte Celular , Lisofosfatidilcolinas , Estrés Oxidativo , Especies Reactivas de Oxígeno , Humanos , Estrés Oxidativo/efectos de los fármacos , Lisofosfatidilcolinas/farmacología , Lisofosfatidilcolinas/metabolismo , Calcio/metabolismo , Plaquetas/metabolismo , Plaquetas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Muerte Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo
12.
Biomedicines ; 12(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38927391

RESUMEN

Here, we demonstrate that human neutrophil interaction with the bacterium Salmonella typhimurium fuels leukotriene B4 synthesis induced by the chemoattractant fMLP. In this work, we found that extracellular ATP (eATP), the amount of which increases sharply during tissue damage, can effectively regulate fMLP-induced leukotriene B4 synthesis. The vector of influence strongly depends on the particular stage of sequential stimulation of neutrophils by bacteria and on the stage at which fMLP purinergic signaling occurs. Activation of 5-lipoxygenase (5-LOX), key enzyme of leukotriene biosynthesis, depends on an increase in the cytosolic concentration of Ca2+. We demonstrate that eATP treatment prior to fMLP, by markedly reducing the amplitude of the fMLP-induced Ca2+ transient jump, inhibits leukotriene synthesis. At the same time, when added with or shortly after fMLP, eATP effectively potentiates arachidonic acid metabolism, including by Ca2+ fluxes stimulation. Flufenamic acid, glibenclamide, and calmodulin antagonist R24571, all of which block calcium signaling in different ways, all suppressed 5-LOX product synthesis in our experimental model, indicating the dominance of calcium-mediated mechanisms in eATP regulatory potential. Investigation into the adhesive properties of neutrophils revealed the formation of cell clusters when adding fMLP to neutrophils exposed to the bacterium Salmonella typhimurium. eATP added simultaneously with fMLP supported neutrophil polarization and clustering. A cell-derived chemoattractant such as leukotriene B4 plays a crucial role in the recruitment of additional neutrophils to the foci of tissue damage or pathogen invasion, and eATP, through the dynamics of changes in [Ca2+]i, plays an important decisive role in fMLP-induced leukotrienes synthesis during neutrophil interactions with the bacterium Salmonella typhimurium.

13.
Sci Rep ; 14(1): 14938, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942905

RESUMEN

In honey bees, circulation of blood (hemolymph) is driven by the peristaltic contraction of the heart vessel located in the dorsal part of the abdomen. Chlorantraniliprole (CHL) is an insecticide of the anthranilic diamide class which main mode of action is to alter the function of intracellular Ca2+ release channels (known as RyRs, for ryanodine receptors). In the honey bee, it was recently found to be more toxic when applied on the dorsal part of the abdomen, suggesting a direct cardiotoxicity. In the present study, a short-term exposure of semi-isolated bee hearts to CHL (0.1-10 µM) induces alterations of cardiac contraction. These alterations range from a slow-down of systole and diastole kinetics, to bradycardia and cardiac arrest. The bees heart wall is made of a single layer of semi-circular cardiomyocytes arranged concentrically all along the long axis of tube lumen. Since the heart tube is suspended to the cuticle through long tubular muscles fibers (so-called alary muscle cells), the CHL effects in ex-vivo heart preparations could result from the modulation of RyRs present in these skeletal muscle fibers as well as cardiomyocytes RyRs themselves. In order to specifically assess effects of CHL on cardiomyocytes, for the first time, intact heart cells were enzymatically dissociated from bees. Exposure of cardiomyocytes to CHL induces an increase in cytoplasmic calcium, cell contraction at the highest concentrations and depletion of intracellular stores. Electrophysiological properties of isolated cardiomyocytes were described, with a focus on voltage-gated Ca2+ channels responsible for the cardiac action potentials depolarization phase. Two types of Ca2+ currents were measured under voltage-clamp. Exposure to CHL was accompanied by a decrease in voltage-activated Ca2+ currents densities. Altogether, these results show that chlorantraniliprole can cause cardiac defects in honey bees.


Asunto(s)
Cardiotoxicidad , Insecticidas , Miocitos Cardíacos , ortoaminobenzoatos , Animales , Abejas/efectos de los fármacos , Abejas/fisiología , ortoaminobenzoatos/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Insecticidas/toxicidad , Cardiotoxicidad/etiología , Calcio/metabolismo , Contracción Miocárdica/efectos de los fármacos , Corazón/efectos de los fármacos , Corazón/fisiología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Diamida/farmacología
14.
Front Endocrinol (Lausanne) ; 15: 1410370, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872963

RESUMEN

Background: The involvement of ATP and cAMP in sperm function has been extensively documented, but the understanding of the role of adenosine and adenosine receptors remains incomplete. This study aimed to examine the presence of adenosine A2A receptor (A2AR) and study the functional role of A2AR in human sperm. Methods: The presence and localization of A2AR in human sperm were examined by western blotting and immunofluorescence assays. The functional role of A2AR in sperm was assessed by incubating human sperm with an A2AR agonist (regadenoson) and an A2AR antagonist (SCH58261). The sperm level of A2AR was examined by western blotting in normozoospermic and asthenozoospermic men to evaluate the association of A2AR with sperm motility and in vitro fertilization (IVF) outcomes. Results: A2AR with a molecular weight of 43 kDa was detected in the tail of human sperm. SCH58261 decreased the motility, penetration ability, intracellular Ca2+ concentration, and CatSper current of human sperm. Although regadenoson did not affect these sperm parameters, it alleviated the adverse effects of SCH58261 on these parameters. In addition, the mean level of A2AR in sperm from asthenozoospermic men was lower than that in sperm from normozoospermic men. The sperm level of A2AR was positively correlated with progressive motility. Furthermore, the fertilization rate during IVF was lower in men with decreased sperm level of A2AR than in men with normal sperm level of A2AR. Conclusions: These results indicate that A2AR is important for human sperm motility and is associated with IVF outcome.


Asunto(s)
Fertilización In Vitro , Receptor de Adenosina A2A , Motilidad Espermática , Espermatozoides , Humanos , Masculino , Motilidad Espermática/efectos de los fármacos , Receptor de Adenosina A2A/metabolismo , Espermatozoides/metabolismo , Espermatozoides/efectos de los fármacos , Fertilización In Vitro/métodos , Adulto , Astenozoospermia/metabolismo , Femenino , Pirazoles/farmacología , Agonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/farmacología , Pirimidinas/farmacología , Triazoles/farmacología
15.
Cells ; 13(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38920679

RESUMEN

Calcium plays central roles in numerous biological processes, thereby, its levels in the blood are under strict control to maintain homeostatic balance and enable the proper functioning of living organisms. The regulatory mechanisms ensuring this balance can be affected by pathologies such as cancer, and as a result, hyper- or hypocalcemia can occur. These states, characterized by elevated or decreased calcium blood levels, respectively, have a significant effect on general homeostasis. This article focuses on a particular form of calcium metabolism disorder, which is hypercalcemia in neoplasms. It also constitutes a summary of the current knowledge regarding the diagnosis of hypercalcemia and its management. Hypercalcemia of malignancy is estimated to affect over 40% of cancer patients and can be associated with both solid and blood cancers. Elevated calcium levels can be an indicator of developing cancer. The main mechanism of hypercalcemia development in tumors appears to be excessive production of parathyroid hormone-related peptides. Among the known treatment methods, bisphosphonates, calcitonin, steroids, and denosumab should be mentioned, but ongoing research promotes progress in pharmacotherapy. Given the rising global cancer prevalence, the problem of hypercalcemia is of high importance and requires attention.


Asunto(s)
Hipercalcemia , Neoplasias , Humanos , Hipercalcemia/terapia , Hipercalcemia/etiología , Neoplasias/complicaciones , Calcio/metabolismo
16.
Heliyon ; 10(11): e31937, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38868043

RESUMEN

This study aims to pharmacologically validate Haridra Khanda (HK) and Manjishthadi Kwatham (brihat) (MMK) in allergy management using invivo and invitro studies to rationalize the prescription of these two ayurvedic polyherbal drug formulations, which are currently used in Indian government hospitals. Experimental animals received HK and MMK orally from day 0 to day 14 and histamine (1 mg/kg b.w/i.v) and 1 % evans blue (EB) (0.1 mL) via tail vein on day 14. The compound 48/80 (intracutaneous) challenged mice model followed the same technique. The former mimicked acute anaphylaxis and the latter mast cell degranulation. For both models, EB dye leakage was quantified spectrophotometrically to determine vascular permeability. Plasma histamine was measured in Compound 48/80-induced animals using LC-ESI-MS/MS. The guineapig received HK and MMK p.o. and 0.6 % histamine sprayed in a histamine chamber to simulate allergic rhinitis. Blood eosinophil count and sneeze rate were measured in histamine-challenged guineapigs. Goat R.B.C. membrane stability assay (mammalian cell membrane toxicity) and intracellular histamine-induced cytosolic Ca2+ release assay in Chinese hamster ovary (CHO) cells were performed in vitro. For both histamine and Compound 48/80 challenged animals, HK (22.81 % and 14.58 %) and MMK (19.71 % and 22.40 %) significantly reduced EB dye leakage (p < 0.05). Both formulations, HK and MMK considerably (p < 0.05) decreased plasma histamine (29.62 % and 25.37 % respectively) in mice and eosinophilic count (11.56 % and 9.94 % respectively) and sneeze rate (42.58 % and 29.03 % respectively) in guinea pigs. In membrane stability experiment, HK and MMK reduced RBC lysis. Both HK and MMK raw/dialysate blocked CHO cell cytosolic Ca2+ release. HK and MMK activities mimic mast cell stabilization with possible H1 receptor inactivation seen by decreased Ca2+ efflux and thus indicate potential for allergic rhinitis management. The combination of activities is usually related with curative and prophylactic therapy and might lead future clinical trials and therapies.

17.
Am J Physiol Cell Physiol ; 327(1): C151-C167, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38798270

RESUMEN

Substance P (SP) is released from sensory nerves in the arteries and heart. It activates neurokinin-1 receptors (NK1Rs) causing vasodilation, immune modulation, and adverse cardiac remodeling. The hypothesis was tested: SP and SP metabolites activate different second messenger signaling pathways. Macrophages, endothelial cells, and fibroblasts metabolized SP to N- and C-terminal metabolites to varying extents. SP 5-11 was the most abundant metabolite followed by SP 1-4, SP 7-11, SP 6-11, SP 3-11, and SP 8-11. In NK1R-expressing human embryonic kidney 293 (HEK293) cells, SP and some C-terminal SP metabolites stimulate the NK1R, promoting the dissociation of several Gα proteins, including Gαs and Gαq from their ßγ subunits. SP increases intracellular calcium concentrations ([Ca]i) and cyclic 3',5'-adenosine monophosphate (cAMP) accumulation with similar -log EC50 values of 8.5 ± 0.3 and 7.8 ± 0.1 M, respectively. N-terminal metabolism of SP by up to five amino acids and C-terminal deamidation of SP produce peptides that retain activity to increase [Ca]i but not to increase cAMP. C-terminal metabolism results in the loss of both activities. Thus, [Ca]i and cAMP signaling are differentially affected by SP metabolism. To assess the role of N-terminal metabolism, SP and SP 6-11 were compared with cAMP-mediated activities in NK1R-expressing 3T3 fibroblasts. SP inhibits nuclear factor κB (NF-κB) activity, cell proliferation, and wound healing and stimulates collagen production. SP 6-11 had little or no activity. Cyclooxygenase-2 (COX-2) expression is increased by SP but not by SP 6-11. Thus, metabolism may select the cellular response to SP by inhibiting or redirecting the second messenger signaling pathway activated by the NK1R.NEW & NOTEWORTHY Endothelial cells, macrophages, and fibroblasts metabolize substance P (SP) to N- and C-terminal metabolites with SP 5-11 as the most abundant metabolite. SP activates neurokinin-1 receptors to increase intracellular calcium and cyclic AMP. In contrast, SP metabolites of N-terminal metabolism and C-terminal deamidation retain the ability to increase calcium but lose the ability to increase cyclic AMP. These new insights indicate that the metabolism of SP directs cellular functions by regulating specific signaling pathways.


Asunto(s)
AMP Cíclico , Receptores de Neuroquinina-1 , Transducción de Señal , Sustancia P , Sustancia P/metabolismo , Receptores de Neuroquinina-1/metabolismo , Receptores de Neuroquinina-1/agonistas , Humanos , AMP Cíclico/metabolismo , Animales , Células HEK293 , Ratones , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Calcio/metabolismo
18.
AJP Rep ; 14(2): e162-e169, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38784940

RESUMEN

Background Superoxide anions (O 2 - ) have multiple effects on pulmonary parenchyma altering cell proliferation, cellular metabolism, and airway smooth muscle (ASM) contraction. Intracellular calcium ([Ca 2+ ] i ) concentration plays a significant role in the regulation of ASM contraction, relaxation, proliferation, and gene expression. Objective We investigated the effects of O 2 - on agonist-stimulated changes in [Ca 2+ ] i in ASM cells. Design/Methods Fura-2 AM-loaded, freshly isolated porcine ASM (PASM) cells were used to examine [Ca 2+ ] i release in response to acetylcholine (ACh), histamine, endothelin, caffeine, and thapsigargin (TPG) in the presence or absence of extracellular Ca 2+ . Results Exposure of PASM cells to xanthine and xanthine oxidase (X + XO) resulted in a time-dependent generation of O 2 - , inhibited by superoxide dismutase (SOD). Preincubating PASM cells with X + XO for 15- or 45-minute inhibited net [Ca 2+ ] i responses to ACh, histamine, caffeine, and TPG compared with control cells. Pretreating PASM cells with SOD for 30 minutes mitigated the inhibitory effect of X + XO treatment on ACh-induced Ca 2+ elevation suggesting role of O 2 - . X + XO treatment also inhibited caffeine- and TPG-induced Ca 2+ elevation suggesting effect of O 2 - on [Ca 2+ ] i release and reuptake mechanisms. Conclusion Superoxide attenuates [Ca 2+ ] i release, reuptake, and may interfere with physiological functions of ASM cells.

19.
Curr Issues Mol Biol ; 46(5): 4403-4416, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38785535

RESUMEN

Acute pancreatitis (AP) is characterized by elevated intracellular Ca2+ concentrations, mitochondrial dysfunction, and oxidative stress in pancreatic acinar cells. Algal oil (AO) has demonstrated antioxidant and anti-inflammatory properties. This study aims to explore the effects of algal oil on the microenvironment of AP. Rat pancreatic acinar AR42J cells were pretreated with AO containing 0, 50, 100, or 150 µM of docosahexaenoic acid (DHA) 2 h prior to AP induction using sodium taurocholate (STC). After 1 h of STC treatment, AR42J cells exhibited a significant increase in intracellular Ca2+ concentration and the production of amylase, lipase, reactive oxygen species, and pro-inflammatory mediators, including tumor necrosis factor-α and interleukin-6. These STC-induced increases were markedly reduced in cells pretreated with AO. In comparison to cells without AO, those treated with a high dose of AO before STC exposure demonstrated a significant increase in mitochondrial membrane potential and a decrease in lipid peroxidation. Furthermore, STC-activated nuclear factor kappa-B (NF-κB) was attenuated in AO-pretreated cells, as evidenced by a significant decrease in activated NF-κB. In conclusion, AO may prevent damage to pancreatic acinar cells by alleviating intracellular Ca2+ overload, mitigating mitochondrial dysfunction, reducing oxidative stress, and attenuating NF-κB-targeted inflammation.

20.
High Blood Press Cardiovasc Prev ; 31(3): 299-308, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38763953

RESUMEN

INTRODUCTION: The fluctuations of the intracellular Ca2+ concentration ([Ca2+]i) are key physiological signals for cell function under normal conditions and can undergo profound alterations in disease states, as high blood pressure due to endocrine disorders like primary aldosteronism (PA). However, when assessing such fluctuations several parameters in the Ca2+ signal dynamics need to be considered, which renders their assessment challenging. AIM: Aim to develop an observer-independent custom-made pipeline to analyze Ca2+ dynamics in terms of frequency and peak parameters, as amplitude, full width at half maximum (FWHM) and area under the curve (AUC). METHODS: We applied a custom-made methodology to aldosterone-producing adenoma (APA) and APA adjacent cells (AAC) and found this pipeline to be suitable for monitoring and processing a wide-range of [Ca2+]i events in these cell types delivering reproducible results. CONCLUSION: The designed pipeline can provide a useful tool for [Ca2+]i signal analysis that allows comparisons of Ca2+ dynamics not only in PA, but in other cell phenotypes that are relevant for the regulation of blood pressure.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Corteza Suprarrenal , Adenoma Corticosuprarrenal , Señalización del Calcio , Hiperaldosteronismo , Humanos , Neoplasias de la Corteza Suprarrenal/metabolismo , Neoplasias de la Corteza Suprarrenal/patología , Hiperaldosteronismo/metabolismo , Adenoma Corticosuprarrenal/metabolismo , Adenoma Corticosuprarrenal/patología , Corteza Suprarrenal/metabolismo , Aldosterona/metabolismo , Calcio/metabolismo , Reproducibilidad de los Resultados , Células Cultivadas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA