Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
J Hazard Mater ; 480: 135886, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39298952

RESUMEN

Flumethrin mitigates Varroa's harm to honeybee colonies; however, its residues in colonies threaten the fitness of honeybee hosts and gut microbiota. Our previous research has shown that flumethrin induces significant physiological effects on honeybee larvae; but the effects of flumethrin on the gut microbiota and metabolism of adult honeybees are still unknown. In this study, 1-day-old honeybees were exposed to 0, 0.01, 0.1, and 1 mg/L flumethrin for 14 days and the impacts of flumethrin on the intestinal system were evaluated. The results showed that exposure to 1 mg/L flumethrin significantly reduced honeybee survival and the activities of antioxidative enzymes (superoxide dismutase and catalase) and detoxification enzymes (glutathione S-transferase) in honeybee heads. Moreover, exposure to 0.01, 0.1, and 1 mg/L flumethrin significantly decreased the diversity of the honeybee gut microbiota. Results from untargeted metabolomics showed that long-term exposure to 0.01, 0.1, and 1 mg/L flumethrin caused changes in the metabolic pathways of honeybee gut microbes. Furthermore, increased metabolism of phenylalanine, tyrosine, and tryptophan derivatives was observed in honeybee gut microbes. These findings underscore the importance of careful consideration in using pesticides in apiculture and provide a basis for safeguarding honeybees from pollutants, considering the effects on gut microbes.

2.
Endocrinology ; 165(9)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39106294

RESUMEN

Nuclear receptor action is mediated in part by the nuclear receptor corepressor 1 (NCOR1) and the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT). NCOR1 and SMRT regulate metabolic pathways that govern body mass, insulin sensitivity, and energy expenditure, representing an understudied area in the realm of metabolic health and disease. Previously, we found that NCOR1 and SMRT are essential for maintaining metabolic homeostasis and their knockout (KO) leads to rapid weight loss and hypoglycemia, which is not survivable. Because of a potential defect in glucose absorption, we sought to determine the role of NCOR1 and SMRT specifically in intestinal epithelial cells (IECs). We used a postnatal strategy to disrupt NCOR1 and SMRT throughout IECs in adult mice. These mice were characterized metabolically and underwent metabolic phenotyping, body composition analysis, and glucose tolerance testing. Jejunal IECs were isolated and profiled by bulk RNA sequencing. We found that the postnatal KO of NCOR1 and SMRT from IECs leads to rapid weight loss and hypoglycemia with a significant reduction in survival. This was accompanied by alterations in glucose metabolism and activation of fatty acid oxidation in IECs. Metabolic phenotyping confirmed a reduction in body mass driven by a loss of body fat without altered food intake. This appeared to be mediated by a reduction of key intestinal carbohydrate transporters, including SGLT1, GLUT2, and GLUT5. Intestinal NCOR1 and SMRT act in tandem to regulate glucose levels and body weight. This in part may be mediated by regulation of intestinal carbohydrate transporters.


Asunto(s)
Mucosa Intestinal , Ratones Noqueados , Co-Represor 1 de Receptor Nuclear , Co-Represor 2 de Receptor Nuclear , Animales , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 2 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear/genética , Ratones , Mucosa Intestinal/metabolismo , Glucosa/metabolismo , Masculino , Metabolismo de los Hidratos de Carbono/genética , Ratones Endogámicos C57BL , Transportador 1 de Sodio-Glucosa/metabolismo , Transportador 1 de Sodio-Glucosa/genética , Transporte Biológico , Femenino , Metabolismo Energético , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 2/genética
3.
Metabolomics ; 20(3): 53, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722395

RESUMEN

INTRODUCTION: Despite the well-recognized health benefits, the mechanisms and site of action of metformin remains elusive. Metformin-induced global lipidomic changes in plasma of animal models and human subjects have been reported. However, there is a lack of systemic evaluation of metformin-induced lipidomic changes in different tissues. Metformin uptake requires active transporters such as organic cation transporters (OCTs), and hence, it is anticipated that metformin actions are tissue-dependent. In this study, we aim to characterize metformin effects in non-diabetic male mice with a special focus on lipidomics analysis. The findings from this study will help us to better understand the cell-autonomous (direct actions in target cells) or non-cell-autonomous (indirect actions in target cells) mechanisms of metformin and provide insights into the development of more potent yet safe drugs targeting a particular organ instead of systemic metabolism for metabolic regulations without major side effects. OBJECTIVES: To characterize metformin-induced lipidomic alterations in different tissues of non-diabetic male mice and further identify lipids affected by metformin through cell-autonomous or systemic mechanisms based on the correlation between lipid alterations in tissues and the corresponding in-tissue metformin concentrations. METHODS: A dual extraction method involving 80% methanol followed by MTBE (methyl tert-butyl ether) extraction enables the analysis of free fatty acids, polar metabolites, and lipids. Extracts from tissues and plasma of male mice treated with or without metformin in drinking water for 12 days were analyzed using HILIC chromatography coupled to Q Exactive Plus mass spectrometer or reversed-phase liquid chromatography coupled to MS/MS scan workflow (hybrid mode) on LC-Orbitrap Exploris 480 mass spectrometer using biologically relevant lipids-containing inclusion list for data-independent acquisition (DIA), named as BRI-DIA workflow followed by data-dependent acquisition (DDA), to maximum the coverage of lipids and minimize the negative effect of stochasticity of precursor selection on experimental consistency and reproducibility. RESULTS: Lipidomics analysis of 6 mouse tissues and plasma allowed a systemic evaluation of lipidomic changes induced by metformin in different tissues. We observed that (1) the degrees of lipidomic changes induced by metformin treatment overly correlated with tissue concentrations of metformin; (2) the impact on lysophosphatidylcholine (lysoPC) and cardiolipins was positively correlated with tissue concentrations of metformin, while neutral lipids such as triglycerides did not correlate with the corresponding tissue metformin concentrations; (3) increase of intestinal tricarboxylic acid (TCA) cycle intermediates after metformin treatment. CONCLUSION: The data collected in this study from non-diabetic mice with 12-day metformin treatment suggest that the overall metabolic effect of metformin is positively correlated with tissue concentrations and the effect on individual lipid subclass is via both cell-autonomous mechanisms (cardiolipins and lysoPC) and non-cell-autonomous mechanisms (triglycerides).


Asunto(s)
Metabolismo de los Lípidos , Lipidómica , Metformina , Metformina/farmacología , Metformina/metabolismo , Animales , Ratones , Masculino , Lipidómica/métodos , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/sangre , Hipoglucemiantes/farmacología , Hipoglucemiantes/metabolismo , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem/métodos
4.
Pharmaceutics ; 16(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38794253

RESUMEN

Pedunculoside, a triterpene saponin derived from various Ilex species, holds potential as a treatment for cardiovascular diseases. However, its clinical application is hindered by poor bioavailability, rapid elimination, and extensive intestinal metabolism to rotundic acid. To address these issues, a water-soluble inclusion complex of pedunculoside, namely, the beta-CD polymer inclusion complex of pedunculoside (pedunculoside-ßCDP), was prepared in this study, and a comparative in vitro stability and pharmacokinetic behavior study was performed between pedunculoside and pedunculoside-ßCDP. Both pedunculoside and pedunculoside-ßCDP exhibited the highest stability in simulated gastric fluid and simulated intestinal fluid but were readily metabolized when co-incubated with Bifidobacterium adolescentis and Bifidobacterium breve. An LC-MS/MS analytical method for the simultaneous determination of pedunculoside and rotundic acid in rat plasma was successfully established, validated, and applied to investigate the pharmacokinetic behavior after rats were intravenously administered with pedunculoside or pedunculoside-ßCDP. The results indicated that pedunculoside-ßCDP could significantly improve the pharmacokinetic profile of pedunculoside by increasing plasma exposure, retarding elimination, and reducing intestinal metabolism. This study enhances our understanding of pedunculoside-ßCDP's metabolic fate and pharmacokinetic properties and potentially advances its further research, development, and clinical application.

5.
Fish Shellfish Immunol ; 149: 109570, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643956

RESUMEN

The intensive aquaculture model has resulted in a heightened prevalence of diseases among farmed animals. It is imperative to identify healthy and efficacious alternatives to antibiotics for the sustainable progression of aquaculture. In this investigation, a strain of Lactobacillus acidophilus AC was introduced into the cultural water at varying concentrations (105 CFU/mL, 106 CFU/mL, 107 CFU/mL) to nourish zebrafish (Danio rerio). The findings revealed that L. acidophilus AC effectively increased the growth performance of zebrafish, improved the ion exchange capacity of gills, and enhanced hepatic antioxidant and immune-enzyme activities. Furthermore, L. acidophilus AC notably enhanced the intestinal morphology and augmented the activity of digestive enzymes within the intestinal tract. Analysis of intestinal flora revealed that L. acidophilus AC exerted a significant impact on the intestinal flora community, manifested by a reduction in the relative abundance of Burkholderiales, Candidatus_Saccharibacteria_bacterium, and Sutterellaceae, coupled with an increase in the relative abundance of Cetobacterium. Metabolomics analysis demonstrated that L. acidophilus AC significantly affected intestinal metabolism of zebrafish. PG (i-19:0/PGE2) and 12-Hydroxy-13-O-d-glucuronoside-octadec-9Z-enoate were the metabolites with the most significant up- and down-regulation folds, respectively. Finally, L. acidophilus AC increased the resistance of zebrafish to Aeromonas hydrophila. In conclusion, L. acidophilus AC was effective in enhancing the health and immunity of zebrafish. Thus, our findings suggested that L. acidophilus AC had potential applications and offered a reference for its use in aquaculture.


Asunto(s)
Microbioma Gastrointestinal , Lactobacillus acidophilus , Probióticos , Pez Cebra , Animales , Pez Cebra/inmunología , Probióticos/farmacología , Alimentación Animal/análisis , Dieta/veterinaria
6.
Ecotoxicol Environ Saf ; 273: 116127, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38394756

RESUMEN

Alkaline stress poses a significant challenge to the healthy growth of fish. Ginger polysaccharide (GP) is one of the main active substances in ginger and has pharmacological effects, such as anti-oxidation and immune regulation. However, the physiological regulatory mechanism of GP addition to diet on alkalinity stress in crucian carp remains unclear. This study aimed to investigate the potential protective effects of dietary GP on antioxidant capacity, gene expression levels, intestinal microbiome, and metabolomics of crucian carp exposed to carbonate (NaHCO3). The CK group (no GP supplementation) and COG group (NaHCO3 stress and no GP supplementation) were set up. The GPCS group (NaHCO3 stress and 0.4% GP supplementation) was stressed for seven days. Based on these data, GP significantly increased the activities of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), acid phosphatase (ACP), and alkaline phosphatase (AKP) in carp under alkalinity stress (p < 0.05) and decreased the activity of malon dialdehyde (MDA) (p < 0.05). GP restored the activity of GSH-PX, ACP, and AKP to CK levels. The expression levels of tumor necrosis factor ß (TGF-ß), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and interleukin 8 (IL-8) genes were decreased, and the expression levels of determination factor kappa-B (NF-κB) and interleukin 10 (IL-10) genes were increased (p < 0.05). Based on 16 S rRNA high-throughput sequencing, GP improved the changes in the intestinal microbial diversity and structural composition of crucian carp caused by NaHCO3 exposure. In particular, GP increased the relative abundance of Proteobacteria and Bacteroidetes and decreased the relative abundance of Actinobacteria. The metabolic response of GP to NaHCO3 exposed crucian carp guts was studied using LC/MS. Compared to the COG group, the GPCS group had 64 different metabolites and enriched 10 metabolic pathways, including lipid metabolism, nucleotide metabolism, and carbohydrate metabolism. The addition of GP to feed can promote galactose metabolism and provide an energy supply to crucian carp, thus alleviating the damage induced by alkalinity stress. In conclusion, GP can mitigate the effects of NaHCO3 alkalinity stress by regulating immune function, intestinal flora, and intestinal metabolism in crucian carp. These findings provide a novel idea for studying the mechanism of salt-alkali tolerance in crucian carp by adding GP to feed.


Asunto(s)
Carpas , Microbioma Gastrointestinal , Zingiber officinale , Animales , Carpa Dorada/metabolismo , Carpas/metabolismo , Antioxidantes/metabolismo , Dieta , Carbonatos , Alimentación Animal/análisis
7.
J Proteome Res ; 23(4): 1506-1518, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38422518

RESUMEN

The metabolic contribution of the small intestine (SI) is still unclear despite recent studies investigating the involvement of single cells in regional differences. Using untargeted proteomics, we identified regional characteristics of the three intestinal tracts of C57BL/6J mice and found that proteins abundant in the mouse ileum correlated with the high ileal expression of the corresponding genes in humans. In the SI of C57BL/6J mice, we also detected an increasing abundance of lysosomal acid lipase (LAL), which is responsible for degrading triacylglycerols and cholesteryl esters within the lysosome. LAL deficiency in patients and mice leads to lipid accumulation, gastrointestinal disturbances, and malabsorption. We previously demonstrated that macrophages massively infiltrated the SI of Lal-deficient (KO) mice, especially in the duodenum. Using untargeted proteomics (ProteomeXchange repository, data identifier PXD048378), we revealed a general inflammatory response and a common lipid-associated macrophage phenotype in all three intestinal segments of Lal KO mice, accompanied by a higher expression of GPNMB and concentrations of circulating sTREM2. However, only duodenal macrophages activated a metabolic switch from lipids to other pathways, which were downregulated in the jejunum and ileum of Lal KO mice. Our results provide new insights into the process of absorption in control mice and possible novel markers of LAL-D and/or systemic inflammation in LAL-D.


Asunto(s)
Proteoma , Esterol Esterasa , Animales , Ratones , Ésteres del Colesterol/metabolismo , Yeyuno , Glicoproteínas de Membrana , Ratones Endogámicos C57BL , Proteoma/genética , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Humanos
8.
Biopharm Drug Dispos ; 45(1): 3-14, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38085672

RESUMEN

The aim of this study was firstly to investigate the effect of membrane permeability on the intestinal availability (Fg ) of 10 cytochrome P450 3A4 substrates with differing permeability (Papp ) and metabolic activity (CLint ) using Madin-Darby canine kidney II (MDCKII) cells expressing human CYP3A4 (MDCKII/CYP3A4 cells), and secondly to confirm the essential factors by simulations. A membrane permeation assay using MDCKII/CYP3A4 cells showed a significant correlation between human intestinal extraction ratio (ER) (Eg (=1 - Fg )) and in vitro cellular ER (r = 0.834). This relationship afforded better predictability of Eg values than the relationship between Eg and CLint,HIM values obtained from human intestinal microsomes (r = 0.598). An even stronger correlation was observed between 1 - Fa ·Fg and ER (r = 0.874). Simulation with a cellular kinetic model indicated that ER is sensitive to changes of PSpassive and CLint values, but not to the intracellular unbound fraction (fu,cell ) or P-gp-mediated efflux (PSP - gp ). It may be concluded that, based on the concentration-time profile of drugs in epithelial cells, transmembrane permeability influences Fg (or ER) and drug exposure time to metabolizing enzymes for P450 substrate.


Asunto(s)
Citocromo P-450 CYP3A , Absorción Intestinal , Humanos , Animales , Perros , Citocromo P-450 CYP3A/metabolismo , Intestinos , Permeabilidad de la Membrana Celular , Permeabilidad
9.
Pharmaceutics ; 15(12)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38140073

RESUMEN

Many evaluation tools for predicting human absorption are well-known for using cultured cell lines such as Caco-2, MDCK, and so on. Since the combinatorial chemistry and high throughput screening system, pharmacological assay, and pharmaceutical profiling assay are mainstays of drug development, PAMPA has been used to evaluate human drug absorption. In addition, cultured cell lines from iPS cells have been attracting attention because they morphologically resemble human intestinal tissues. In this review, we used human intestinal tissues to estimate human intestinal absorption and metabolism. The Ussing chamber uses human intestinal tissues to directly assay a drug candidate's permeability and determine the electrophysiological parameters such as potential differences (PD), short circuit current (Isc), and resistance (R). Thus, it is an attractive tool for elucidating human intestinal permeability and metabolism. We have presented a novel prediction method for intestinal absorption and metabolism by utilizing a mini-Ussing chamber using human intestinal tissues and animal intestinal tissues, based on the transport index (TI). The TI value was calculated by taking the change in drug concentrations on the apical side due to precipitation and the total amounts accumulated in the tissue (Tcorr) and transported to the basal side (Xcorr). The drug absorbability in rank order, as well as the fraction of dose absorbed (Fa) in humans, was predicted, and the intestinal metabolism of dogs and rats was also predicted, although it was not quantitative. However, the metabolites formation index (MFI) values, which are included in the TI values, can predict the evaluation of intestinal metabolism and absorption by using ketoconazole. Therefore, the mini-Ussing chamber, equipped with human and animal intestinal tissues, would be an ultimate method to predict intestinal absorption and metabolism simultaneously.

10.
Am J Physiol Gastrointest Liver Physiol ; 325(6): G501-G507, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37786942

RESUMEN

Epithelial metabolism in the intestine is increasingly known to be important for stem cell maintenance and activity while also affecting weight gain and diseases. This review compiles studies from recent years which describe major transcription factors controlling metabolic activity across the intestinal epithelium as well as transcriptional and epigenetic networks controlling the factors themselves. Recent studies show that transcriptional regulators serve as the link between signals from the microbiota and diet and epithelial metabolism. Studies have advanced this paradigm to identify druggable targets to block weight gain or disease progression in mice. As such, there is great potential that a better understanding of these regulatory networks will improve our knowledge of intestinal physiology and promote discoveries to benefit human health.


Asunto(s)
Mucosa Intestinal , Intestinos , Humanos , Ratones , Animales , Mucosa Intestinal/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Aumento de Peso
11.
Microbiol Spectr ; : e0082923, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698429

RESUMEN

Acute pancreatitis (AP) is a type of digestive system disease with high mortality. Previous studies have shown that gut microbiota can participate in developing and treating acute pancreatitis by affecting the host's metabolism. In this study, we followed 20 AP patients to generate longitudinal gut microbiota profiles and activity during disease (before treatment, on the third day of treatment, and 1 month after discharge). We analyzed species composition and metabolic pathways' changes across the treatment phase, severity, and etiology. The diversity of the gut microbiome of patients with AP did not show much variation with treatment. In contrast, the metabolic functions of the gut microbiota, such as the essential chemical reactions that produce energy and maintain life, were partially reinstated after treatment. The severe AP (SAP) patients contained less beneficial bacteria (i.e., Bacteroides xylanisolvens, Clostridium lavalense, and Roseburia inulinivorans) and weaker sugar degradation function than mild AP patients before treatment. Moreover, etiology was one of the drivers of gut microbiome composition and explained the 3.54% variation in species' relative abundance. The relative abundance of pathways related to lipid synthesis was higher in the gut of hyperlipidemia AP patients than in biliary AP patients. The composition and functional profiles of the gut microbiota reflect the severity and etiology of AP. Otherwise, we also identified bacterial species associated with SAP, i.e., Oscillibacter sp. 57_20, Parabacteroides johnsonii, Bacteroides stercoris, Methanobrevibacter smithii, Ruminococcus lactaris, Coprococcus comes, and Dorea formicigenerans, which have the potential to identify the SAP at an early stage. IMPORTANCE Acute pancreatitis (AP) is a type of digestive system disease with high mortality. Previous studies have shown that gut microbiota can participate in the development and treatment of acute pancreatitis by affecting the host's metabolism. However, fewer studies acquired metagenomic sequencing data to associate species to functions intuitively and performed longitudinal analysis to explore how gut microbiota influences the development of AP. We followed 20 AP patients to generate longitudinal gut microbiota profiles and activity during disease and studied the differences in intestinal flora under different severities and etiologies. We have two findings. First, the gut microbiota profile has the potential to identify the severity and etiology of AP at an early stage. Second, gut microbiota likely acts synergistically in the development of AP. This study provides a reference for characterizing the driver flora of severe AP to identify the severity of acute pancreatitis at an early stage.

12.
Eur J Pharm Sci ; 188: 106481, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37244450

RESUMEN

Intestinal organoids derived from LGR5+ adult stem cells allow for long-term culturing, more closely resemble human physiology than traditional intestinal models, like Caco-2, and have been established for several species. Here we evaluated intestinal organoids for drug disposition, metabolism, and safety applications. Enterocyte-enriched human duodenal organoids were cultured as monolayers to enable bidirectional transport studies. 3D enterocyte-enriched human duodenal and colonic organoids were incubated with probe substrates of major intestinal drug metabolizing enzymes (DMEs). To distinguish human intestinal toxic (high incidence of diarrhea in clinical trials and/or black box warning related to intestinal side effects) from non-intestinal toxic compounds, ATP-based cell viability was used as a readout, and compounds were ranked based on their IC50 values in relation to their 30-times maximal total plasma concentration (Cmax). To assess if rat and dog organoids reproduced the respective in vivo intestinal safety profiles, ATP-based viability was assessed in rat and dog organoids and compared to in vivo intestinal findings when available. Human duodenal monolayers discriminated high and low permeable compounds and demonstrated functional activity for the main efflux transporters Multi drug resistant protein 1 (MDR1, P-glycoprotein P-gp) and Breast cancer resistant protein (BCRP). Human 3D duodenal and colonic organoids also showed metabolic activity for the main intestinal phase I and II DMEs. Organoids derived from specific intestinal segments showed activity differences in line with reported DMEs expression. Undifferentiated human organoids accurately distinguished all but one compound from the test set of non-toxic and toxic drugs. Cytotoxicity in rat and dog organoids correlated with preclinical toxicity findings and observed species sensitivity differences between human, rat, and dog organoids. In conclusion, the data suggest intestinal organoids are suitable in vitro tools for drug disposition, metabolism, and intestinal toxicity endpoints. The possibility to use organoids from different species, and intestinal segment holds great potential for cross-species and regional comparisons.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Proteínas de Neoplasias , Adulto , Humanos , Animales , Perros , Ratas , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Células CACO-2 , Organoides , Adenosina Trifosfato
13.
J Biol Chem ; 299(3): 102955, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36720308

RESUMEN

Inorganic arsenic (iAs) is an environmental toxicant that can lead to severe health consequences, which can be exacerbated if exposure occurs early in development. Here, we evaluated the impact of oral iAs treatment on UDP-glucuronosyltransferase 1A1 (UGT1A1) expression and bilirubin metabolism in humanized UGT1 (hUGT1) mice. We found that oral administration of iAs to neonatal hUGT1 mice that display severe neonatal hyperbilirubinemia leads to induction of intestinal UGT1A1 and a reduction in total serum bilirubin values. Oral iAs administration accelerates neonatal intestinal maturation, an event that is directly associated with UGT1A1 induction. As a reactive oxygen species producer, oral iAs treatment activated the Keap-Nrf2 pathway in the intestinal tract and liver. When Nrf2-deficient hUGT1 mice (hUGT1/Nrf2-/-) were treated with iAs, it was shown that activated Nrf2 contributed significantly toward intestinal maturation and UGT1A1 induction. However, hepatic UGT1A1 was not induced upon iAs exposure. We previously demonstrated that the nuclear receptor PXR represses liver UGT1A1 in neonatal hUGT1 mice. When PXR was deleted in hUGT1 mice (hUGT1/Pxr-/-), derepression of UGT1A1 was evident in both liver and intestinal tissue in neonates. Furthermore, when neonatal hUGT1/Pxr-/- mice were treated with iAs, UGT1A1 was superinduced in both tissues, confirming PXR release derepressed key regulatory elements on the gene that could be activated by iAs exposure. With iAs capable of generating reactive oxygen species in both liver and intestinal tissue, we conclude that PXR deficiency in neonatal hUGT1/Pxr-/- mice allows greater access of activated transcriptional modifiers such as Nrf2 leading to superinduction of UGT1A1.


Asunto(s)
Arsénico , Glucuronosiltransferasa , Factor 2 Relacionado con NF-E2 , Receptor X de Pregnano , Animales , Ratones , Animales Recién Nacidos , Arsénico/toxicidad , Bilirrubina/sangre , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Hígado/enzimología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor X de Pregnano/genética , Receptor X de Pregnano/metabolismo
14.
Cell Mol Gastroenterol Hepatol ; 15(6): 1293-1310, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36608902

RESUMEN

BACKGROUND & AIMS: The intestinal stem cell niche is exquisitely sensitive to changes in diet, with high-fat diet, caloric restriction, and fasting resulting in altered crypt metabolism and intestinal stem cell function. Unlike cells on the villus, cells in the crypt are not immediately exposed to the dynamically changing contents of the lumen. We hypothesized that enteroendocrine cells (EECs), which sense environmental cues and in response release hormones and metabolites, are essential for relaying the luminal and nutritional status of the animal to cells deep in the crypt. METHODS: We used the tamoxifen-inducible VillinCreERT2 mouse model to deplete EECs (Neurog3fl/fl) from adult intestinal epithelium and we generated human intestinal organoids from wild-type and NEUROGENIN 3 (NEUROG3)-null human pluripotent stem cells. We used indirect calorimetry, 1H-Nuclear Magnetic Resonance (NMR) metabolomics, mitochondrial live imaging, and the Seahorse bioanalyzer (Agilent Technologies) to assess metabolism. Intestinal stem cell activity was measured by proliferation and enteroid-forming capacity. Transcriptional changes were assessed using 10x Genomics single-cell sequencing. RESULTS: Loss of EECs resulted in increased energy expenditure in mice, an abundance of active mitochondria, and a shift of crypt metabolism to fatty acid oxidation. Crypts from mouse and human intestinal organoids lacking EECs displayed increased intestinal stem cell activity and failed to activate phosphorylation of downstream target S6 kinase ribosomal protein, a marker for activity of the master metabolic regulator mammalian target of rapamycin (mTOR). These phenotypes were similar to those observed when control mice were deprived of nutrients. CONCLUSIONS: EECs are essential regulators of crypt metabolism. Depletion of EECs recapitulated a fasting metabolic phenotype despite normal levels of ingested nutrients. These data suggest that EECs are required to relay nutritional information to the stem cell niche and are essential regulators of intestinal metabolism.


Asunto(s)
Células Madre Pluripotentes , Nicho de Células Madre , Ratones , Humanos , Animales , Células Enteroendocrinas/metabolismo , Intestinos , Nutrientes , Mamíferos
15.
Artículo en Inglés | MEDLINE | ID: mdl-36206853

RESUMEN

Proximal intestinal enterocytes expresses both intestinal-fatty acid binding protein (IFABP; FABP2) and liver-FABP (LFABP; FABP1). These FABPs are thought to be important in the net uptake of dietary lipid from the intestinal lumen, however their specific and potentially unique functions in the enterocyte remain incompletely understood. We previously showed markedly divergent phenotypes in LFABP-/- vs. IFABP-/- mice fed high-fat diets, with the former becoming obese and the latter remaining lean relative to wild-type (WT) mice, supporting different functional roles for each protein. Interestingly, neither mouse model displayed increased fecal lipid concentration, raising the question of whether the presence of one FABP was sufficient to compensate for absence of the other. Here, we generated an LFABP and IFABP double knockout mouse (DKO) to determine whether simultaneous ablation would lead to fat malabsorption, and to further interrogate the individual vs. overlapping functions of these proteins. Male WT, IFABP-/-, LFABP-/-, and DKO mice were fed a low-fat (10 % kcal) or high-fat (45 % kcal) diet for 12 weeks. The body weights and fat mass of the DKO mice integrated those of the LFABP-/- and IFABP-/- single knockouts, supporting the notion that IFABP and LFABP have distinct functions in intestinal lipid assimilation that result in downstream alterations in systemic energy metabolism. Remarkably, no differences in fecal fat concentrations were found in the DKO compared to WT, revealing that the FABPs are not required for net intestinal uptake of dietary lipid.


Asunto(s)
Grasas de la Dieta , Proteínas de Unión a Ácidos Grasos , Masculino , Ratones , Animales , Ratones Noqueados , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Grasas de la Dieta/metabolismo , Hígado/metabolismo , Homeostasis
16.
Microbiome ; 10(1): 221, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36510260

RESUMEN

BACKGROUND: After millions of years of coevolution, symbiotic microbiota has become an integral part of the host and plays an important role in host immunity, metabolism, and health. Vaccination, as an effective means of preventing infectious diseases, has been playing a vital role in the prevention and control of human and animal diseases for decades. However, so far, minimal is known about the effect of vaccination on fish symbiotic microbiota, especially mucosal microbiota, and its correlation with intestinal metabolism remains unclear. METHODS: Here we reported the effect of an inactivated bivalent Aeromonas hydrophila/Aeromonas veronii vaccine on the symbiotic microbiota and its correlation with the intestinal metabolism of farmed adult Nile tilapia (Oreochromis niloticus) by 16S rRNA gene high-throughput sequencing and gas chromatography-mass spectrometry metabolomics. RESULTS: Results showed that vaccination significantly changed the structure, composition, and predictive function of intestinal mucosal microbiota but did not significantly affect the symbiotic microbiota of other sites including gill mucosae, stomach contents, and stomach mucosae. Moreover, vaccination significantly reduced the relative abundance values of potential opportunistic pathogens such as Aeromonas, Escherichia-Shigella, and Acinetobacter in intestinal mucosae. Combined with the enhancement of immune function after vaccination, inactivated bivalent Aeromonas vaccination had a protective effect against the intestinal pathogen infection of tilapia. In addition, the metabolite differential analysis showed that vaccination significantly increased the concentrations of carbohydrate-related metabolites such as lactic acid, succinic acid, and gluconic acid but significantly decreased the concentrations of multiple lipid-related metabolites in tilapia intestines. Vaccination affected the intestinal metabolism of tilapia, which was further verified by the predictive function of intestinal microbiota. Furthermore, the correlation analyses showed that most of the intestinal differential microorganisms were significantly correlated with intestinal differential metabolites after vaccination, confirming that the effect of vaccination on intestinal metabolism was closely related to the intestinal microbiota. CONCLUSIONS: In conclusion, this paper revealed the microbial and metabolic responses induced by inactivated vaccination, suggesting that intestinal microbiota might mediate the effect of vaccination on the intestinal metabolism of tilapia. It expanded the novel understanding of vaccine protective mechanisms from microbial and metabolic perspectives, providing important implications for the potential influence of vaccination on human intestinal microbiota and metabolism. Video Abstract.


Asunto(s)
Cíclidos , Microbioma Gastrointestinal , Probióticos , Tilapia , Animales , Humanos , ARN Ribosómico 16S/genética , Probióticos/farmacología , Alimentación Animal/análisis
17.
Molecules ; 27(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35807248

RESUMEN

Hyperglycemia is reported to be associated with oxidative stress. It can result in changes in the activities of drug-metabolizing enzymes and membrane-integrated transporters, which can modify the fate of drugs and other xenobiotics; furthermore, it can result in the formation of non-enzyme catalyzed oxidative metabolites. The present work aimed to investigate how experimental hyperglycemia affects the intestinal and biliary appearance of the oxidative and Phase II metabolites of ibuprofen in rats. In vivo studies were performed by luminal perfusion of 250 µM racemic ibuprofen solution in control and streptozotocin-treated (hyperglycemic) rats. Analysis of the collected intestinal perfusate and bile samples was performed by HPLC-UV and HPLC-MS. No oxidative metabolites could be detected in the perfusate samples. The biliary appearance of ibuprofen, 2-hydroxyibuprofen, ibuprofen glucuronide, hydroxylated ibuprofen glucuronide, and ibuprofen taurate was depressed in the hyperglycemic animals. However, no specific non-enzymatic (hydroxyl radical initiated) hydroxylation product could be detected. Instead, the depression of biliary excretion of ibuprofen and ibuprofen metabolites turned out to be the indicative marker of hyperglycemia. The observed changes impact the pharmacokinetics of drugs administered in hyperglycemic individuals.


Asunto(s)
Hiperglucemia , Ibuprofeno , Animales , Cromatografía Líquida de Alta Presión , Glucurónidos/metabolismo , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Ibuprofeno/metabolismo , Intestinos , Hígado/metabolismo , Ratas
18.
J Agric Food Chem ; 70(27): 8317-8325, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35770971

RESUMEN

A diet with a high dietary fiber content is often recommended in today's nutrition due to several beneficial health effects related to its intake. Lignin as a part of dietary fiber is the second most abundant natural polymer and considered to be stable during digestion. However, some studies indicate a partial degradation during the intestinal metabolism. To further elucidate this hypothesis, the aim of this study was to investigate whether lignin is metabolized by the gut microbiota using the ex vivo pig cecum model. As potential lignin-derived metabolites might already naturally occur in the pig cecal matrix, an approach using isotopically labeled 13C lignin was chosen for this study. Ten small phenolic lignin degradation products and their time-dependent metabolism were identified via an untargeted HPLC-HRMS approach, and the quantity of the metabolites was estimated. From the results, we conclude that lignin is partially degraded releasing small phenolic metabolites.


Asunto(s)
Microbioma Gastrointestinal , Lignina , Animales , Ciego/metabolismo , Fibras de la Dieta/metabolismo , Lignina/metabolismo , Fenoles/metabolismo , Porcinos
19.
Front Pharmacol ; 13: 804723, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35496291

RESUMEN

Background: Slow transit constipation (STC) is becoming a common and frequently occurring disease in today's society, and it is necessary to explore the safe and effective treatment of STC. Method: Our study aimed to investigate whether the laxative effect of Maren pills (MRW) is associated with the regulation of intestinal microflora and intestinal metabolism in the colon. Loperamide hydrochloride-induced STC rats received MRW intragastrically for two consecutive weeks to evaluate the laxative effect of MRW involving the regulation of intestinal microflora, intestinal metabolism, and 5-HT signaling pathway. Intestinal microflora was detected by 16s rDNA sequencing, intestinal metabolism of short-chain fatty acids (SCFAs) was detected by HPLC, and the 5-HT signaling pathway was detected by WB, ELISA, immunofluorescence, and immunohistochemical analysis. Results: Our results revealed that the treatments with MRW increased not only the body weight, 24-h fecal number, 24-h wet fecal weight, 24-h dry fecal weight, fecal water content, and the intestinal propulsion rate but also the colonic goblet cell number, colonic Muc-2 protein expression, and colonic mucus layer thickness in the STC model rats. Moreover, MRW activated the 5-HT pathway by increasing the levels of 5-HT, 5-HIAA, 5-HT4R, CFTR, cAMP, and PKA in the colon tissue of STC rats. The 16S rDNA sequencing results showed that MRW improved the colonic microflora structure in colonic contents of STC rats, mainly by increasing Lactobacillus and decreasing Prevotella. Finally, we found that MRW regulated the SCFA metabolism in the colonic contents of the STC rats, mainly by increasing the contents of acetic acid, propionic acid, and butyric acid; the relative abundance of Lactobacillus was positively correlated with either contents of acetic acid, propionic acid, and butyric acid, and the relative abundance of Clostridium was negatively correlated. Conclusion: Our study further showed that MRW could improve constipation in STC rats, and the mechanism may be by regulating the intestinal microflora structure and improving the metabolism of SCFAs.

20.
Eur J Pharm Sci ; 175: 106211, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35605911

RESUMEN

FZJ-003 is a selective Janus kinase 1 (JAK1) inhibitor with structural modification of filgotinib for rheumatoid arthritis (RA) treatment. In this study, a series of in vivo and in vitro experiments were conducted to investigate the specific contribution of the intestine and liver to the disposition of FZJ-003 compared with filgotinib. Results showed that FZJ-003 exhibited over 2-fold higher systemic exposure and lower clearance than those of filgotinib, after intravenous or intragastric administration at the equivalent mole dose level to conscious rats. In anesthetized rats treated with different dosing routes, FZJ-003 exhibited higher intestinal bioavailability (Fa·Fg, 98.47 vs 34.54%) but lower hepatic bioavailability (Fh, 61.45 vs 92.07%). Permeability test in Caco-2 cells indicated that FZJ-003 was probably transported by passive diffusion (efflux ratio 1.37 < 2, indicating the approximately equivalent Papp values in two directions) with a little higher permeability (Papp,AP-to-BL, 1.42 × 10-6vs 1.01 × 10-6 cm·s-1, FZJ-003 vs filgotinib). Metabolic studies in pre-systemic incubation systems showed that FZJ-003 experienced more NADPH-dependent metabolism, especially in hepatic microsomes fractions. Unlike filgotinib, there was no obvious amide-hydrolyzed metabolite of FZJ-003 detected throughout the pre-systemic metabolic sites. Collectively, these data suggest that the higher systemic exposure of FZJ-003 than filgotinib is mainly attributed to the higher intestinal bioavailability including bypassing the amide hydrolysis and possible efflux by intestinal epithelial cells, which strongly support the structural design purpose in terms of pharmacokinetics.


Asunto(s)
Inhibidores de las Cinasas Janus , Microsomas Hepáticos , Amidas , Animales , Células CACO-2 , Humanos , Absorción Intestinal , Intestinos , Janus Quinasa 1/metabolismo , Hígado/metabolismo , Microsomas Hepáticos/metabolismo , Piridinas , Ratas , Triazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA