RESUMEN
Three-dimensional matrices are a new strategy used to tackle type I diabetes, a chronic metabolic disease characterized by the destruction of beta pancreatic cells. Type I collagen is an abundant extracellular matrix (ECM), a component that has been used to support cell growth. However, pure collagen possesses some difficulties, including a low stiffness and strength and a high susceptibility to cell-mediated contraction. Therefore, we developed a collagen hydrogel with a poly (ethylene glycol) diacrylate (PEGDA) interpenetrating network (IPN), functionalized with vascular endothelial growth factor (VEGF) to mimic the pancreatic environment for the sustenance of beta pancreatic cells. We analyzed the physicochemical characteristics of the hydrogels and found that they were successfully synthesized. The mechanical behavior of the hydrogels improved with the addition of VEGF, and the swelling degree and the degradation were stable over time. In addition, it was found that 5 ng/mL VEGF-functionalized collagen/PEGDA IPN hydrogels sustained and enhanced the viability, proliferation, respiratory capacity, and functionality of beta pancreatic cells. Hence, this is a potential candidate for future preclinical evaluation, which may be favorable for diabetes treatment.
RESUMEN
The preparation of hydrogels based on biopolymers like collagen and gum arabic gives a chance to provide novel options that can be used in biomedical field. Through a polymeric semi-interpenetration technique, collagen-based polymeric matrices can be associated with gum arabic while controlling its physicochemical and biological properties. To create novel hydrogels with their potential use in the treatment of wounds, the semi-interpenetration process, altering the concentration (0-40% by wt) of gum arabic in a collagen matrix is explored. The ability of gum arabic to create intermolecular hydrogen bonds in the collagen matrix enables the development of semi-interpenetrating polymeric networks (semi-IPN)-based hydrogels with a faster gelation time and higher crosslinking. Amorphous granular surfaces with linked porosity are present in matrices with 30% (by wt) of gum arabic, enhancing the storage modulus and thermal degradation resistance. The hydrogels swell to very high extent in hydrolytic and proteolytic environments, good hemocompatibility, and suppression of growth of pathogens like E. coli, and all it is enhanced by gum arabic included them, in addition to enabling the controlled release of ketorolac. The chemical composition of theses semi-IPN matrices have no deleterious effects on monocytes or fibroblasts, promoting their proliferation, and lowering alpha tumor necrosis factor (α-TNF) secretion in human monocytes.
RESUMEN
Owing to their suitable physical and chemical properties, hydrogels have been considered a convenient choice for wound dressings because of the advantages that they offer, such as maintaining the moist environment required for wound healing. In this research, interpenetrating hydrogels of polyphenol-functionalized gelatin (GE), a water-soluble protein derived from natural polymer collagen with excellent biocompatibility, no immunogenicity, and hydrophilicity, and polyvinylpyrrolidone (PVP), a hydrophilic, non-toxic, biodegradable, biocompatible polymer that is soluble in many solvents, widely used in biomedical applications, particularly as a basic material for the manufacturing of hydrogel wound dressings, were synthesized. Gallic acid (GA) was selected in this work to study whether the interpenetrating polymer networks (IPNs) synthesized can provide antioxidant properties given that this material is intended to be used as a potential wound dressing. The obtained IPN hydrogels showed improved mechanical properties in comparison with pristine gelatin network (net-GE), a porous structure, and good thermal stability for biological applications. The antioxidant capacity of the IPNs functionalized with GA was compared to Trolox standards, obtaining a radical scavenging activity (RSA%) equivalent to a Trolox concentration of 400 µM.
RESUMEN
Agricultural production is influenced by the water content in the soil and availability of fertilizers. Thus, superabsorbent hydrogels, based on polyacrylamide, natural cashew tree gum (CG) and potassium hydrogen phosphate (PHP), as fertilizer and water releaser were developed. The structure, morphology, thermal stability and chemical composition of samples of polyacrylamide and cashew tree gum hydrogels with the presence of fertilizer (HCGP) and without fertilizer (HCG) were investigated, using X-ray diffractometry (XRD), Fourier Transformed Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA/DTG) and Energy Dispersive Spectroscopy (EDS). Swelling/reswelling tests, textural analysis, effect of pH, release of nutrients and kinetics were determined; the ecotoxicity of the hydrogels was investigated by the Artemia salina test. The results showed that PHP incorporation in the hydrogel favored the crosslinking of chains. This increased the thermal stability in HCGP but decreased the hardness and adhesion properties. The HCGP demonstrated good swelling capacity (~15,000 times) and an excellent potential for reuse after fifty-five consecutive cycles. The swelling was favored in an alkaline pH due to the ionization of hydrophilic groups. The sustained release of phosphorus in HCGP was described by the Korsmeyer-Peppas model, and Fickian diffusion is the main fertilizer release mechanism. Finally, the hydrogels do not demonstrate toxicity, and HCGP has potential for application in agriculture.
Asunto(s)
Resinas Acrílicas/química , Anacardium , Hidrogeles/química , Gomas de Plantas/química , Animales , Artemia , Reactivos de Enlaces Cruzados , Preparaciones de Acción Retardada , Difusión , Fertilizantes , Hidrógeno/química , Concentración de Iones de Hidrógeno , Cinética , Microscopía Electrónica de Rastreo , Nutrientes , Fosfatos/química , Fósforo , Polímeros/química , Polisacáridos/química , Potasio/química , Espectroscopía Infrarroja por Transformada de Fourier , Árboles , Agua , Difracción de Rayos XRESUMEN
Cartilage tissue engineering (CTE) has the general objective of restoring and improving damaged cartilage. A very interesting strategy of CTE is to combine different polymers to obtain a viscoelastic material. In this study, we have evaluated the applicability of poly(2-hydroxyethyl methacrylate) networks semi-interpenetrated with sodium alginate for CTE. Alginate-containing hydrogels show an increase in scaffold porosity and swelling capacity, when compared with nonporous poly(2-hydroxyethyl methacrylate) scaffolds. Primary chondrocytes from young rats were cultured on the hydrogels, and an increase in chondrocyte proliferation and chondrocytic markers was observed in alginate-containing hydrogels. Chondrocytic phenotype was preserved on hydrogels containing the lowest amount of crosslinker and initiator (SEMI 3 and SEMI 4). In addition, nitric oxide production by RAW264.7 macrophages grown on hydrogels was tested, and none of the hydrogels showed high levels of this inflammatory marker after 2 days. These results indicate that our alginate-containing hydrogels could be useful for CTE.
Asunto(s)
Alginatos , Hidrogeles , Animales , Condrocitos , Condrogénesis , Metacrilatos , Ratas , Ingeniería de TejidosRESUMEN
The crystal structure of divainillin (systematic name: 6,6'-dihydroxy-5,5'-dimethoxy-[1,1'-biphenyl]-3,3'-dicarbaldehyde), C16H14O6, was determined from laboratory powder X-ray diffraction data using the software EXPO2013 (direct methods) and WinPSSP (direct-space approach). Divanillin molecules crystallize in the orthorhombic space group Pba2 (No. 32), with two molecules per unit cell (Z' = 1/2). Each divanillin molecule, with twofold symmetry, is linked through strong alcohol-aldehyde hydrogen bonds to four equivalent molecules, defining a three-dimensional hydrogen-bonding network, with rings made up of six divanillin units (a diamond-like arrangement). Each molecule is also connected through π-π interactions to a translation-equivalent molecule along c. Four consecutive molecules stacked along [001] belong to four different three-dimensional hydrogen-bonding networks defining a quadruple array of interpenetrating networks. This complex hydrogen-bonding array is proposed as an explanation for the aging process experienced by divanillin powders.
RESUMEN
Cd(II) transport from 1moldm(-3) HCl media was investigated across semi-interpenetrating hybrid membranes (SIHMs) that were prepared by mixing an organic matrix composed of ADOGEN(®) 364 as an extracting agent, cellulose triacetate as a polymeric support and nitrophenyloctyl ether as a plasticizer with an organic/inorganic network (silane phase, SP) composed of polydimethylsiloxane and a crosslinking agent. The stripping phase used was a 10(-2)mol dm(-3) ethanesulfonic acid solution. The effects of tetraorthoethoxysilane, phenyltrimethoxysilane and N',N'-bis[3-tri(methoxysilyl)propyl]ethylendiamine as crosslinking agents on the transport were studied. H3PO4 was used as an acid catalyst during the SP synthesis and optimized for transport performance. Solid-liquid extraction experiments were performed to determine the model that describe the transport of Cd(II) via ADOGEN(®) 364. The transport was found to be chained-carrier controlled with a percolation threshold of 0.094 mmol g(-1). The selective recovery of Cd(II) was studied with respect to Ni(II), Zn(II), Cu(II), and Pb(II) at a 1:1 molar ratio, and the optimized membrane system was applied for the recovery of Cd(II) from a real sample consisting of a Ni/Cd battery with satisfactory results. Finally, stability experiments were performed using the same membrane for 14 cycles. The results obtained showed that SIHMs had excellent stability and selectivity, with permeabilities comparable to those of PIMs.
Asunto(s)
Aminas , Cadmio/aislamiento & purificación , Membranas Artificiales , Purificación del Agua , Reactivos de Enlaces Cruzados , Ácido ClorhídricoRESUMEN
The objective of this study was to formulate an oral sustained release delivery system of sodium diclofenac(DS) based on sodium alginate (SA) as a hydrophilic carrier in combination with chitosan (CH) and sodium carboxymethyl cellulose (SCMC) as drug release modifiers to overcome the drug-related adverse effects and to improve bioavailability. Microspheres of DS were prepared using an easy method of ionotropic gelation. The prepared beads were evaluated for mean particle size, entrapment efficiency, swelling capacity, erosion and in-vitro drug release. They were also subjected to various studies such as Fourier Transform Infra-Red Spectroscopy (FTIR) for drug polymer compatibility, Scanning Electron Microscopy for surface morphology, X-ray Powder Diffraction Analysis (XRD) and Differential Scanning Calorimetric Analysis (DSC) to determine the physical state of the drug in the beads. The addition of SCMC during the preparation of polymeric beads resulted in lower drug loading and prolonged release of the DS. The release profile of batches F5 and F6 showed a maximum drug release of 96.97 ± 0.356% after 8 h, in which drug polymer ratio was decreased. The microspheres of sodium diclofenac with the polymers were formulated successfully. Analysis of the release profiles showed that the data corresponds to the diffusion-controlled mechanism as suggested by Higuchi.
O objetivo deste estudo foi elaborar um sistema de entrega de oral de liberação sustentada de diclofenaco sódico (DS) com base em alginato de sódio (SA), como um transportador hidrofílico em combinação com quitosana (CH) e carboximetilcelulose de sódio (SCMC) como modificadores de liberação de fármaco para diminuir os efeitos adversos e melhorar a biodisponibilidade. Prepararam-se microesferas de DS usando um método fácil de geleificação ionotrópica. Avaliaram-se os grânulos preparados quanto ao tamanho médio de partícula, eficiência de compressão, inchaço in vitro, erosão e capacidade de liberação de fármacos. Estes tammbém foram submetidos a vários estudos, como espectrometria no infravermelho com transformada de Fourier (FTIR) para compatibilidade de fármaco e polímero, microscopia eletrônica de varredura para morfologia de superfície, análise de difração de raios-X (XRD) do pós e análise calorimétrica diferencial de varredura (DSC) para determinar o estado físico do fármaco nos grânulos. A adição de SCMC durante a preparação de grânulos do polímero resultou em fármacos com menor carga de fármaco e liberação prolongada do DS. O perfil de liberação dos lotes F5 e F6 apresentou máximo de fármaco liberado de 96,97±0,356% após 8 h após o que a proporção do fármaco no polímero foi diminuída. As microesferas de diclofenaco de sódio com os polímeros foram formuladas com sucesso. A análise dos perfis de liberação mostrou que os dados correspondem ao mecanismo de difusão controlada, como sugerido por Higuchi.