Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 266: 122399, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39276480

RESUMEN

Nanosized activated carbon (NAC) as emerging engineered nanomaterials may interact with nanoplastics prevalent in aquatic environments to affect their fate and transport. This study investigated the effects of particle property (charge and concentration), water chemistry [electrolytes, pH, humic acid (HA), and sodium alginate (SA)], and hydrodynamic condition [wave (i.e., sonication) and turbulence (i.e., stirring)] on the heteroaggregation, disaggregation, and migration of NAC with positively charged amino-modified polystyrene (APS) or negatively charged bare polystyrene (BPS) nanoplastics. The homoaggregation rate of APS was slower than its heteroaggregation rate with NAC, with critical coagulation concentrations (CCC) decreasing at higher NAC concentrations. However, the homoaggregation rate of BPS was intermediate between its heteroaggregation rates under low (10 mg/L) and high (40 mg/L) NAC concentrations. The heteroaggregation rate of APS+NAC enhanced as pH increasing from 3 to 10, whereas the opposite trend was observed for BPS+NAC. In NaCl solution or at CaCl2 concentration below 2.5 mM, HA stabilized APS+NAC and BPS+NAC via steric hindrance more effectively than SA. Above 2.5 mM CaCl2, SA destabilized APS+NAC and BPS+NAC by calcium bridging more strongly than HA. The migration process of heteroaggregates was simulated in nearshore environments. The simulation suggests that without hydrodynamic disturbance, APS+NAC (971 m) may travel farther than BPS+NAC (901 m). Mild wave (30-s sonication) and intense turbulence (1500-rpm stirring) could induce disaggregation of heteroaggregates, thus potentially extending the migration distances of APS+NAC and BPS+NAC to 1611 and 2160 m, respectively. Conversely, intense wave (20-min sonication) and mild turbulence (150-rpm stirring) may further promote aggregation of heteroaggregates, shortening the migration distances of APS+NAC and BPS+NAC to 262 and 552 m, respectively. Particle interactions mainly involved van der Waals attraction, electrostatic repulsion, steric hindrance, calcium bridging, π-π interactions, hydrogen bonding, and hydrophobic interactions. These findings highlight the important influence of NAC on the fate, transport, and risks of nanoplastics in aquatic environments.

2.
ACS Nano ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264378

RESUMEN

The connection between solution structure, particle forces, and emergent phenomena at solid-liquid interfaces remains ambiguous. In this case study on boehmite aggregation, we established a connection between interfacial solution structure, emerging hydration forces between two approaching particles, and the resulting structure and kinetics of particle aggregation. In contrast to expectations from continuum-based theories, we observed a nonmonotonic dependence of the aggregation rate on the concentration of sodium chloride, nitrate, or nitrite, decreasing by 15-fold in 4 molal compared to 1 molal solutions. These results are accompanied by an increase in repulsive hydration forces and interfacial oscillatory features from 0.27-0.31 nm in 0.01 molal to 0.38-0.52 nm in 2 molal. Moreover, molecular dynamics (MD) simulations indicated that these changes correspond to enhanced ion correlations near the interface and produced loosely bound aggregates that retain electrolyte between the particles. We anticipate that these results will enable the prediction of particle aggregation, attachment, and assembly, with broad relevance to interfacial phenomena.

3.
Sci Rep ; 14(1): 20172, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39215064

RESUMEN

This research investigated the effect of ion concentration on the performance of low salinity water under different conditions. First, the effect of injection water composition on interparticle forces in quartz-kaolinite, kaolinite-kaolinite, and quartz-oil complexes was tested and modeled. The study used two oil samples, one with a high total acid number (TAN) and the other with a low TAN. The results illustrated that reducing the concentration of divalent ions to 10 mM resulted in the electric double layer (EDL) around the clay and quartz particles and the high TAN oil droplets, expanding and intensifying the repulsive forces. Next, the study investigated the effect of injection water composition and formation oil type on wettability and oil/water interfacial tension (IFT). The results were consistent with the modeling of interparticle forces. Reducing the divalent cation concentration to 10 mM led to IFT reduction and wettability alteration in high TAN oil, but low TAN oil reacted less to this change, with the contact angle and IFT remaining almost constant. Sandpack flooding experiments demonstrated that reducing the concentration of divalent cations incremented the recovery factor (RF) in the presence of high TAN oil. However, the RF increment was minimal for the low TAN oil sample. Finally, different low salinity water scenarios were injected into sandpacks containing migrating fines. By comparing the results of high TAN oil and low TAN oil samples, the study observed that fine migration was more effective than wettability alteration and IFT reduction mechanisms for increasing the RF of sandstone reservoirs.

4.
ACS Nano ; 18(26): 16743-16751, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38888092

RESUMEN

Oriented attachment (OA) occurs when nanoparticles in solution align their crystallographic axes prior to colliding and subsequently fuse into single crystals. Traditional colloidal theories such as DLVO provide a framework for evaluating OA but fail to capture key particle interactions due to the atomistic details of both the crystal structure and the interfacial solution structure. Using zinc oxide as a model system, we investigated the effect of the solvent on short-ranged and long-ranged particle interactions and the resulting OA mechanism. In situ TEM imaging showed that ZnO nanocrystals in toluene undergo long-range attraction comparable to 1kT at separations of 10 nm and 3kT near particle contact. These observations were rationalized by considering non-DLVO interactions, namely, dipole-dipole forces and torques between the polar ZnO nanocrystals. Langevin dynamics simulations showed stronger interactions in toluene compared to methanol solvents, consistent with the experimental results. Concurrently, we performed atomic force microscopy measurements using ZnO-coated probes for the short-ranged interaction. Our data are relevant to another type of non-DLVO interaction, namely, the repulsive solvation force. Specifically, the solvation force was stronger in water compared to ethanol and methanol, due to the stronger hydrogen bonding and denser packing of water molecules at the interface. Our results highlight the importance of non-DLVO forces in a general framework for understanding and predicting particle aggregation and attachment.

5.
J Hazard Mater ; 472: 134564, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38743982

RESUMEN

Heteroaggregation between polystyrene nanoplastics (PSNPs) and soot nanoparticles (STNPs) in aquatic environments may affect their fate and transport. This study investigated the effects of particle concentration ratio, electrolytes, pH, and humic acid on their heteroaggregation kinetics. The critical coagulation concentration (CCC) ranked CCCPSNPs > CCCPSNPs-STNPs > CCCSTNPs, indicating that heteroaggregation rates fell between homoaggregation rates. In NaCl solution, as the PSNPs/STNPs ratio decreased from 9/1 to 3/7, heteroaggregation rate decreased and CCCPSNPs-STNPs increased from 200 to 220 mM due to enhanced electrostatic repulsion. Outlier was observed at PSNPs/STNPs= 1/9, where CCCPSNPs-STNPs= 170 mM and homoaggregation of STNPs dominated. However, in CaCl2 solution where calcium bridged with STNPs, heteroaggregation rate increased and CCCPSNPs-STNPs decreased from 26 to 5 mM as the PSNPs/STNPs ratio decreasing from 9/1 to 1/9. In composite water samples, heteroaggregation occurred only at estuarine and marine salinities. Acidic condition promoted heteroaggregation via charge screening. Humic acid retarded or promoted heteroaggregation in NaCl or CaCl2 solutions by steric hindrance or calcium bridging, respectively. Other than van der Waals attraction and electrostatic repulsion, heteroaggregation was affected by steric hindrance, hydrophobic interactions, π - π interactions, and calcium bridging. The results highlight the role of black carbon on colloidal stability of PSNPs in aquatic environments.

6.
ACS Nano ; 17(16): 15556-15567, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37556761

RESUMEN

Predicting nanoparticle aggregation and attachment phenomena requires a rigorous understanding of the interplay among crystal structure, particle morphology, surface chemistry, solution conditions, and interparticle forces, yet no comprehensive picture exists. We used an integrated suite of experimental, theoretical, and simulation methods to resolve the effect of solution pH on the aggregation of boehmite nanoplatelets, a case study with important implications for the environmental management of legacy nuclear waste. Real-time observations showed that the particles attach preferentially along the (010) planes at pH 8.5 and the (101) planes at pH 11. To rationalize these results, we established the connection between key physicochemical phenomena across the relevant length scales. Starting from molecular-scale simulations of surface hydroxyl reactivity, we developed an interfacial-scale model of the corresponding electrostatic potentials, with subsequent particle-scale calculations of the resulting driving forces allowing successful prediction of the attachment modes. Finally, we scaled these phenomena to understand the collective structure at the aggregate-scale. Our results indicate that facet-specific differences in surface chemistry produce heterogeneous surface charge distributions that are coupled to particle anisotropy and shape-dependent hydrodynamic forces, to play a key role in controlling aggregation behavior.

7.
J Colloid Interface Sci ; 611: 617-628, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34974225

RESUMEN

HYPOTHESIS: Electrostatic extraction of particles from a bed to a pendent droplet to form liquid marbles has previously been investigated with respect to particle conductivity, size and shape, however, interparticle forces have not been specifically interrogated. If cohesion is the dominant force within the particle bed, then particles will be more readily extracted with reduced surface free energy. EXPERIMENTS: Glass particles were surface-modified using various alkyltrichlorosilanes. The surface free energy was measured for each sample using colloid probe atomic force microscopy (AFM) and sessile drop measurements on similarly modified glass slides. The ease of electrostatic particle extraction of each particle sample to a pendent droplet was compared by quantifying the electric field force required for successful extraction as a function of the measured surface free energy. FINDINGS: Surface free energy calculated from sessile droplet measurements and AFM were not in agreement, as work of adhesion of a liquid droplet on a planar substrate is not representative of the contact between particles. Ease of electrostatic extraction of particles was observed to generally decrease as a function of AFM-derived surface free energy, confirming this is a critical factor in electrostatic delivery of particles to a pendent droplet. Roughness was also shown to inhibit particle extraction.


Asunto(s)
Coloides , Vidrio , Microscopía de Fuerza Atómica , Tamaño de la Partícula , Electricidad Estática
8.
Int J Pharm ; 596: 120244, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33484920

RESUMEN

Inadequate flowability of powders in industries during handling can cause many problems. For example, lack of flow from hoppers, poor tablet weight consistency, and low production rate in tableting. Many factors are known to commonly affect flow properties of powders, such as temperature, humidity and conditioning duration. In this paper, flow properties of a mannitol powder, which was conditioned between 24 and 72 h at various high relative humidities and temperature, were measured using a shear tester. A statistical model was developed to investigate the relative importance of these variables on the mannitol flow properties. The developed model showed all independent variables are significant in estimating bulk cohesion. Two separate approaches were used to evaluate inter-particle forces in the bulk, and how these changed with environmental conditions. First, inter-particle forces were inferred from the measured bulk properties using the Rumpf model approach. Secondly, inter-particle forces were predicted based on a model of moisture present on the particle surface using a combination of Kelvin model with the Laplace-Young (KLY) equation. The second approach also involved a new method to measure surface energy of mannitol powder based on measurements using Finite Dilution Inverse Gas Chromatography (FD-IGC). The surface energies of the mannitol powder were measured at high temperature (35 °C) and at different range of relative humidities. In spite of the fundamentally different approaches to the two ways of inferring inter-particles forces, these forces came out within less than 1.5:1 in magnitude. The Rumpf approach from bulk behaviour data obviously reflected the measured change in behaviour with humidity in particular, but this was not predicted from the KLY approach, however the likely reasons for this are postulated and recommendations for improvement are made.


Asunto(s)
Excipientes , Manitol , Humedad , Tamaño de la Partícula , Polvos , Propiedades de Superficie , Temperatura
9.
Proc Natl Acad Sci U S A ; 117(28): 16234-16242, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601178

RESUMEN

Ultrasound propagation through externally stressed, disordered granular materials was experimentally and numerically investigated. Experiments employed piezoelectric transducers to excite and detect longitudinal ultrasound waves of various frequencies traveling through randomly packed sapphire spheres subjected to uniaxial compression. The experiments featured in situ X-ray tomography and diffraction measurements of contact fabric, particle kinematics, average per-particle stress tensors, and interparticle forces. The experimentally measured packing configuration and inferred interparticle forces at different sample stresses were used to construct spring networks characterized by Hessian and damping matrices. The ultrasound responses of these network were simulated to investigate the origins of wave velocity, acoustic paths, dispersion, and attenuation. Results revealed that both packing structure and interparticle force heterogeneity played an important role in controlling wave velocity and dispersion, while packing structure alone quantitatively explained most of the observed wave attenuation. This research provides insight into time- and frequency-domain features of wave propagation in randomly packed granular materials, shedding light on the fundamental mechanisms controlling wave velocities, dispersion, and attenuation in such systems.

10.
J Colloid Interface Sci ; 579: 794-804, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32673856

RESUMEN

HYPOTHESIS: Production of corrugated particles generally introduces several morphological heterogeneities, such as surface roughness and local variations in the corrugation pattern, which are known from model system studies to significantly alter the colloidal interaction energy. Thus, realistic particle morphologies need to be investigated and compared to simple model shapes to yield insights into how interactions are influenced by such morphological heterogeneities. EXPERIMENTS: We applied the surface element integration method to study the colloidal interactions of electron tomography-based, realistic, corrugated colloidal particles and their symmetric, concave polyhedral analogs by differentiating local surface features to vertices, ridges and ridge networks. We applied molecular modelling to assess the surface access of these features. FINDINGS: Significant mixing of the interaction energy was found between the different surface features. Larger and smaller energy barrier heights and secondary minimum depths were observed compared to the concave polyhedral models with similar volume or surface area depending on the contacting surface feature. Analysis of surface area distributions suggests that the deviations originate from the altered effective contact distance as a result of surface roughness and other morphological heterogeneities. We also found that the surface access of nanoparticles is greatly impaired at the crevices between the surface corrugations.

11.
Proc Natl Acad Sci U S A ; 114(29): 7537-7542, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28679632

RESUMEN

Oriented attachment of nanocrystalline subunits is recognized as a common crystallization pathway that is closely related to formation of nanoparticle superlattices, mesocrystals, and other kinetically stabilized structures. Approaching particles have been observed to rotate to achieve coalignment while separated by nanometer-scale solvent layers. Little is known about the forces that drive coalignment, particularly in this "solvent-separated" regime. To obtain a mechanistic understanding of this process, we used atomic-force-microscopy-based dynamic force spectroscopy with tips fabricated from oriented mica to measure the adhesion forces between mica (001) surfaces in electrolyte solutions as a function of orientation, temperature, electrolyte type, and electrolyte concentration. The results reveal an ∼60° periodicity as well as a complex dependence on electrolyte concentration and temperature. A continuum model that considers the competition between electrostatic repulsion and van der Waals attraction, augmented by microscopic details that include surface separation, water structure, ion hydration, and charge regulation at the interface, qualitatively reproduces the observed trends and implies that dispersion forces are responsible for establishing coalignment in the solvent-separated state.

12.
J Chromatogr A ; 1436: 118-32, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26858113

RESUMEN

Lateral transcolumn heterogeneities and the presence of larger voids in a packing (comparable to the particle size) can limit the preparation of efficient chromatographic columns. Optimizing and understanding the packing process provides keys to better packing structures and column performance. Here, we investigate the slurry-packing process for a set of capillary columns packed with C18-modified, 1.3µm bridged-ethyl hybrid porous silica particles. The slurry concentration used for packing 75µm i.d. fused-silica capillaries was increased gradually from 5 to 50mg/mL. An intermediate concentration (20mg/mL) resulted in the best separation efficiency. Three capillaries from the set representing low, intermediate, and high slurry concentrations were further used for three-dimensional bed reconstruction by confocal laser scanning microscopy and morphological analysis of the bed structure. Previous studies suggest increased slurry concentrations will result in higher column efficiency due to the suppression of transcolumn bed heterogeneities, but only up to a critical concentration. Too concentrated slurries favour the formation of larger packing voids (reaching the size of the average particle diameter). Especially large voids, which can accommodate particles from>90% of the particle size distribution, are responsible for a decrease in column efficiency at high slurry concentrations. Our work illuminates the increasing difficulty of achieving high bed densities with small, frictional, cohesive particles. As particle size decreases interparticle forces become increasingly important and hinder the ease of particle sliding during column packing. While an optimal slurry concentration is identified with respect to bed morphology and separation efficiency under conditions in this work, our results suggest adjustments of this concentration are required with regard to particle size, surface roughness, column dimensions, slurry liquid, and external effects utilized during the packing process (pressure protocol, ultrasound, electric fields).


Asunto(s)
Cromatografía Líquida de Alta Presión/instrumentación , Dióxido de Silicio/química , Cromatografía Líquida de Alta Presión/métodos , Fricción , Microscopía Confocal , Tamaño de la Partícula , Porosidad , Presión
13.
Small ; 11(45): 5984-6008, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26436692

RESUMEN

Studies on the self-assembly of nanoparticles have been a hot topic in nanotechnology for decades and still remain relevant for the present and future due to their tunable collective properties as well as their remarkable applications to a wide range of fields. The novel properties of nanoparticle assemblies arise from their internal interactions and assemblies with the desired architecture key to constructing novel nanodevices. Therefore, a comprehensive understanding of the interparticle forces of nanoparticle self-assemblies is a pre-requisite to the design and control of the assembly processes, so as to fabricate the ideal nanomaterial and nanoproducts. Here, different categories of interparticle forces are classified and discussed according to their origins, behaviors and functions during the assembly processes, and the induced collective properties of the corresponding nanoparticle assemblies. Common interparticle forces, such as van der Waals forces, electrostatic interactions, electromagnetic dipole-dipole interactions, hydrogen bonds, solvophonic interactions, and depletion interactions are discussed in detail. In addition, new categories of assembly principles are summarized and introduced. These are termed template-mediated interactions and shape-complementary interactions. A deep understanding of the interactions inside self-assembled nanoparticles, and a broader perspective for the future synthesis and fabrication of these promising nanomaterials is provided.


Asunto(s)
Fenómenos Mecánicos , Nanopartículas/química , Nanotecnología/métodos , Campos Electromagnéticos , Enlace de Hidrógeno , Nanopartículas/ultraestructura , Electricidad Estática
14.
ACS Nano ; 9(4): 3453-69, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25808609

RESUMEN

Optical trapping using focused laser beams (laser tweezers) has been proven to be extremely useful for contactless manipulation of a variety of small objects, including biological cells, organelles within cells, and a wide range of other dielectric micro- and nano-objects. Colloidal metal nanoparticles have drawn increasing attention in the field of optical trapping because of their unique interactions with electromagnetic radiation, caused by surface plasmon resonance effects, enabling a large number of nano-optical applications of high current interest. Here we try to give a comprehensive overview of the field of laser trapping and manipulation of metal nanoparticles based on results reported in the recent literature. We also discuss and describe the fundamentals of optical forces in the context of plasmonic nanoparticles, including effects of polarization, optical angular momentum, and laser heating effects, as well as the various techniques that have been used to trap and manipulate metal nanoparticles. We conclude by suggesting possible directions for future research.


Asunto(s)
Nanopartículas del Metal/química , Nanotecnología/métodos , Pinzas Ópticas , Coloides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA