Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
HLA ; 103(1): e15293, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37947386

RESUMEN

The SNP-HLA Reference Consortium (SHLARC), a component of the 18th International HLA and Immunogenetics Workshop, is aimed at collecting diverse and extensive human leukocyte antigen (HLA) data to create custom reference panels and enhance HLA imputation techniques. Genome-wide association studies (GWAS) have significantly contributed to identifying genetic associations with various diseases. The HLA genomic region has emerged as the top locus in GWAS, particularly in immune-related disorders. However, the limited information provided by single nucleotide polymorphisms (SNPs), the hallmark of GWAS, poses challenges, especially in the HLA region, where strong linkage disequilibrium (LD) spans several megabases. HLA imputation techniques have been developed using statistical inference in response to these challenges. These techniques enable the prediction of HLA alleles from genotyped GWAS SNPs. Here we present the SHLARC activities, a collaborative effort to create extensive, and multi-ethnic reference panels to enhance HLA imputation accuracy.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Inmunogenética , Alelos , Antígenos HLA/genética , Genotipo
2.
HLA ; 99(4): 328-356, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35094503

RESUMEN

As the primary genetic determinant of immune recognition of self and non-self, the hyperpolymorphic HLA genes play key roles in disease association and transplantation. The large, variably sized HLA class II genes have historically been less well characterized than the shorter HLA class I genes. Here, we have used Pacific Biosciences Single Molecule Real-Time (SMRT®) DNA sequencing to perform four-field resolution HLA typing of HLA-DRB1/3/4/5, -DQA1, -DQB1, -DPA1 and -DPB1 from a panel of 181 B-lymphoblastoid cell lines from the International HLA and Immunogenetics Workshops. By interrogating all exons, introns, and the untranslated regions of these important reference cells, we have improved their HLA typing resolution on the IPD-IMGT/HLA database. We observed widespread non-coding polymorphism, with over twice as many unique genomic sequences identified compared with coding sequences (CDS). We submitted 263 unique sequences to the IPD-IMGT/HLA Database, often from multiple cell lines, including 114 confirmations of existing alleles, of which 30 were also extensions to full-length genomic sequences where only CDS was available previously. A total of 149 novel alleles were identified, largely differing from their closest reference allele sequences by a single nucleotide polymorphism (SNP). However, some highly divergent alleles were deemed to be recombinants, only detectable by full-length sequencing with long, phased reads. The fourth-field variation we observed allowed fine mapping of linkage disequilibrium patterns and haplotypes to particular ancestries. This study has highlighted the under-appreciated non-coding diversity in HLA class II genes, with potential implications for population genetic and clinical studies.


Asunto(s)
Genes MHC Clase II , Inmunogenética , Alelos , Línea Celular , Frecuencia de los Genes , Haplotipos , Humanos
3.
Hum Immunol ; 82(7): 505-522, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34030896

RESUMEN

The primary goal of the unrelated population HLA diversity (UPHD) component of the 17th International HLA and Immunogenetics Workshop was to characterize HLA alleles at maximum allelic-resolution in worldwide populations and re-evaluate patterns of HLA diversity across populations. The UPHD project included HLA genotype and sequence data, generated by various next-generation sequencing methods, from 4,240 individuals collated from 12 different countries. Population data included well-defined large datasets from the USA and smaller samples from Europe, Australia, and Western Asia. Allele and haplotype frequencies varied across populations from distant geographical regions. HLA genetic diversity estimated at 2- and 4-field allelic resolution revealed that diversity at the majority of loci, particularly for European-descent populations, was lower at the 2-field resolution. Several common alleles with identical protein sequences differing only by intronic substitutions were found in distinct haplotypes, revealing a more detailed characterization of linkage between variants within the HLA region. The examination of coding and non-coding nucleotide variation revealed many examples in which almost complete biunivocal relations between common alleles at different loci were observed resulting in higher linkage disequilibrium. Our reference data of HLA profiles characterized at maximum resolution from many populations is useful for anthropological studies, unrelated donor searches, transplantation, and disease association studies.


Asunto(s)
Alelos , Frecuencia de los Genes , Genética de Población , Antígenos HLA/genética , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunogenética , Susceptibilidad a Enfermedades , Estudios de Asociación Genética , Genética de Población/métodos , Humanos , Inmunogenética/métodos , Inmunología del Trasplante
4.
HLA ; 95(6): 561-572, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32227678

RESUMEN

We have developed a genotyping assay that produces fully phased, unambiguous HLA-E genotyping using Pacific Biosciences' single molecule real-time DNA sequencing. In total 212 cell lines were genotyped, including the panel of 107 established at the 10th International Histocompatibility Workshop. Our results matched the previously known HLA-E genotype in 94 (44.3%) cell lines, in all cases either improving or equalling previous genotyping resolution. Three (1.4%) cells had discrepant HLA-E genotyping data and 115 (54.2%) had no previous HLA-E data. The HLA-E genotypes for four (1.9%) cell lines resulted in a change of zygosity by identifying two distinct haplotypes. We discovered eight novel HLA-E alleles, extended the known reference sequence of seven and confirmed the existence of a further 10.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Antígenos de Histocompatibilidad Clase II , Alelos , Línea Celular , Genotipo , Antígenos HLA , Antígenos de Histocompatibilidad Clase II/genética , Prueba de Histocompatibilidad , Análisis de Secuencia de ADN
5.
Hum Immunol ; 80(7): 449-460, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30844424

RESUMEN

Extended molecular characterization of HLA genes in the IHWG reference B-lymphoblastoid cell lines (B-LCLs) was one of the major goals for the 17th International HLA and Immunogenetics Workshop (IHIW). Although reference B-LCLs have been examined extensively in previous workshops complete high-resolution typing was not completed for all the classical class I and class II HLA genes. To address this, we conducted a single-blind study where select panels of B-LCL genomic DNA samples were distributed to multiple laboratories for HLA genotyping by next-generation sequencing methods. Identical cell panels comprised of 24 and 346 samples were distributed and typed by at least four laboratories in order to derive accurate consensus HLA genotypes. Overall concordance rates calculated at both 2- and 4-field allele-level resolutions ranged from 90.4% to 100%. Concordance for the class I genes ranged from 91.7 to 100%, whereas concordance for class II genes was variable; the lowest observed at HLA-DRB3 (84.2%). At the maximum allele-resolution 78 B-LCLs were defined as homozygous for all 11 loci. We identified 11 novel exon polymorphisms in the entire cell panel. A comparison of the B-LCLs NGS HLA genotypes with the HLA genotypes catalogued in the IPD-IMGT/HLA Database Cell Repository, revealed an overall allele match at 68.4%. Typing discrepancies between the two datasets were mostly due to the lower-resolution historical typing methods resulting in incomplete HLA genotypes for some samples listed in the IPD-IMGT/HLA Database Cell Repository. Our approach of multiple-laboratory NGS HLA typing of the B-LCLs has provided accurate genotyping data. The data generated by the tremendous collaborative efforts of the 17th IHIW participants is useful for updating the current cell and sequence databases and will be a valuable resource for future studies.


Asunto(s)
Linfocitos B/virología , Antígenos HLA/genética , Herpesvirus Humano 4/inmunología , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase I/genética , Prueba de Histocompatibilidad/métodos , Alelos , Línea Celular Transformada , Transformación Celular Viral , Exactitud de los Datos , Exones/genética , Sitios Genéticos , Variación Genética , Genotipo , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Histocompatibilidad , Homocigoto , Humanos , Análisis de Secuencia de ADN/métodos , Método Simple Ciego
6.
Hum Immunol ; 80(9): 633-643, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30735756

RESUMEN

The highly polymorphic classical human leukocyte antigen (HLA) genes display strong linkage disequilibrium (LD) that results in conserved multi-locus haplotypes. For unrelated individuals in defined populations, HLA haplotype frequencies can be estimated using the expectation-maximization (EM) method. Haplotypes can also be constructed using HLA allele segregation from nuclear families. It is straightforward to identify many HLA genotyping inconsistencies by visually reviewing HLA allele segregation in family members. It is also possible to identify potential crossover events when two or more children are available in a nuclear family. This process of visual inspection can be unwieldy, and we developed the "HaplObserve" program to standardize the process and automatically build haplotypes using family-based HLA allele segregation. HaplObserve facilitates systematically building haplotypes, and reporting potential crossover events. HLA Haplotype Validator (HLAHapV) is a program originally developed to impute chromosomal phase from genotype data using reference haplotype data. We updated and adapted HLAHapV to systematically compare observed and estimated haplotypes. We also used HLAHapV to identify haplotypes when uninformative HLA genotypes are present in families. Finally, we developed "pould", an R package that calculates haplotype frequencies, and estimates standard measures of global (locus-level) LD from both observed and estimated haplotypes.


Asunto(s)
Antígenos HLA/genética , Haplotipos/genética , Programas Informáticos , Alelos , Niño , Frecuencia de los Genes/genética , Sitios Genéticos , Heterocigoto , Humanos , Desequilibrio de Ligamiento/genética , Núcleo Familiar , Linaje
7.
HLA ; 91(2): 88-101, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29171935

RESUMEN

The hyperpolymorphic HLA genes play important roles in disease and transplantation and act as genetic markers of migration and evolution. A panel of 107 B-lymphoblastoid cell lines (B-LCLs) was established in 1987 at the 10th International Histocompatibility Workshop as a resource for the immunogenetics community. These B-LCLs are well characterised and represent diverse ethnicities and HLA haplotypes. Here we have applied Pacific Biosciences' Single Molecule Real-Time (SMRT) DNA sequencing to HLA type 126 B-LCL, including the 107 International HLA and Immunogenetics Workshop (IHIW) cells, to ultra-high resolution. Amplicon sequencing of full-length HLA class I genes (HLA-A, -B and -C) and partial length HLA class II genes (HLA-DRB1, -DQB1 and -DPB1) was performed. We typed a total of 931 HLA alleles, 895 (96%) of which were consistent with the typing in the IPD-IMGT/HLA Database (Release 3.27.0, January 20, 2017), with 595 (64%) typed at a higher resolution. Discrepant types, including novel alleles (n = 10) and changes in zygosity (n = 13), as well as previously unreported types (n = 34) were observed. In addition, patterns of linkage disequilibrium were distinguished by four-field resolution typing of HLA-B and HLA-C. By improving and standardising the HLA typing of these B-LCLs, we have ensured their continued usefulness as a resource for the immunogenetics community in the age of next generation DNA sequencing.


Asunto(s)
Sistemas de Computación , Antígenos HLA/genética , Inmunogenética , Internacionalidad , Análisis de Secuencia de ADN , Imagen Individual de Molécula , Alelos , Línea Celular , Humanos , Desequilibrio de Ligamiento/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA