Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Struct Biol ; 208(2): 137-151, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31445086

RESUMEN

Formation of the internal aldimine (LLP) is the first regulatory step that activates pyridoxal 5'-phosphate (PLP) dependent enzymes. The process involves a nucleophilic attack on PLP by an active site Lys residue, followed by proton transfers resulting in a carbinolamine (CBA) intermediate that undergoes dehydration to form the aldimine. Despite a general understanding of the pathway, the structural basis of the mechanistic roles of specific residues in each of these steps is unclear. Here we determined the crystal structure of the LLP form (holo-form) of a Group II PLP-dependent decarboxylase from Methanocaldococcus jannaschii (MjDC) at 1.7 Šresolution. By comparing the crystal structure of MjDC in the LLP form with that of the pyridoxal-P (non-covalently bound aldehyde) form, we demonstrate structural evidence for a water-mediated mechanism of LLP formation. A conserved extended hydrogen-bonding network around PLP coupled to the pyridinyl nitrogen influences activation and catalysis by affecting the electronic configuration of PLP. Furthermore, the two cofactor bound forms revealed open and closed conformations of the catalytic loop (CL) in the absence of a ligand, supporting a hypothesis for a regulatory link between LLP formation and CL dynamics. The evidence suggests that activation of Group II decarboxylases involves a complex interplay of interactions between the electronic states of PLP, the active site micro-environment and CL dynamics.


Asunto(s)
Archaea/enzimología , Carboxiliasas/química , Carboxiliasas/metabolismo , Catálisis , Enlace de Hidrógeno , Methanocaldococcus/enzimología , Fosfato de Piridoxal/metabolismo
2.
Biotechnol J ; 11(8): 1025-36, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27168488

RESUMEN

Methods for rapid and direct quantification of enzyme kinetics independent of the substrate stand in high demand for both fundamental research and bioprocess development. This study addresses the need for a generic method by developing an automated, standardizable HPLC platform monitoring reaction progress in near real-time. The method was applied to amine transaminase (ATA) catalyzed reactions intensifying process development for chiral amine synthesis. Autosampler-assisted pipetting facilitates integrated mixing and sampling under controlled temperature. Crude enzyme formulations in high and low substrate concentrations can be employed. Sequential, small (1 µL) sample injections and immediate detection after separation permits fast reaction monitoring with excellent sensitivity, accuracy and reproducibility. Due to its modular design, different chromatographic techniques, e.g. reverse phase and size exclusion chromatography (SEC) can be employed. A novel assay for pyridoxal 5'-phosphate-dependent enzymes is presented using SEC for direct monitoring of enzyme-bound and free reaction intermediates. Time-resolved changes of the different cofactor states, e.g. pyridoxal 5'-phosphate, pyridoxamine 5'-phosphate and the internal aldimine were traced in both half reactions. The combination of the automated HPLC platform with SEC offers a method for substrate-independent screening, which renders a missing piece in the assay and screening toolbox for ATAs and other PLP-dependent enzymes.


Asunto(s)
Cromatografía en Gel/métodos , Cromatografía Líquida de Alta Presión/métodos , Fosfato de Piridoxal/química , Transaminasas/aislamiento & purificación , Aminas/química , Cinética , Piridoxamina/análogos & derivados , Piridoxamina/química , Especificidad por Sustrato
3.
Protein Sci ; 25(1): 166-83, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26013176

RESUMEN

The importance of protonation states and proton transfer in pyridoxal 5'-phosphate (PLP)-chemistry can hardly be overstated. Although experimental approaches to investigate pKa values can provide general guidance for assigning proton locations, only static pictures of the chemical species are available. To obtain the overall protein dynamics for the interpretation of detailed enzyme catalysis in this study, guided by information from solid-state NMR, we performed molecular dynamics (MD) simulations for the PLP-dependent enzyme tryptophan synthase (TRPS), whose catalytic mechanism features multiple quasi-stable intermediates. The primary objective of this work is to elucidate how the position of a single proton on the reacting substrate affects local and global protein dynamics during the catalytic cycle. In general, proteins create a chemical environment and an ensemble of conformational motions to recognize different substrates with different protonations. The study of these interactions in TRPS shows that functional groups on the reacting substrate, such as the phosphoryl group, pyridine nitrogen, phenolic oxygen and carboxyl group, of each PLP-bound intermediate play a crucial role in constructing an appropriate molecular interface with TRPS. In particular, the protonation states of the ionizable groups on the PLP cofactor may enhance or weaken the attractions between the enzyme and substrate. In addition, remodulation of the charge distribution for the intermediates may help generate a suitable environment for chemical reactions. The results of our study enhance knowledge of protonation states for several PLP intermediates and help to elucidate their effects on protein dynamics in the function of TRPS and other PLP-dependent enzymes.


Asunto(s)
Simulación de Dinámica Molecular , Protones , Fosfato de Piridoxal/análogos & derivados , Triptófano Sintasa/metabolismo , Biocatálisis , Cristalografía por Rayos X , Estructura Molecular , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Triptófano Sintasa/química
4.
Biochim Biophys Acta ; 1854(4): 278-83, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25560296

RESUMEN

L-Threonine aldolases (TAs), a family of enzymes belonging to the fold-type I pyridoxal 5'-phosphate (PLP) dependent enzymes, play a role in catalyzing the reversible cleavage of l-3-hydroxy-α-amino acids to glycine and the corresponding aldehydes. Threonine aldolases have great biotechnological potential for the syntheses of pharmaceutically relevant drug molecules because of their stereospecificity. The pH-dependency of their catalytic activity, affecting reaction intermediates, led us to study the effect of low-pH on Escherichia coli TA (eTA) structure. We report here a low-pH crystal structure of eTA at 2.1 Å resolution, with a non-covalently bound uncleaved l-serine substrate, and a PLP cofactor bound as an internal aldimine. This structure contrasts with other eTA structures obtained at physiological pH that show products or substrates bound as PLP-external aldimines. The non-productive binding at low-pH is due to an unusual substrate serine binding orientation in which the α-amino group and carboxylate group are in the wrong positions (relative to the active site residues) as a result of protonation of the α-amino group of the serine, as well as the active site histidines, His83 and His126. Protonation of these residues prevents the characteristic nucleophilic attack of the α-amino group of substrate serine on C4' of PLP to form the external aldimine. Our study shows that at low pH the change in charge distribution at the active site can result in substrates binding in a non-productive orientation.


Asunto(s)
Escherichia coli/enzimología , Glicina Hidroximetiltransferasa/química , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Activación Enzimática , Glicina Hidroximetiltransferasa/antagonistas & inhibidores , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Unión Proteica , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Serina/química , Serina/metabolismo , Treonina/química , Treonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA