Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 134: 55-64, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37673533

RESUMEN

Vacuum ultraviolet (VUV) photolysis is a facile method for volatile organic compounds (VOCs) elimination, but is greatly limited by the relatively low removal efficiency and the possible secondary pollution. To overcome above drawbacks, we developed an efficient method for VOCs elimination via VUV photolysis coupled with wet scrubbing process. In this coupled process, volatile toluene, a representative of VOCs, was oxidized by the gas-phase VUV photolysis, and then scrubbed into water for further oxidation by the liquid-phase VUV photolysis. More than 96% of toluene was efficiently removed by this coupled process, which was 2 times higher than that in the gas-phase VUV photolysis. This improvement was attributed to the synergistic effect between gas-phase and liquid-phase VUV photolysis. O3 and HO• are the predomination reactive species for the toluene degradation in this coupled process, and the generation of O3 in gas-phase VUV photolysis can efficiently enhance the HO• production in liquid-phase VUV photolysis. The result from in-situ proton transfer reaction ionization with mass analyzer (PTR-MS) further suggested that most intermediates were trapped by the wet scrubbing process and efficiently oxidized by the liquid-phase VUV photolysis, showing a high performance for controlling the secondary pollution. Furthermore, the result of stability test and the reuse of solution demonstrated that this coupled process has a highly stable and sustainable performance for toluene degradation. This study presents an environmentally benign and highly efficient VUV photolysis for gaseous VOCs removal in the wet scrubbing process.


Asunto(s)
Compuestos Orgánicos Volátiles , Fotólisis , Vacio , Oxidación-Reducción , Gases , Tolueno
2.
Chemosphere ; 303(Pt 1): 134968, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35580642

RESUMEN

Remdesivir (RDV), dexamethasone (DEX) and hydroxychloroquine (HCQ) were widely used in the treatment of COVID-19 pneumonia, possibly causing environmental risks and drug-resistance viruses. This study elucidated the degradation mechanisms and potential toxicity risks of the three anti-COVID-19 drugs by UV and ultraviolet-coupled advanced oxidation processes (UV/AOPs). All the drugs could be degraded by more than 98% within 3 min under the following optimal conditions: pH of 5.0 and drug-to-oxidant (H2O2) molar ratio of 1:200. Combined with density functional theory (DFT) analysis and high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS), twenty-four transformation products (TPs) were detected and the main degradation pathways were investigated. Based on bacterial luminescence inhibition test and the peak-area evolution of TPs, RDV and HCQ showed an obvious toxicity-increase region when TPs were generated in large quantities, while the toxicity of DEX continued to decline during degradation processes. By QSAR predictions, the main contributors to the toxicity evolution during the UV/AOPs were predicted. Halogen-containing TPs showed significantly higher toxicity than other TPs, and thus the chlorine-containing structure in HCQ presented the potential toxicity. Appropriate reaction parameters and adequate reaction time for the UV/AOPs could eliminate the toxicity of TPs and ensure environmental safety. This study could play a positive role in the treatment of anti-COVID-19 drugs and their environmental hazard assessment.


Asunto(s)
COVID-19 , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Peróxido de Hidrógeno/química , Espectrometría de Masas , Oxidación-Reducción , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA