Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(37): 11419-11428, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39225498

RESUMEN

Low-concentration ether electrolytes cannot efficiently achieve oxidation resistance and excellent interface behavior, resulting in severe electrolyte decomposition at a high voltage and ineffective electrode-electrolyte interphase. Herein, we utilize sandwich structure-like gel polymer electrolyte (GPE) to enhance the high voltage stability of potassium-ion batteries (PIBs). The GPE contact layer facilitates stable electrode-electrolyte interphase formation, and the GPE transport layer maintains good ionic transport, which enabled GPE to exhibit a wide electrochemical window and excellent electrochemical performance. In addition, Al corrosion under a high voltage is suppressed through the restriction of solvent molecules. Consequently, when using the designed GPE (based on 1 m), the K||graphite cell exhibits excellent cycling stability of 450 cycles with a capacity retention of 91%, and the K||FeFe-Prussian blue cell (2-4.2 V) delivers a high average Coulombic efficiency of 99.9% over 2200 cycles at 100 mA g-1. This study provides a promising path in the application of ether-based electrolytes in high-voltage and long-lasting PIBs.

2.
Angew Chem Int Ed Engl ; : e202412214, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141606

RESUMEN

Electrolyte engineering is crucial for improving cathode electrolyte interphase (CEI) to enhance the performance of lithium-ion batteries, especially at high charging cut-off voltages. However, typical electrolyte modification strategies always focus on the solvation structure in the bulk region, but consistently neglect the dynamic evolution of electrolyte solvation configuration at the cathode-electrolyte interface, which directly influences the CEI construction. Herein, we reveal an anti-synergy effect between Li+-solvation and interfacial electric field by visualizing the dynamic evolution of electrolyte solvation configuration at the cathode-electrolyte interface, which determines the concentration of interfacial solvated-Li+. The Li+ solvation in the charging process facilitates the construction of a concentrated (Li+-solvent/anion-rich) interface and anion-derived CEI, while the repulsive force derived from interfacial electric field induces the formation of a diluted (solvent-rich) interface and solvent-derived CEI. Modifying the electrochemical protocols and electrolyte formulation, we regulate the "inflection voltage" arising from the anti-synergy effect and prolong the lifetime of the concentrated interface, which further improves the functionality of CEI architecture.

3.
Angew Chem Int Ed Engl ; : e202409160, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39113640

RESUMEN

Flexible and high-performance aqueous Zn-ion batteries (ZIBs), coupled with low cost and safe, are considered as one of the most promising energy storage candidates for wearable electronics. However, most of hydrogel electrolytes suffer from poor mechanical properties and interfacial chemistry, which limits them to suppressed performance levels in flexible ZIBs, especially under harsh mechanical strains. Herein, a bio-inspired multifunctional hydrogel electrolyte network (polyacrylamide (PAM)/trehalose) with improved mechanical and adhesive properties was developed via a simple trehalose network-repairing strategy to stabilize the interfacial chemistry for highly reversible flexible ZIBs. As a result, the trehalose-modified PAM hydrogel exhibits a superior strength and stretchability up to 100 kPa and 5338%, respectively, as well as strong adhesive properties to various substrates. Also, the PAM/trehalose hydrogel electrolyte provides superior anti-corrosion capability for Zn anode and regulates Zn nucleation/growth, resulting in achieving a high Coulombic efficiency of 98.8%, and long-term stability over 2400 h. Importantly, the flexible Zn//MnO2 pouch cell exhibits excellent cycling performance under different bending conditions, which offers a great potential in flexible energy-related applications and beyond.

4.
Small ; : e2403642, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39113658

RESUMEN

Potassium metal batteries (PMBs) are promising candidates for large-scale energy storage. Conventional carbonate electrolytes exhibit unsatisfactory thermodynamic stability against potassium (K) metal anode. Linear ether is widely adopted because of its compatibility with K metal, but the poor oxidation stability restricts the application with high-voltage cathodes. Herein, a weakly solvating cyclic ether is proposed as a solvent to stabilize the K-electrolyte interface and build a robust solid-electrolyte interphase (SEI). This weakly solvating electrolyte (WSE) possesses an anion-dominated solvation structure, which facilitates the anion decomposition for constructing an inorganic-rich SEI. The superior mechanical properties of the SEI, as examined by atomic force microscopy, prevent the SEI from fracture. Consequently, this WSE achieves highly reversible plating/stripping behavior of K metal for 1300 h with a high average Coulombic efficiency of 99.20%. Stable full cells are also demonstrated with a high-voltage cathode at harsh conditions. This work complements the design of WSEs for advanced PMBs by cyclic ether solvents.

5.
Angew Chem Int Ed Engl ; : e202409330, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101678

RESUMEN

Mixed tin-lead perovskite solar cells can reach bandgaps as low as 1.2 eV, offering high theoretical efficiency and serving as base materials for all-perovskite tandem solar cells. However, instability and high defect densities at the interfaces, particularly the buried surface, have limited performance improvements. In this work, we present the modification of the bottom perovskite interface with multifunctional hydroxylamine salts. These salts can effectively coordinate the different perovskite components, having critical influences in regulating the crystallization process and passivating defects of varying nature. The surface modification reduced traps at the interface and prevented the formation of excessive lead iodide, enhancing the quality of the films. The modified devices presented fill factors reaching 81% and efficiencies of up to 23.8%. The unencapsulated modified devices maintained over 95% of their initial efficiency after 2000 h of shelf storage.

6.
Angew Chem Int Ed Engl ; : e202414119, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39211954

RESUMEN

Rechargeable magnesium batteries (RMBs) are a highly promising energy storage system due to their high volumetric capacity and intrinsic safety. However, the practical development of RMBs is hindered by the sluggish Mg2+ diffusion kinetics, including at the cathode-electrolyte interface (CEI) and within the cathode bulk. Herein, we propose an efficient strategy to manipulate the interfacial chemistry and coordination structure in oligolayered V2O5 (L-V2O5) for achieving rapid Mg2+ diffusion kinetics. In terms of the interfacial chemistry, the specific exposed crystal planes in L-V2O5 possess strong electron donating ability, which helps to promote the degradation dynamics of C-F/C-S bonds in the electrolyte, thereby establishing the inorganic-organic interlocking CEI layer for rapid Mg2+ diffusion. In terms of the coordination structure, the straightened V-O structure in L-V2O5 provides efficient ions diffusion path for accelerating Mg2+ diffusion in the cathode. As a result, the L-V2O5 delivers a high reversible capacity (355.3 mA h g-1 at 0.1 A g-1) and an excellent rate capability (161 mAh g-1 at 1 A g-1). Impressively, the interdigital micro-RMBs is firstly assembled, exhibiting excellent flexibility and practicability. This work gives deeper insights into the interface and interior ions diffusion for developing high-kinetics RMBs.

7.
Small ; : e2401200, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984748

RESUMEN

Interfacial chemistry plays a crucial role in determining the electrochemical properties of low-temperature rechargeable batteries. Although existing interface engineering has significantly improved the capacity of rechargeable batteries operating at low temperatures, challenges such as sharp voltage drops and poor high-rate discharge capabilities continue to limit their applications in extreme environments. In this study, an energy-level-adaptive design strategy for electrolytes to regulate interfacial chemistry in low-temperature Li||graphite dual-ion batteries (DIBs) is proposed. This strategy enables the construction of robust interphases with superior ion-transfer kinetics. On the graphite cathode, the design endues the cathode interface with solvent/anion-coupled interfacial chemistry, which yields an nitrogen/phosphor/sulfur/fluorin (N/P/S/F)-containing organic-rich interphase to boost anion-transfer kinetics and maintains excellent interfacial stability. On the Li metal anode, the anion-derived interfacial chemistry promotes the formation of an inorganic-dominant LiF-rich interphase, which effectively suppresses Li dendrite growth and improves the Li plating/stripping kinetics at low temperatures. Consequently, the DIBs can operate within a wide temperature range, spanning from -40 to 45 °C. At -40 °C, the DIB exhibits exceptional performance, delivering 97.4% of its room-temperature capacity at 1 C and displaying an extraordinarily high-rate discharge capability with 62.3% capacity retention at 10 C. This study demonstrates a feasible strategy for the development of high-power and low-temperature rechargeable batteries.

8.
Adv Mater ; 36(31): e2403848, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837906

RESUMEN

All-solid-state lithium batteries with polymer electrolytes suffer from electrolyte decomposition and lithium dendrites because of the unstable electrode/electrolyte interfaces. Herein, a molecule crowding strategy is proposed to modulate the Li+ coordinated structure, thus in situ constructing the stable interfaces. Since 15-crown-5 possesses superior compatibility with polymer and electrostatic repulsion for anion of lithium salt, the anions are forced to crowd into a Li+ coordinated structure to weaken the Li+ coordination with polymer and boost the Li+ transport. The coordinated anions prior decompose to form LiF-rich, thin, and tough interfacial passivation layers for stabilizing the electrode/electrolyte interfaces. Thus, the symmetric Li-Li cell can stably operate over 4360 h, the LiFePO4||Li full battery presents 97.18% capacity retention in 700 cycles at 2 C, and the NCM811||Li full battery possesses the capacity retention of 83.17% after 300 cycles. The assembled pouch cell shows excellent flexibility (stand for folding over 2000 times) and stability (89.42% capacity retention after 400 cycles). This work provides a promising strategy to regulate interfacial chemistry by modulating the ion environment to accommodate the interfacial issues and will inspire more effective approaches to general interface issues for polymer electrolytes.

9.
Angew Chem Int Ed Engl ; 63(30): e202402946, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38696279

RESUMEN

Electrolytes with anion-dominated solvation are promising candidates to achieve dendrite-free and high-voltage potassium metal batteries. However, it's challenging to form anion-reinforced solvates at low salt concentrations. Herein, we construct an anion-reinforced solvation structure at a moderate concentration of 1.5 M with weakly coordinated cosolvent ethylene glycol dibutyl ether. The unique solvation structure accelerates the desolvation of K+, strengthens the oxidative stability to 4.94 V and facilitates the formation of inorganic-rich and stable electrode-electrolyte interface. These enable stable plating/stripping of K metal anode over 2200 h, high capacity retention of 83.0 % after 150 cycles with a high cut-off voltage of 4.5 V in K0.67MnO2//K cells, and even 91.5 % after 30 cycles under 4.7 V. This work provides insight into weakly coordinated cosolvent and opens new avenues for designing ether-based high-voltage electrolytes.

10.
Proc Natl Acad Sci U S A ; 121(17): e2311075121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625942

RESUMEN

Voltage oscillation at subzero in sodium-ion batteries (SIBs) has been a common but overlooked scenario, almost yet to be understood. For example, the phenomenon seriously deteriorates the performance of Na3V2(PO4)3 (NVP) cathode in PC (propylene carbonate)/EC (ethylene carbonate)-based electrolyte at -20 °C. Here, the correlation between voltage oscillation, structural evolution, and electrolytes has been revealed based on theoretical calculations, in-/ex-situ techniques, and cross-experiments. It is found that the local phase transition of the Na3V2(PO4)3 (NVP) cathode in PC/EC-based electrolyte at -20 °C should be responsible for the oscillatory phenomenon. Furthermore, the low exchange current density originating from the high desolvation energy barrier in NVP-PC/EC system also aggravates the local phase transformation, resulting in severe voltage oscillation. By introducing the diglyme solvent with lower Na-solvent binding energy, the voltage oscillation of the NVP can be eliminated effectively at subzero. As a result, the high capacity retentions of 98.3% at -20 °C and 75.3% at -40 °C are achieved. The finding provides insight into the abnormal SIBs degradation and brings the voltage oscillation behavior of rechargeable batteries into the limelight.

11.
Adv Sci (Weinh) ; 11(25): e2401536, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38582502

RESUMEN

Rechargeable magnesium batteries (RMBs) have garnered significant attention due to their potential to provide high energy density, utilize earth-abundant raw materials, and employ metal anode safely. Currently, the lack of applicable cathode materials has become one of the bottleneck issues for fully exploiting the technological advantages of RMBs. Recent studies on Mg cathodes reveal divergent storage performance depending on the electrolyte formulation, posing interfacial issues as a previously overlooked challenge. This minireview begins with an introduction of representative cathode-electrolyte interfacial phenomena in RMBs, elaborating on the unique solvation behavior of Mg2+, which lays the foundation for interfacial chemistries. It is followed by presenting recently developed strategies targeting the promotion of Mg2+ desolvation in the electrolyte and alternative cointercalation approaches to circumvent the desolvation step. In addition, efforts to enhance the cathode-electrolyte compatibility via electrolyte development and interfacial engineering are highlighted. Based on the abovementioned discussions, this minireview finally puts forward perspectives and challenges on the establishment of a stable interface and fast interfacial chemistry for RMBs.

12.
Angew Chem Int Ed Engl ; 63(21): e202318663, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38516922

RESUMEN

Graphite has been serving as the key anode material of rechargeable Li-ion batteries, yet is difficultly charged within a quarter hour while maintaining stable electrochemistry. In addition to a defective edge structure that prevents fast Li-ion entry, the high-rate performance of graphite could be hampered by co-intercalation and parasitic reduction of solvent molecules at anode/electrolyte interface. Conventional surface modification by pitch-derived carbon barely isolates the solvent and electrons, and usually lead to inadequate rate capability to meet practical fast-charge requirements. Here we show that, by applying a MoOx-MoNx layer onto graphite surface, the interface allows fast Li-ion diffusion yet blocks solvent access and electron leakage. By regulating interfacial mass and charge transfer, the modified graphite anode delivers a reversible capacity of 340.3 mAh g-1 after 4000 cycles at 6 C, showing promises in building 10-min-rechargeable batteries with a long operation life.

13.
Adv Colloid Interface Sci ; 325: 103117, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38394718

RESUMEN

The chemical stability of edible oils rich in polyunsaturated fatty acids (PUFAs) is a major challenge within the food and supplement industries, as lipid oxidation reduces oil quality and safety. Despite appearing homogeneous to the human eye, bulk oils are actually multiphase heterogeneous systems at the nanoscale level. Association colloids, such as reverse micelles, are spontaneously formed within bulk oils due to the self-assembly of amphiphilic molecules that are present, like phospholipids, free fatty acids, and/or surfactants. In bulk oil, lipid oxidation often occurs at the oil-water interface of these association colloids because this is where different reactants accumulate, such as PUFAs, hydroperoxides, transition metals, and antioxidants. Consequently, the efficiency of antioxidants in bulk oils is governed by their chemical reactivity, but also by their ability to be located close to the site of oxidation. This review describes the impact of minor constituents in bulk oils on the nature of the association colloids formed. And then the formation of mixed reverse micelles (LOOH, (co)surfactants, or antioxidations) during the peroxidation of bulk oils, as well as changes in their composition and structure over time are also discussed. The critical importance of selecting appropriate antioxidants and surfactants for the changes of interface and colloid, as well as the inhibition of lipid oxidation is emphasized. The knowledge presented in this review article may facilitate the design of bulk oil products with improved resistance to oxidation, thereby reducing food waste and improving food quality and safety.


Asunto(s)
Antioxidantes , Eliminación de Residuos , Humanos , Antioxidantes/farmacología , Micelas , Alimentos , Peroxidación de Lípido , Aceites/química , Coloides , Oxidación-Reducción , Tensoactivos , Emulsiones
14.
Environ Sci Technol ; 58(10): 4727-4736, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38411392

RESUMEN

Heterogeneous oxidative aging of organic aerosols (OA) occurs ubiquitously in the atmosphere, initiated by oxidants, such as the hydroxyl radicals (•OH). Hydroperoxyl radicals (HO2•) are also an important oxidant in the troposphere, and its gas-phase chemistry has been well studied. However, the role of HO2• in heterogeneous OA oxidation remains elusive. Here, we carry out •OH-initiated heterogeneous oxidation of several OA model systems under different HO2• conditions in a flow tube reactor and characterize the molecular oxidation products using a suite of mass spectrometry instrumentation. By using hydrogen-deuterium exchange (HDX) with thermal desorption iodide-adduct chemical ionization mass spectrometry, we provide direct observation of organic hydroperoxide (ROOH) formation from heterogeneous HO2• and peroxy radicals (RO2•) reactions for the first time. The ROOH may contribute substantially to the oxidation products, varied with the parent OA chemical structure. Furthermore, by regulating RO2• reaction pathways, HO2• also greatly influence the overall composition of the oxidized OA. Last, we suggest that the RO2• + HO2• reactions readily occur at the OA particle interface rather than in the particle bulk. These findings provide new mechanistic insights into the heterogeneous OA oxidation chemistry and help fill the critical knowledge gap in understanding atmospheric OA oxidative aging.


Asunto(s)
Compuestos Orgánicos , Oxidantes , Oxidación-Reducción , Radical Hidroxilo/química , Aerosoles/análisis
15.
Angew Chem Int Ed Engl ; 63(19): e202317856, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38389190

RESUMEN

In solid-state lithium metal batteries (SSLMBs), the inhomogeneous electrolyte-electrode interphase layer aggravates the interfacial stability, leading to discontinuous interfacial ion/charge transport and continuous degradation of the electrolyte. Herein, we constructed an anion-modulated ionic conductor (AMIC) that enables in situ construction of electrolyte/electrode interphases for high-voltage SSLMBs by exploiting conformational transitions under multiple interactions between polymer and lithium salt anions. Anions modulate the decomposition behavior of supramolecular poly (vinylene carbonate) (PVC) at the electrode interface by changing the spatial conformation of the polymer chains, which further enhances ion transport and stabilizes the interfacial morphology. In addition, the AMIC weakens the "Li+-solvation" and increases Li+ vehicle sites, thereby enhancing the lithium-ion transport number (tLi +=~0.67). Consequently, Li || LiNi0.8Co0.1Mn0.1O2 cell maintains about 85 % capacity retention and Coulombic efficiency >99.8 % in 200 cycles at a charge cut-off voltage of 4.5 V. This study provides a new understanding of lithium salt anions regulating polymer chain segment behavior in the solid-state polymer electrolyte (SPE) and highlights the importance of the ion environment in the construction of interfacial phases and ionic conduction.

16.
Angew Chem Int Ed Engl ; 63(16): e202400960, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38385630

RESUMEN

Polymer-inorganic composite electrolytes (PICE) have attracted tremendous attention in all-solid-state lithium batteries (ASSLBs) due to facile processability. However, the poor Li+ conductivity at room temperature (RT) and interfacial instability severely hamper the practical application. Herein, we propose a concept of competitive coordination induction effects (CCIE) and reveal the essential correlation between the local coordination structure and the interfacial chemistry in PEO-based PICE. CCIE introduction greatly enhances the ionic conductivity and electrochemical performances of ASSLBs at 30 °C. Owing to the competitive coordination (Cs+…TFSI-…Li+, Cs+…C-O-C…Li+ and 2,4,6-TFA…Li…TFSI-) from the competitive cation (Cs+ from CsPF6) and molecule (2,4,6-TFA: 2,4,6-trifluoroaniline), a multimodal weak coordination environment of Li+ is constructed enabling a high efficient Li+ migration at 30 °C (Li+ conductivity: 6.25×10-4 S cm-1; tLi +=0.61). Since Cs+ tends to be enriched at the interface, TFSI- and PF6 - in situ form LiF-Li3N-Li2O-Li2S enriched solid electrolyte interface with electrostatic shielding effects. The assembled ASSLBs without adding interfacial wetting agent exhibit outstanding rate capability (LiFePO4: 147.44 mAh g-1@1 C and 107.41mAhg-1@2 C) and cycling stability at 30 °C (LiFePO4:94.65 %@200cycles@0.5 C; LiNi0.5Co0.2Mn0.3O2: 94.31 %@200 cycles@0.3 C). This work proposes a concept of CCIE and reveals its mechanism in designing PICE with high ionic conductivity as well as high interfacial compatibility at near RT for high-performance ASSLBs.

17.
Angew Chem Int Ed Engl ; 63(17): e202400118, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38302696

RESUMEN

Exploration of the unique chemical properties of interfaces can unlock new understanding. A striking example is the finding of accelerated reactions, particularly spontaneous oxidation reactions, that occur without assistance of catalysts or external oxidants at the air interface of both aqueous and organic solutions (provided they contain some water). This finding opened a new area of interfacial chemistry but also caused heated debate regarding the primary chemical species responsible for the observed oxidation. An overview of the literature covering oxidation in microdroplets with air interfaces is provided, together with a critical examination of previous findings and hypotheses. The water radical cation/radical anion pair, formed spontaneously and responsible for the electric field at or near the droplet/air interface, is suggested to constitute the primary redox species. Mechanisms of accelerated microdroplet reactions are critically discussed and it is shown that hydroxyl radical/hydrogen peroxide formation in microdroplets does not require that these species be the primary oxidant. Instead, we suggest that hydroxyl radical and hydrogen peroxide are the products of water radical cation decay in water. The importance of microdroplet chemistry in the prebiotic environment is sketched briefly and the role of partial solvation in reaction acceleration is noted.

18.
Sci Bull (Beijing) ; 69(11): 1686-1696, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38423878

RESUMEN

Rational carbonate electrolyte chemistry is critical for the development of high-voltage lithium metal batteries (LMBs). However, the implementation of traditional carbonate electrolyte is greatly hindered by the generation of an unstable electrode interphase and corrosive by-product (HF). Herein, we propose a triple-function eutectic solvent additive of N-methylacetamide (NmAc) with LiNO3 to enhance the stability and compatibility of carbonate electrolyte. Firstly, the addition of NmAc significantly improves the solubility of LiNO3 in carbonate electrolyte by forming an eutectic pair, which regulates the Li+ solvation structure and leads to dense and homogenous Li plating. Secondly, the hydrolysis of acidic PF5 is effectively alleviated due to the strong complexation of NmAc with PF5, thus reducing the generation of corrosive HF. In addition, the optimized cathode electrolyte interphase layer decreases the structural degradation and transition metal dissolution. Consequently, Li||LiNi0.6Co0.2Mn0.2O2 (NCM622) cells with the designed electrolyte deliver superior long-term cycle reversibility and excellent rate capability. This study unveils the rationale for incorporating eutectic solvent additives within carbonate electrolytes, which significantly contribute to the advancement of their practical application for high-voltage LMBs.

19.
Natl Sci Rev ; 11(3): nwae006, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38344116

RESUMEN

The rise in wearable electronics has witnessed the advancement of self-healable wires, which are capable of recovering mechanical and electrical properties upon structural damage. However, their highly fluctuating electrical resistances in the range of hundreds to thousands of ohms under dynamic conditions such as bending, pressing, stretching and tremoring may seriously degrade the precision and continuity of the resulting electronic devices, thus severely hindering their wearable applications. Here, we report a new family of self-healable wires with high strengths and stable electrical conductivities under dynamic conditions, inspired by mechanical-electrical coupling of the myelinated axon in nature. Our self-healable wire based on mechanical-electrical coupling between the structural and conductive components has significantly improved the electrical stability under dynamic scenarios, enabling precise monitoring of human health status and daily activities, even in the case of limb tremors from simulated Parkinson's disease. Our mechanical-electrical coupling strategy opens a new avenue for the development of dynamically stable electrodes and devices toward real-world wearable applications.

20.
Angew Chem Int Ed Engl ; 63(24): e202316299, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38422222

RESUMEN

Vinylene-linked two-dimensional polymers (V-2DPs) and their layer-stacked covalent organic frameworks (V-2D COFs) featuring high in-plane π-conjugation and robust frameworks have emerged as promising candidates for energy-related applications. However, current synthetic approaches are restricted to producing V-2D COF powders that lack processability, impeding their integration into devices, particularly within membrane technologies reliant upon thin films. Herein, we report the novel on-water surface synthesis of vinylene-linked cationic 2DPs films (V-C2DP-1 and V-C2DP-2) via Knoevenagel polycondensation, which serve as the anion-selective electrode coating for highly-reversible and durable zinc-based dual-ion batteries (ZDIBs). Model reactions and theoretical modeling revealed the enhanced reactivity and reversibility of the Knoevenagel reaction on the water surface. On this basis, we demonstrated the on-water surface 2D polycondensation towards V-C2DPs films that show large lateral size, tunable thickness, and high chemical stability. Representatively, V-C2DP-1 presents as a fully crystalline and face-on oriented film with in-plane lattice parameters of a=b≈43.3 Å. Profiting from its well-defined cationic sites, oriented 1D channels, and stable frameworks, V-C2DP-1 film possesses superior bis(trifluoromethanesulfonyl)imide anion (TFSI-)-transport selectivity (transference, t_=0.85) for graphite cathode in high-voltage ZDIBs, thus triggering additional TFSI--intercalation stage and promoting its specific capacity (from ~83 to 124 mAh g-1) and cycling life (>1000 cycles, 95 % capacity retention).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA