Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nutrients ; 16(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39064624

RESUMEN

Diabetes mellitus is a spreading global pandemic. Type 2 diabetes mellitus (T2DM) is the predominant form of diabetes, in which a reduction in blood glucose uptake is caused by impaired glucose transporter 4 (GLUT4) translocation to the plasma membrane in adipose and muscle cells. Antihyperglycemic drugs play a pivotal role in ameliorating diabetes symptoms but often are associated with side effects. Hence, novel antidiabetic compounds and nutraceutical candidates are urgently needed. Phytogenic therapy can support the prevention and amelioration of impaired glucose homeostasis. Using total internal reflection fluorescence microscopy (TIRFM), 772 plant extracts of an open-access plant extract library were screened for their GLUT4 translocation activation potential, resulting in 9% positive hits. Based on commercial interest and TIRFM assay-based GLUT4 translocation activation, some of these extracts were selected, and their blood glucose-reducing effects in ovo were investigated using a modified hen's egg test (Gluc-HET). To identify the active plant part, some of the available candidate plants were prepared in-house from blossoms, leaves, stems, or roots and tested. Acacia catechu (catechu), Pulmonaria officinalis (lungwort), Mentha spicata (spearmint), and Saponaria officinalis (common soapwort) revealed their potentials as antidiabetic nutraceuticals, with common soapwort containing GLUT4 translocation-activating saponarin.


Asunto(s)
Transportador de Glucosa de Tipo 4 , Hipoglucemiantes , Insulina , Microscopía Fluorescente , Extractos Vegetales , Extractos Vegetales/farmacología , Transportador de Glucosa de Tipo 4/metabolismo , Hipoglucemiantes/farmacología , Animales , Insulina/metabolismo , Ratones , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Transporte de Proteínas/efectos de los fármacos
2.
Cell Mol Life Sci ; 80(10): 293, 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37715850

RESUMEN

Insulin-resistant diabetes is a common metabolic disease with serious complications. Treatments directly addressing the underlying molecular mechanisms involving insulin resistance would be desirable. Our laboratory recently identified a proteolytic-resistant cystine-dense microprotein from huáng qí (Astragalus membranaceus) called α-astratide aM1, which shares high sequence homology to leginsulins. Here we show that aM1 is a cell-penetrating insulin mimetic, enters cells by endocytosis, and activates the PI3K/Akt signaling pathway independent of the insulin receptor leading to translocation of glucose transporter GLUT4 to the cell surface to promote glucose uptake. We also showed that aM1 alters gene expression, suppresses lipid synthesis and uptake, and inhibits intracellular lipid accumulation in myotubes and adipocytes. By reducing intracellular lipid accumulation and preventing lipid-induced, PKCθ-mediated degradation of IRS1/2, aM1 restores glucose uptake to overcome insulin resistance. These findings highlight the potential of aM1 as a lead for developing orally bioavailable insulin mimetics to expand options for treating diabetes.


Asunto(s)
Resistencia a la Insulina , Humanos , Proteínas Proto-Oncogénicas c-akt , Fosfatidilinositol 3-Quinasas , Insulina/farmacología , Transducción de Señal , Glucosa , Lípidos , Micropéptidos
3.
J Pept Sci ; 29(7): e3478, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36633503

RESUMEN

Insulin is a peptide responsible for regulating the metabolic homeostasis of the organism; it elicits its effects through binding to the transmembrane insulin receptor (IR). Insulin mimetics with agonistic or antagonistic effects toward the receptor are an exciting field of research and could find applications in treating diabetes or malignant diseases. We prepared five variants of a previously reported 20-amino acid insulin-mimicking peptide. These peptides differ from each other by the structure of the covalent bridge connecting positions 11 and 18. In addition to the peptide with a disulfide bridge, a derivative with a dicarba bridge and three derivatives with a 1,2,3-triazole differing from each other by the presence of sulfur or oxygen in their staples were prepared. The strongest binding to IR was exhibited by the peptide with a disulfide bridge. All other derivatives only weakly bound to IR, and a relationship between increasing bridge length and lower binding affinity can be inferred. Despite their nanomolar affinities, none of the prepared peptide mimetics was able to activate the insulin receptor even at high concentrations, but all mimetics were able to inhibit insulin-induced receptor activation. However, the receptor remained approximately 30% active even at the highest concentration of the agents; thus, the agents behave as partial antagonists. An interesting observation is that these mimetic peptides do not antagonize insulin action in proportion to their binding affinities. The compounds characterized in this study show that it is possible to modulate the functional properties of insulin receptor peptide ligands using disulfide mimetics.


Asunto(s)
Insulina , Receptor de Insulina , Insulina/metabolismo , Disulfuros/química , Péptidos/química
4.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35337123

RESUMEN

Diabetes mellitus (DM) represents a complex and multifactorial disease that causes metabolic disorders with acute and long-term serious complications. The onset of DM, with over 90% of cases of diabetes classified as type 2, implies several metabolic dysfunctions leading to consider DM a worldwide health problem. In this frame, protein tyrosine phosphatase 1B (PTP1B) and aldose reductase (AR) are two emerging targets involved in the development of type 2 diabetes mellitus (T2DM) and its chronic complications. Herein, we employed a marine-derived dual type inhibitor of these enzymes, phosphoeleganin, as chemical starting point to perform a fragment-based process in search for new inhibitors. Phosphoeleganin was both disassembled by its oxidative cleavage and used as model structure for the synthesis of a small library of functionalized derivatives as rationally designed analogues. Pharmacological screening supported by in silico docking analysis outlined the mechanism of action against PTP1B exerted by a phosphorylated fragment and a synthetic simplified analogue, which represent the most potent inhibitors in the library.

5.
Bioorg Chem ; 117: 105445, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34717238

RESUMEN

During an attempt to discover insulin mimetics, thirteen new triterpenoid saponins (1-13), including three phytolaccagenic acids (1, 2, and 12) and ten serjanic acids (3-11 and 13), as aglycones were isolated from a 70% ethanol extract of leaves and stems from Pericampylus glaucus. The chemical structures of compounds 1-13 were determined through spectroscopic data analysis, including NMR, IR, and HRESIMS. All isolated compounds (1-13) were evaluated using 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-d-glucose (2-NBDG) as a fluorescent-tagged glucose probe to determine their stimulatory effects on glucose uptake in differentiated 3 T3-L1 adipocyte cells. Consequently, four compounds (4, 7, 11, and 12) exhibited stimulatory effects on glucose uptake.


Asunto(s)
Hipoglucemiantes/farmacología , Insulina/metabolismo , Menispermaceae/química , Extractos Vegetales/farmacología , Saponinas/farmacología , Triterpenos/farmacología , Células 3T3-L1 , Animales , Relación Dosis-Respuesta a Droga , Glucosa/metabolismo , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Ratones , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química , Tallos de la Planta/química , Saponinas/química , Saponinas/aislamiento & purificación , Relación Estructura-Actividad , Triterpenos/química , Triterpenos/aislamiento & purificación
6.
Artículo en Inglés | MEDLINE | ID: mdl-34387174

RESUMEN

BACKGROUND: Herbal drugs and their derived phytochemicals are valuable for human beings as a source of a vital component of food material and drugs. Flavonoids are naturally occurring phytochemicals produced in plants through metabolisms, and they have anti-hyperlipidemia, anti-inflammatory, anti-oxidant and anti-apoptotic activity. Flavonoids have been identified in fruits, nuts, vegetables, seeds, stems, flowers, and tea. Kaempferol is a natural flavonoidal compound present in edible plants such as apples, broccoli, strawberries, beans, grapefruit, propolis, and medicinal plants such as Aloe vera, Ginkgo biloba, Rosmarinus officinalis, Crocus sativus L., Hypericum perforatum L. Kaempferol have anti-oxidant, anti-inflammatory, anti-apoptotic, proapoptotic, cardio-protective and anti-cancer activities. METHODS: Glycosides of kaempferol such as kaempferitrin, also called kaempferol 3,7-dirhamnoside are known to be more abundant than their flavonoid monomers in plants. Various literature databases have been searched to collect all the scientific information of kaempferitrin in the present investigation and analyzed in order to know the therapeutic benefit and biological potential of kaempferitrin. Moreover, all the information has been presented here in two broad sections, i.e., pharmacological and analytical. RESULTS: From the analysis of all the collected and presented information, it was found that kaempferitrin has potent insulin-mimetic potential and could be used for the treatment of diabetes and related complications. However, it has also shown anti-oxidant, anti-inflammatory, anti-convulsant, anti-osteoporotic, anti-depressant, anthelmintic, immunostimulatory, and natriuretic properties and inhibits cell proliferation and apoptosis. Kaempferitrin also improves the meat quality of broiler chickens. CONCLUSION: The presented information in this work will be valuable to justify the biological importance and therapeutic potential of kaempferitrin in the scientific field.


Asunto(s)
Pollos , Quempferoles , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Flavonoides , Humanos , Quempferoles/farmacología , Quempferoles/uso terapéutico , Extractos Vegetales
7.
Biomedicines ; 9(5)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067862

RESUMEN

Type 2 diabetes became an alarming global health issue since the existing drugs do not prevent its progression. Herein, we aimed to synthesize and characterize a family of oxidovanadium(V) complexes with Schiff base ligands derived from L-/D-valine (val) and salicylaldehyde (sal) or o-vanillin (van) as insulin-mimetic agents and to assess their potential anti-diabetic properties. Two new oxidovanadium(V) complexes, [{VVO(R-salval)(H2O)}(µ2-O){VVO(R-salval)}] and [{VVO(R-vanval)(CH3OH)}2(µ2-O)], and their S-enantiomers were synthesized and characterized. The compounds exhibit optical activity as shown by crystallographic and spectroscopic data. The stability, the capacity to bind bovine serum albumin (BSA), the cytotoxicity against human hepatoma cell line, as well as the potential anti-diabetic activity of the four compounds are investigated. The synthesized compounds are stable for up to three hours in physiological conditions and exhibit a high capacity of binding to BSA. Furthermore, the synthesized compounds display cytocompatibility at biologically relevant concentrations, exert anti-diabetic potential and insulin-mimetic activities by inhibiting the α-amylase and protein tyrosine phosphatase activity, and a long-term increase of insulin receptor phosphorylation compared to the insulin hormone. Thus, the in vitro anti-diabetic potential and insulin-mimetic properties of the newly synthesized oxidovanadium(V) compounds, correlated with their cytocompatibility, make them promising candidates for further investigation as anti-diabetic drugs.

8.
Exp Cell Res ; 399(2): 112436, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33358860

RESUMEN

Insulin mimetics, including zinc containing compounds, have previously been shown to influence chondrogenesis as it relates to healing of fractures in various preclinical models. However, the mechanism by which these compounds drive chondrogenic differentiation is yet undefined. Here, via next-generation sequencing (NGS) and in vitro functional validation, we show that Zinc Chloride (ZnCl2) induces expression of both chondrogenic genes (Sox9, Runx1, collagen) as well as genes associated with VEGF-mediated signal transduction, including VEGF receptors 1 and 2 and their ligands; VEGF-A and VEGF-B. Noticeably, although insulin was able to also induce expression of these pro-angiogenic and pro-chondrogenic genes, the impact of insulin on expression of VEGF receptor and ligand genes was marginal when compared to that of ZnCl2. Furthermore, while the VEGFR antagonist, Axitinib, was able to attenuate the pro-chondrogenic effects of both insulin and ZnCl2; a reduction in gene and protein expression was most profoundly observed when the antagonist was applied to cells treated with ZnCl2. Taken together, these data suggest an important role for the VEGF-mediated signal transduction pathways in the positive effects observed when applying zinc-based compounds as adjuvants for chondrogenesis-mediated fracture healing. In this regard, further mechanistic evaluation of ZnCl2 and other zinc-containing insulin mimetics may support rational design of therapies targeted for disease indications associated with impaired fracture healing.


Asunto(s)
Cloruros/farmacología , Condrogénesis/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Compuestos de Zinc/farmacología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Condrocitos/efectos de los fármacos , Condrocitos/fisiología , Condrogénesis/fisiología , Expresión Génica/efectos de los fármacos , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Células Tumorales Cultivadas , Factor A de Crecimiento Endotelial Vascular/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/genética
9.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33120934

RESUMEN

Due to the global rise of type 2 diabetes mellitus (T2DM) in combination with insulin resistance, novel compounds to efficiently treat this pandemic disease are needed. Screening for compounds that induce the translocation of glucose transporter 4 (GLUT4) from the intracellular compartments to the plasma membrane in insulin-sensitive tissues is an innovative strategy. Here, we compared the applicability of three fluorescence microscopy-based assays optimized for the quantitation of GLUT4 translocation in simple cell systems. An objective-type scanning total internal reflection fluorescence (TIRF) microscopy approach was shown to have high sensitivity but only moderate throughput. Therefore, we implemented a prism-type TIR reader for the simultaneous analysis of large cell populations grown in adapted microtiter plates. This approach was found to be high throughput and have sufficient sensitivity for the characterization of insulin mimetic compounds in live cells. Finally, we applied confocal microscopy to giant plasma membrane vesicles (GPMVs) formed from GLUT4-expressing cells. While this assay has only limited throughput, it offers the advantage of being less sensitive to insulin mimetic compounds with high autofluorescence. In summary, the combined implementation of different fluorescence microscopy-based approaches enables the quantitation of GLUT4 translocation with high throughput and high content.


Asunto(s)
Membrana Celular/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Microscopía Fluorescente/métodos , Animales , Células CHO , Cricetulus , Células HeLa , Humanos , Transporte de Proteínas
10.
J Med Biochem ; 39(2): 191-198, 2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33033452

RESUMEN

BACKGROUND: In the presence of conflicting advice about the relationship between selenium-type II diabetes-oxidative stress trio, this study aimed to assess the consequences of selenium supplementation on fasting plasma glucose (FPG) level, antioxidant activities of selenodependent and non-selenodependent enzymes, and other markers of oxidative stress studied for the first time during gestational diabetes mellitus (GDM). METHODS: This research was carried out among 180 pregnant Algerian women, 60 of whom were in good health, 60 women with GDM did not take supplements, and 60 women with GDM took selenium orally (50 mg/d) for 12 weeks starting from their second trimester of pregnancy. Blood samples were taken in order to assay FPG level and oxidative stress markers. RESULTS: Selenium supplementation during GDM has demonstrated its hypoglycemic power in the significant decline of FPG level, and its antioxidant properties in the significant reinforcement of antioxidant activities of erythrocyte selenodependent enzymes (glutathione peroxidase and glutathione reductase), the significant increase in erythrocyte catalase and superoxide dismutase activities simultaneously with the highest decrease in erythrocyte and plasma malondialdehyde levels. This decrease was only significant for plasma carbonyl proteins, which was not the case for erythrocyte carbonyl proteins. CONCLUSIONS: The recourse to selenium supplementation by seleno-deficient pregnant women with GDM is beneficial for maternal health. This micronutrient exploits its antioxidant and insulin-mimetic properties in the maintenance of blood glucose homeostasis and the fight against oxidative stress, and consequently, its supplementation delays the occurrence of GDM complications.

11.
Int J Mol Sci ; 21(19)2020 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-32993061

RESUMEN

Here, we present a simple and robust experimental setup for the super-resolution live cell microscopy of membrane-proximal fluorophores, which is comparably easy to perform and to implement. The method is based on Structured Illumination Microscopy (SIM) with a switchable spatial light modulator (SLM) and exchangeable objective lenses for epi-illumination and total internal reflection fluorescence (TIRF) microscopy. While, in the case of SIM (upon epi-illumination), cell layers of about 1-2 µm in close proximity to the plasma membrane can be selected by software, layers in the 100 nm range are assessed experimentally by TIRF-SIM. To show the applicability of this approach, both methods are used to measure the translocation of the glucose transporter 4 (GLUT4) from intracellular vesicles to the plasma membrane upon stimulation by insulin or insulin-mimetic compounds, with a lateral resolution of around 100 nm and an axial resolution of around 200 nm. While SIM is an appropriate method to visualize the intracellular localization of GLUT4 fused with a green fluorescent protein, TIRF-SIM permits the quantitative evaluation of its fluorescence in the plasma membrane. These imaging methods are discussed in the context of fluorescence lifetime kinetics, providing additional data for the molecular microenvironment.


Asunto(s)
Transportador de Glucosa de Tipo 4/metabolismo , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Animales , Células CHO , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Supervivencia Celular , Cricetulus , Perros , Transportador de Glucosa de Tipo 4/análisis , Humanos , Hipoglucemiantes/farmacología , Insulina/farmacología , Sustancias Luminiscentes/análisis , Sustancias Luminiscentes/metabolismo , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/metabolismo , Células de Riñón Canino Madin Darby , Transporte de Proteínas/efectos de los fármacos , Programas Informáticos , Proteína Fluorescente Roja
12.
Int J Biol Macromol ; 159: 886-895, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32413470

RESUMEN

The genus Cnidoscolus (Euphorbiaceae) is widely distributed in tropical areas. In the Northeast of Brazil, the species C. quercifolius is endemic and has been used in traditional medicine. In this study, a novel protein was isolated from C. quercifolius seeds and characterized by its molecular weight, primary structure, isoelectric point (pI), and carbohydrate content. The hypoglycemic activity of this protein was investigated by in vitro assay with the RIN-5F glucose-responsive cell line and in vivo test using alloxan-induced diabetic mice models. In addition, safe use of the protein was also investigated by cytotoxicity, hemagglutinating, and immunogenicity assays. The protein which was named Cq-IMP (Cnidoscolus quercifolius - Insulin Mimetic Protein) showed a single 11.18 KDa glycopolypeptide chain (16.4% of carbohydrates, m/m), pI of 8.0 and N-terminal sequence (TKDPELKQcKKQQKKqQQYDDDDKK) with similarity around 46-62% to sucrose binding protein-like and vicilin-like protein that was confirmed by mass spectrometry tryptic peptides analysis. Besides that, Cq-IMP presented anti-insulin antibody cross-reactivity as hypoglycemic activity in both in vitro and in vivo models. Additionally, it did not present any toxicity by methods tested. In conclusion, Cq-IMP is an insulin-mimetic protein, with a potent hypoglycemic activity and no toxicity showing great potential for therapeutic applications and drug development.


Asunto(s)
Euphorbiaceae/química , Glicoproteínas/química , Hipoglucemiantes/química , Insulina/química , Imitación Molecular , Proteínas de Plantas/química , Semillas/química , Administración Oral , Animales , Cromatografía Liquida , Prueba de Tolerancia a la Glucosa , Glicoproteínas/administración & dosificación , Glicoproteínas/aislamiento & purificación , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/aislamiento & purificación , Ratones , Estructura Molecular , Peso Molecular , Proteínas de Plantas/administración & dosificación , Proteínas de Plantas/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Análisis Espectral , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/química
13.
Pharmacol Res ; 155: 104744, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32156651

RESUMEN

Zinc has gained notable attention in the development of potent anti-diabetic agents, due to its role in insulin storage and secretion, as well as its reported insulin mimetic properties. Consequently, zinc(II) has been complexed with numerous organic ligands as an adjuvant to develop anti-diabetic agents with improved and/or broader scope of pharmacological properties. This review focuses on the research advances thus far to identify the major scientific gaps and prospects. Peer-reviewed published data on the anti-diabetic effects of zinc(II) complexes were sourced from different scientific search engines, including, but not limited to "PubMed", "Google Scholar", "Scopus" and ScienceDirect to identify potent anti-diabetic zinc(II) complexes. The complexes were subcategorized according to their precursor ligands. A critical analysis of the outcomes from published studies shows promising leads, with Zn(II) complexes having a "tri-facet" mode of exerting pharmacological effects. However, the promising leads have been flawed by some major scientific gaps. While zinc(II) complexes of synthetic ligands with little or no anti-diabetic pharmacological history remain the most studied (about 72 %), their toxicity profile was not reported, which raises safety concerns for clinical relevance. The zinc(II) complexes of plant polyphenols; natural ligands, such as maltol and hinokitiol; and supplements, such as ascorbic acid (a natural antioxidant), l-threonine and l-carnitine, showed promising insulin mimetic and glycemic control properties but remain understudied and lack clinical validation, in spite of their minimal safety concerns and health benefits. A paradigm shift toward probing (including clinical studies) supplements, plant polyphenol and natural ligands as anti-diabetic zinc(II) complex is, therefore, recommended. Also, promising anti-diabetic Zn(II) complexes of synthetic ligands should undergo critical toxicity evaluation to address possible safety concerns.


Asunto(s)
Complejos de Coordinación/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Zinc/uso terapéutico , Animales , Humanos
14.
Bioorg Chem ; 87: 534-549, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30928876

RESUMEN

The diffusion of type 2 diabetes (T2D) throughout the world represents one of the most important health problems of this century. Patients suffering from this disease can currently be treated with numerous oral anti-hyperglycaemic drugs, but none is capable of reproducing the physiological action of insulin and, in several cases, they induce severe side effects. Developing new anti-diabetic drugs remains one of the most urgent challenges of the pharmaceutical industry. Multi-target drugs could offer new therapeutic opportunities for the treatment of T2D, and the reported data on type 2 diabetic mice models indicate that these drugs could be more effective and have fewer side effects than mono-target drugs. α-Glucosidases and Protein Tyrosine Phosphatase 1B (PTP1B) are considered important targets for the treatment of T2D: the first digest oligo- and disaccharides in the gut, while the latter regulates the insulin-signaling pathway. With the aim of generating new drugs able to target both enzymes, we synthesized a series of bifunctional compounds bearing both a nitro aromatic group and an iminosugar moiety. The results of tests carried out both in vitro and in a cell-based model, show that these bifunctional compounds maintain activity on both target enzymes and, more importantly, show a good insulin-mimetic activity, increasing phosphorylation levels of Akt in the absence of insulin stimulation. These compounds could be used to develop a new generation of anti-hyperglycemic drugs useful for the treatment of patients affected by T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosidasas/antagonistas & inhibidores , Hipoglucemiantes/farmacología , Iminoazúcares/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Diabetes Mellitus Tipo 2/metabolismo , Relación Dosis-Respuesta a Droga , Glucosidasas/metabolismo , Células Hep G2 , Humanos , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Iminoazúcares/síntesis química , Iminoazúcares/química , Conformación Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Relación Estructura-Actividad
15.
Molecules ; 23(10)2018 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-30314325

RESUMEN

Diabetes mellitus (DM) and consequential cardiovascular diseases lead to millions of deaths worldwide each year; 90% of all people suffering from DM are classified as Type 2 DM (T2DM) patients. T2DM is linked to insulin resistance and a loss of insulin sensitivity. It leads to a reduced uptake of glucose mediated by glucose transporter 4 (GLUT4) in muscle and adipose tissue, and finally hyperglycemia. Using a fluorescence microscopy-based screening assay we searched for herbal extracts that induce GLUT4 translocation in the absence of insulin, and confirmed their activity in chick embryos. We found that extracts prepared from Bellis perennis (common daisy) are efficient inducers of GLUT4 translocation in the applied in vitro cell system. In addition, these extracts also led to reduced blood glucose levels in chicken embryos (in ovo), confirming their activity in a living organism. Using high-performance liquid chromtaography (HPLC) analysis, we identified and quantified numerous polyphenolic compounds including apigenin glycosides, quercitrin and chlorogenic acid, which potentially contribute to the induction of GLUT4 translocation. In conclusion, Bellis perennis extracts reduce blood glucose levels and are therefore suitable candidates for application in food supplements for the prevention and accompanying therapy of T2DM.


Asunto(s)
Asteraceae/química , Mimetismo Biológico , Insulina/farmacología , Extractos Vegetales/farmacología , Animales , Transporte Biológico , Glucemia/efectos de los fármacos , Células CHO , Embrión de Pollo , Cromatografía Líquida de Alta Presión , Cricetulus , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Insulina/química , Extractos Vegetales/química , Transporte de Proteínas
16.
Phytochemistry ; 155: 171-181, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30130690

RESUMEN

To search for bioactive gypenosides and their analogues, a saponin enriched fraction and its hydrolyzate from Gynostemma pentaphyllum were phytochemically investigated. Fractionation by diverse chromatographic methods, including HPLC, Sephadex LH-20, silica gel, and C18 reverse phase silica gel, led to the isolation and purification of twelve triterpenes, including five undescribed and seven known. The chemical structures of all compounds were determined as analyzed by nuclear magnetic resonance (NMR), high resolution mass spectrometry (HR-MS), infrared spectrum (IR), optical rotation, and chemical transformations. Among all isolates, nine compounds possessed a rare dammarane triterpenoid framework with A-ring modified. The relative configurations of three compounds were determined by 2D NMR for the first time. The absolute configurations of four compounds were determined by the modified Mosher's method. Two of all isolated compounds significantly enhanced 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG) uptake and Glucose Transporter 4 (GLUT4) translocation via activating the AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) signaling pathway. This study provided the potential candidates for the development of antidiabetic agents.


Asunto(s)
Gynostemma/química , Hipoglucemiantes/farmacología , Fitoquímicos/farmacología , Triterpenos/farmacología , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Hipoglucemiantes/química , Hipoglucemiantes/aislamiento & purificación , Ratones , Conformación Molecular , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Transducción de Señal/efectos de los fármacos , Triterpenos/química , Triterpenos/aislamiento & purificación
17.
Biol Trace Elem Res ; 186(1): 52-67, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29524196

RESUMEN

Ultra-trace elements or occasionally beneficial elements (OBE) are the new categories of minerals including vanadium (V). The importance of V is attributed due to its multifaceted biological roles, i.e., glucose and lipid metabolism as an insulin-mimetic, antilipemic and a potent stress alleviating agent in diabetes when vanadium is administered at lower doses. It competes with iron for transferrin (binding site for transportation) and with lactoferrin as it is secreted in milk also. The intracellular enzyme protein tyrosine phosphatase, causing the dephosphorylation at beta subunit of the insulin receptor, is inhibited by vanadium, thus facilitating the uptake of glucose inside the cell but only in the presence of insulin. Vanadium could be useful as a potential immune-stimulating agent and also as an antiinflammatory therapeutic metallodrug targeting various diseases. Physiological state and dose of vanadium compounds hold importance in causing toxicity also. Research has been carried out mostly on laboratory animals but evidence for vanadium importance as a therapeutic agent are available in humans and large animals also. This review examines the potential biochemical and molecular role, possible kinetics and distribution, essentiality, immunity, and toxicity-related study of vanadium in a biological system.


Asunto(s)
Vanadio , Animales , Glucosa/metabolismo , Humanos , Cinética , Vanadio/efectos adversos , Vanadio/metabolismo , Vanadio/farmacocinética
18.
J Inorg Biochem ; 177: 228-246, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29073545

RESUMEN

The advent of Zn(II) metallodrugs in metabolic syndrome pathologies generates a strong challenge toward synthetic endeavors targeting well-defined, atoxic and biologically active binary/ternary species of Zn(II). Proper formulation of that metal ion's coordination sphere sets the stage for construction of appropriately configured Schiff ligands based on tromethamine and variably modified vanillin core components. The arising Schiff ligands react with Zn(II) in a defined stoichiometry, thereby delivering new binary Zn(II)-L species with defined physicochemical properties. Analytical (elemental), spectroscopic (FT-IR, Thermogravimetric Analysis) and crystallographic techniques attest to the distinct nature of the derived binary-ternary materials, bearing defined Zn(II):L molecular stoichiometry, variable nuclearity, charge, bulk and balance mix of hydrophilicity-hydrophobicity, thereby providing the physicochemical profile based on which biological studies could ensue. The structurally based selection of species was applied onto in vitro 3T3-L1 cultures, essentially exploring toxicity, migration, morphology, cell differentiation and maturation. The systematic effort toward comparative work on appropriately defined Zn(II) species and insulin in inducing adipogenesis reveals the salient structural features in the Schiff family of ligands configuring Zn(II) so as to promote complex formation sufficient to engage biomolecular targets during the process of initiation and maturation. Molecular targets of importance in adipogenesis were examined under the influence of Zn(II) and their expression levels suggest the structural composition that a Zn(II) ion might have to optimally pursue cell differentiation. Thus, a well-defined selection of binary Zn(II)-L species is tightly associated with the incurred bioactivity, thereby setting the stage for the development of efficient Zn(II) metallodrugs to combat Diabetes mellitus II.


Asunto(s)
Adipogénesis/efectos de los fármacos , Complejos de Coordinación/farmacología , Bases de Schiff/farmacología , Zinc/química , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/toxicidad , Cristalografía por Rayos X , Transportador de Glucosa de Tipo 4/metabolismo , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/toxicidad , Ligandos , Ratones , Estructura Molecular , PPAR gamma/metabolismo , Bases de Schiff/síntesis química , Bases de Schiff/química , Bases de Schiff/toxicidad
19.
Food Chem Toxicol ; 107(Pt A): 122-128, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28655652

RESUMEN

The modern life leads to excess consumption of food rich in fructose; however, the long-term changes in carbohydrate and lipid metabolism could lead to metabolic dysfunction in humans. The present study evaluated the in vitro insulin-mimetic action of p-chloro-diphenyl diselenide (p-ClPhSe)2. The second aim of this study was to investigate if (p-ClPhSe)2 reverses metabolic dysfunction induced by fructose load in Wistar rats. The insulin-mimetic action of (p-ClPhSe)2 at concentrations of 50 and 100 µM was determined in slices of rat skeletal muscle. (p-ClPhSe)2 at a concentration of 50 µM stimulated the glucose uptake by 40% in skeletal muscle. A dose-response curve revealed that (p-ClPhSe)2 at a dose of 25 mg/kg reduced (∼20%) glycemia in rats treated with fructose (5 g/kg, i.g.). The administration of fructose impaired the liver homeostasis and (p-ClPhSe)2 (25 mg/kg) protected against the increase (∼25%) in the G-6-Pase and isocitrate dehydrogenase activities and reduced the triglyceride content (∼25%) in the liver. (p-ClPhSe)2 regulated the liver homeostasis by stimulating hexokinase activity (∼27%), regulating the TCA cycle activity (increased the ATP and citrate synthase activity (∼15%)) and increasing the glycogen levels (∼67%). In conclusion, (p-ClPhSe)2 stimulated carbohydrate metabolism and reversed metabolic dysfunction in rats fed with fructose.


Asunto(s)
Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Fructosa/efectos adversos , Enfermedades Metabólicas/tratamiento farmacológico , Compuestos de Organoselenio/administración & dosificación , Animales , Fructosa/metabolismo , Hexoquinasa/metabolismo , Homeostasis/efectos de los fármacos , Humanos , Isocitrato Deshidrogenasa/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Masculino , Enfermedades Metabólicas/enzimología , Enfermedades Metabólicas/etiología , Enfermedades Metabólicas/metabolismo , Ratas , Ratas Wistar , Triglicéridos/metabolismo
20.
AAPS J ; 19(4): 1017-1028, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28332167

RESUMEN

Large bone defects often require the use of autograft, allograft, or synthetic bone graft augmentation; however, these treatments can result in delayed osseous integration. A tissue engineering strategy would be the use of a scaffold that could promote the normal fracture healing process of endochondral ossification, where an intermediate cartilage phase is later transformed to bone. This study investigated vanadyl acetylacetonate (VAC), an insulin mimetic, combined with a fibrous composite scaffold, consisting of polycaprolactone with nanoparticles of hydroxyapatite and beta-tricalcium phosphate, as a potential bone tissue engineering scaffold. The differentiation of human mesenchymal stem cells (MSCs) was evaluated on 0.05 and 0.025 wt% VAC containing composite scaffolds (VAC composites) in vitro using three different induction media: osteogenic (OS), chondrogenic (CCM), and chondrogenic/osteogenic (C/O) media, which mimics endochondral ossification. The controlled release of VAC was achieved over 28 days for the VAC composites, where approximately 30% of the VAC was released over this period. MSCs cultured on the VAC composites in C/O media had increased alkaline phosphatase activity, osteocalcin production, and collagen synthesis over the composite scaffold without VAC. In addition, gene expressions for chondrogenesis (Sox9) and hypertrophic markers (VEGF, MMP-13, and collagen X) were the highest on VAC composites. Almost a 1000-fold increase in VEGF gene expression and VEGF formation, as indicated by immunostaining, was achieved for cells cultured on VAC composites in C/O media, suggesting VAC will promote angiogenesis in vivo. These results demonstrate the potential of VAC composite scaffolds in supporting endochondral ossification as a bone tissue engineering strategy.


Asunto(s)
Condrogénesis , Células Madre Mesenquimatosas/citología , Osteogénesis , Andamios del Tejido , Vanadio/metabolismo , Expresión Génica , Humanos , Células Madre Mesenquimatosas/metabolismo , Microscopía Electrónica de Rastreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA