Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 327(4): H830-H846, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39093001

RESUMEN

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Excessive stimulation of the inositol (1,4,5)-trisphosphate (IP3) signaling pathway has been linked to AF through abnormal calcium handling. However, little is known about the mechanisms involved in this process. We expressed the fluorescence resonance energy transfer (FRET)-based cytosolic cyclic adenosine monophosphate (cAMP) sensor EPAC-SH187 in neonatal rat atrial myocytes (NRAMs) and neonatal rat ventricular myocytes (NRVMs). In NRAMs, the addition of the α1-agonist, phenylephrine (PE, 3 µM), resulted in a FRET change of 21.20 ± 7.43%, and the addition of membrane-permeant IP3 derivative 2,3,6-tri-O-butyryl-myo-IP3(1,4,5)-hexakis(acetoxymethyl)ester (IP3-AM, 20 µM) resulted in a peak of 20.31 ± 6.74%. These FRET changes imply an increase in cAMP. Prior application of IP3 receptor (IP3R) inhibitors 2-aminoethyl diphenylborinate (2-APB, 2.5 µM) or Xestospongin-C (0.3 µM) significantly inhibited the change in FRET in NRAMs in response to PE. Xestospongin-C (0.3 µM) significantly inhibited the change in FRET in NRAMs in response to IP3-AM. The FRET change in response to PE in NRVMs was not inhibited by 2-APB or Xestospongin-C. Finally, the localization of cAMP signals was tested by expressing the FRET-based cAMP sensor, AKAP79-CUTie, which targets the intracellular surface of the plasmalemma. We found in NRAMs that PE led to FRET change corresponding to an increase in cAMP that was inhibited by 2-APB and Xestospongin-C. These data support further investigation of the proarrhythmic nature and components of IP3-induced cAMP signaling to identify potential pharmacological targets.NEW & NOTEWORTHY This study shows that indirect activation of the IP3 pathway in atrial myocytes using phenylephrine and direct activation using IP3-AM leads to an increase in cAMP and is in part localized to the cell membrane. These changes can be pharmacologically inhibited using IP3R inhibitors. However, the cAMP rise in ventricular myocytes is independent of IP3R calcium release. Our data support further investigation into the proarrhythmic nature of IP3-induced cAMP signaling.


Asunto(s)
AMP Cíclico , Citosol , Transferencia Resonante de Energía de Fluorescencia , Atrios Cardíacos , Receptores de Inositol 1,4,5-Trifosfato , Miocitos Cardíacos , Animales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , AMP Cíclico/metabolismo , Atrios Cardíacos/metabolismo , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/citología , Citosol/metabolismo , Ratas , Ratas Sprague-Dawley , Células Cultivadas , Animales Recién Nacidos , Compuestos de Boro/farmacología , Fenilefrina/farmacología , Señalización del Calcio/efectos de los fármacos , Inositol 1,4,5-Trifosfato/metabolismo , Sistemas de Mensajero Secundario/efectos de los fármacos
2.
Methods Mol Biol ; 2814: 195-207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954207

RESUMEN

Activation of G protein-coupled receptors upon chemoattractant stimulation induces activation of multiple signaling pathways. To fully understand how these signaling pathway coordinates to achieve directional migration of neutrophils, it is essential to determine the dynamics of the spatiotemporal activation profile of signaling components at the level of single living cells. Here, we describe a detailed methodology for monitoring and quantitatively analyzing the spatiotemporal dynamics of 1,4,5-inositol trisphosphate (IP3) in neutrophil-like HL60 cells in response to various chemoattractant fields by applying Förster resonance energy transfer (FRET) fluorescence microscopy.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Inositol 1,4,5-Trifosfato , Microscopía Confocal , Microscopía Fluorescente , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Células HL-60 , Microscopía Fluorescente/métodos , Microscopía Confocal/métodos , Inositol 1,4,5-Trifosfato/metabolismo , Transducción de Señal , Neutrófilos/metabolismo
3.
Biology (Basel) ; 13(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38927260

RESUMEN

The ß-cell workload increases in the setting of insulin resistance and reduced ß-cell mass, which occurs in type 2 and type 1 diabetes, respectively. The prolonged elevation of insulin production and secretion during the pathogenesis of diabetes results in ß-cell ER stress. The depletion of ß-cell Ca2+ER during ER stress activates the unfolded protein response, leading to ß-cell dysfunction. Ca2+ER is involved in many pathways that are critical to ß-cell function, such as protein processing, tuning organelle and cytosolic Ca2+ handling, and modulating lipid homeostasis. Mutations that promote ß-cell ER stress and deplete Ca2+ER stores are associated with or cause diabetes (e.g., mutations in ryanodine receptors and insulin). Thus, improving ß-cell Ca2+ER handling and reducing ER stress under diabetogenic conditions could preserve ß-cell function and delay or prevent the onset of diabetes. This review focuses on how mechanisms that control ß-cell Ca2+ER are perturbed during the pathogenesis of diabetes and contribute to ß-cell failure.

5.
J Biol Chem ; 299(12): 105471, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37979918

RESUMEN

Recently, we demonstrated that agonist-stimulated Ca2+ signaling involving IP3 receptors modulates ER export rates through activation of the penta-EF Hand proteins apoptosis-linked gene-2 (ALG-2) and peflin. It is unknown, however, whether IP3Rs and penta-EF proteins regulate ER export rates at steady state. Here we tested this idea in normal rat kidney epithelial cells by manipulation of IP3R isoform expression. Under standard growth conditions, spontaneous cytosolic Ca2+ oscillations occurred simultaneously in successive groups of contiguous cells, generating intercellular Ca2+ waves that moved across the monolayer periodically. Depletion of IP3R-3, typically the least promiscuous IP3R isoform, caused increased cell participation in intercellular Ca2+ waves in unstimulated cells. The increased spontaneous signaling was sufficient to cause increased ALG-2 and COPII coat subunit Sec31A and decreased peflin localization at ER exit sites, resulting in increased ER-to-Golgi transport of the COPII client cargo VSV-G. The elevated ER-to-Golgi transport caused greater concentration of VSV-G at ER exit sites and had reciprocal effects on transport of VSV-G and a bulk-flow cargo, though both cargos equally required Sec31A. Inactivation of client cargo sorting using 4-phenylbutyrate had opposing reciprocal effects on client and bulk-flow cargo and neutralized any effect of ALG-2 activation on transport. This work extends our knowledge of ALG-2 mechanisms and indicates that in normal rat kidney cells, IP3R isoforms regulate homeostatic Ca2+ signaling that helps determine the basal secretion rate and stringency of COPII-dependent cargo sorting.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento , Calcio , Motivos EF Hand , Receptores de Inositol 1,4,5-Trifosfato , Animales , Ratas , Calcio/metabolismo , Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Células Epiteliales/metabolismo , Aparato de Golgi/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Riñón/citología , Isoformas de Proteínas/metabolismo , Transporte de Proteínas
6.
Cureus ; 15(11): e49150, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38024063

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a prevalent and complex condition that affects millions of people globally. It occurs when fat, primarily triglycerides, accumulates in liver cells, leading to inflammation and damage. Calcium, an essential mineral, is involved in various physiological processes, including the regeneration process following liver injury. The endoplasmic reticulum (ER), a complex organelle involved in protein synthesis and lipid metabolism, regulates intracellular calcium levels. Dysregulation of this process can lead to calcium overload, oxidative stress, and cellular damage, all of which are hallmarks of NAFLD. Inositol 1,4,5-trisphosphate receptor (IP3R), a type of calcium ion channel, is found throughout the body, including the liver. IP3R is classified into three subtypes: IP3R1, IP3R2, and IP3R3, and it plays a critical role in regulating intracellular calcium levels. However, excessive calcium accumulation in the mitochondria due to an overload of calcium ions or increased IP3R activity can lead to NAFLD. Therefore, targeting calcium channels in the ER membrane may represent a promising therapeutic strategy for preventing and treating this increasingly prevalent metabolic disorder. It may help prevent mitochondrial calcium accumulation and reduce the risk of hepatic damage. This review article aimed to review the relationship between IP3R modulation and the pathogenicity of NAFLD, providing valuable insights to help researchers develop more effective treatments for the condition.

7.
Asian Pac J Cancer Prev ; 24(8): 2691-2696, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37642055

RESUMEN

INTRODUCTION: Acute lymphoblastic leukemia (ALL) is among the most prevalent child cancers. Moreover, chemotherapy and bone marrow transplantation have failed to secure the survival of patients in some cases. Various researches have revealed that glycogen synthase kinase 3 (GSK-3) inhibitors can contain the growth of some cancers. Furthermore, inositol trisphosphate receptor (IP3R) exists in all cell types and is implicated in metastasis. The application of organic, natural substances offers new prospects for the treatment of this condition. Accordingly, the aim of this study was to examine the silver nanoparticles synthesized from Sargassum Angustifolium on the expression of IP3 and GSK receptors in ALL Jurkat cells. METHODS: We isolated Sargassum Angustifolium extract and mixed it with silver nanoparticles (NPs) and treated the cells with the mixture. The changes in the expression of GSKα, IP3R3 and GSKß genes in the Jurkat cell line were studied. In this research, quantitative mRNA expression of the target gene was measured using a real-time polymerase chain reaction (PCR). Hypoxanthine phosphoribosyltransferase (HPRT) genes were studied as the internal control. The experiments were replicated 3 times. Data analysis was performed through one-way ANOVA and t-test. The significance level was considered less than 0.05. RESULTS: The results of this study revealed that different concentrations of the extracts significantly decreased the expression levels of GSKα, IP3R3 and GSKß gene in Jurkat cells compared to control groups. The combination of algae extract and AgNPs was consistently the most effective group. CONCLUSION: silver nanoparticles synthesized from sargassum algae in the Persian Gulf could be utilized to treat ALL cancers and even other tumors.


Asunto(s)
Nanopartículas del Metal , Leucemia-Linfoma Linfoblástico de Células Precursoras , Sargassum , Niño , Humanos , Glucógeno Sintasa Quinasa 3 , Plata/farmacología , Apoptosis , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
8.
Comput Biol Med ; 164: 107111, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37540925

RESUMEN

Agonist-induced Ca2+ signaling is essential for the regulation of many vital functions in endothelial cells (ECs). A broad range of stimuli elevate the cytosolic Ca2+ concentration by promoting a pathway mediated by inositol 1,4,5 trisphosphate (IP3) which causes Ca2+ release from intracellular stores. Despite its importance, there are very few studies focusing on the quantification of such dynamics in the vascular endothelium. Here, by using data from isolated ECs, we established a minimalistic modeling framework able to quantitatively capture the main features (averaged over a cell population) of the cytosolic Ca2+ response to different IP3 stimulation levels. A suitable description of Ca2+-regulatory function of inositol 1,4,5 trisphosphate receptors (IP3Rs) and corresponding parameter space are identified by comparing the different model variants against experimental mean population data. The same approach is used to numerically assess the relevance of cytosolic Ca2+ buffering, as well as Ca2+ store IP3-sensitivity in the overall cell dynamics. The variability in the dynamics' features observed across the population can be explained (at least in part) through variation of certain model parameters (such as buffering capacity or Ca2+ store sensitivity to IP3). The results, in terms of experimental fitting and validation, support the proposed minimalistic model as a reference framework for the quantification of the EC Ca2+ dynamics induced by IP3Rs activation.


Asunto(s)
Señalización del Calcio , Inositol 1,4,5-Trifosfato , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células Endoteliales/metabolismo , Calcio/metabolismo
9.
Neuropharmacology ; 239: 109672, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37506875

RESUMEN

Previous studies postulated that chronic administration of varenicline, a partial and full agonist at α4ß2 and α7 nicotinic acetylcholine receptors (nAChRs), respectively, enhances recognition memory. However, whether its acute administration is effective, on which brain region(s) it acts, and in what signaling it is involved, remain unknown. To address these issues, we conducted a novel object recognition test using male C57BL/6J mice, focusing on the medial prefrontal cortex (mPFC), a brain region associated with nicotine-induced enhancement of recognition memory. Systemic administration of varenicline before the training dose-dependently enhanced recognition memory. Intra-mPFC varenicline infusion also enhanced recognition memory, and this enhancement was blocked by intra-mPFC co-infusion of a selective α7, but not α4ß2, nAChR antagonist. Consistent with this, intra-mPFC infusion of a selective α7 nAChR agonist augmented object recognition memory. Furthermore, intra-mPFC co-infusion of U-73122, a phospholipase C (PLC) inhibitor, or 2-aminoethoxydiphenylborane (2-APB), an inositol trisphosphate (IP3) receptor inhibitor, suppressed the varenicline-induced memory enhancement, suggesting that α7 nAChRs may also act as Gq-coupled metabotropic receptors. Additionally, whole-cell recordings from mPFC layer V pyramidal neurons in vitro revealed that varenicline significantly increased the summation of evoked excitatory postsynaptic potentials, and this effect was suppressed by U-73122 or 2-APB. These findings suggest that varenicline might acutely enhance recognition memory via mPFC α7 nAChR stimulation, followed by mPFC neuronal excitation, which is mediated by the activation of PLC and IP3 receptor signaling. Our study provides evidence supporting the potential repositioning of varenicline as a treatment for cognitive impairment.


Asunto(s)
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa 7 , Ratones , Masculino , Animales , Vareniclina/farmacología , Receptores Nicotínicos/metabolismo , Ratones Endogámicos C57BL , Corteza Prefrontal/metabolismo
10.
Biomed Pharmacother ; 164: 114935, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37245337

RESUMEN

Asthma is a chronic inflammatory disease characterized by airway hypersensitivity and remodeling. The current treatments provide only short-term benefits and may have undesirable side effects; thus, alternative or supplementary therapy is needed. Because intracellular calcium (Ca2+) signaling plays an essential role in regulating the contractility and remodeling of airway smooth muscle cells, the targeting of Ca2+ signaling is a potential therapeutic strategy for asthma. Houttuynia cordata is a traditional Chinese herb that is used to treat asthma due to its anti-allergic and anti-inflammatory properties. We hypothesized that H. cordata might modulate intracellular Ca2+ signaling and could help relieve asthmatic airway remodeling. We found that the mRNA and protein levels of inositol trisphosphate receptors (IP3Rs) were elevated in interleukin-stimulated primary human bronchial smooth muscle cells and a house dust mite-sensitized model of asthma. The upregulation of IP3R expression enhanced intracellular Ca2+ release upon stimulation and contributed to airway remodeling in asthma. Intriguingly, pretreatment with H. cordata essential oil rectified the disruption of Ca2+ signaling, mitigated asthma development, and prevented airway narrowing. Furthermore, our analysis suggested that houttuynin/2-undecanone could be the bioactive component in H. cordata essential oil because we found similar IP3R suppression in response to the commercially available derivative sodium houttuyfonate. An in silico analysis showed that houttuynin, which downregulates IP3R expression, binds to the IP3 binding domain of IP3R and may mediate a direct inhibitory effect. In summary, our findings suggest that H. cordata is a potential alternative treatment choice that may reduce asthma severity by targeting the dysregulation of Ca2+ signaling.


Asunto(s)
Antiasmáticos , Asma , Houttuynia , Humanos , Señalización del Calcio , Houttuynia/metabolismo , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico , Bronquios/metabolismo , Asma/tratamiento farmacológico , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Calcio/metabolismo
11.
Cell Calcium ; 110: 102697, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36736164

RESUMEN

Ca2+ is a major ligand of the inositol 1,4,5-trisphosphate receptor (IP3R) Ca2+-release channel. Fan et al. [1] recently solved additional cryo-electron microscopy (cryo-EM) structures of the IP3R in different ligand-binding states, revealing new Ca2+ binding sites.


Asunto(s)
Calcio , Inositol 1,4,5-Trifosfato , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Microscopía por Crioelectrón , Ligandos , Inositol 1,4,5-Trifosfato/metabolismo , Sitios de Unión , Calcio/metabolismo
12.
JHEP Rep ; 5(3): 100647, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36718430

RESUMEN

Background & Aims: Chronic HCV infection causes cellular stress, fibrosis and predisposes to hepatocarcinogenesis. Mitochondria play key roles in orchestrating stress responses by regulating bioenergetics, inflammation and apoptosis. To better understand the role of mitochondria in the viral life cycle and disease progression of chronic hepatitis C, we studied morphological and functional mitochondrial alterations induced by HCV using productively infected hepatoma cells and patient livers. Methods: Biochemical and imaging assays were used to assess localization of cellular and viral proteins and mitochondrial functions in cell cultures and liver biopsies. Cyclophilin D (CypD) knockout was performed using CRISPR/Cas9 technology. Viral replication was quantified by quantitative reverse-transcription PCR and western blotting. Results: Several HCV proteins were found to associate with mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), the points of contact between the ER and mitochondria. Downregulation of CypD, which is known to disrupt MAM integrity, reduced viral replication, suggesting that MAMs play an important role in the viral life cycle. This process was rescued by ectopic CypD expression. Furthermore, HCV proteins were found to associate with voltage dependent anion channel 1 (VDAC1) at MAMs and to reduce VDAC1 protein levels at MAMs in vitro and in patient biopsies. This association did not affect MAM-associated functions in glucose homeostasis and Ca2+ signaling. Conclusions: HCV proteins associate specifically with MAMs and MAMs play an important role in viral replication. The association between viral proteins and MAMs did not impact Ca2+ signaling between the ER and mitochondria or glucose homeostasis. Whether additional functions of MAMs and/or VDAC are impacted by HCV and contribute to the associated pathology remains to be assessed. Impact and implications: Hepatitis C virus infects the liver, where it causes inflammation, cell damage and increases the long-term risk of liver cancer. We show that several HCV proteins interact with mitochondria in liver cells and alter the composition of mitochondrial subdomains. Importantly, HCV requires the architecture of these mitochondrial subdomains to remain intact for efficient viral replication.

13.
Biomolecules ; 14(1)2023 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-38254653

RESUMEN

Heart failure (HF) increases the probability of cardiac arrhythmias, including atrial fibrillation (AF), but the mechanisms linking HF to AF are poorly understood. We investigated disturbances in Ca2+ signaling and electrophysiology in rabbit atrial myocytes from normal and failing hearts and identified mechanisms that contribute to the higher risk of atrial arrhythmias in HF. Ca2+ transient (CaT) alternans-beat-to-beat alternations in CaT amplitude-served as indicator of increased arrhythmogenicity. We demonstrate that HF atrial myocytes were more prone to alternans despite no change in action potentials duration and only moderate decrease of L-type Ca2+ current. Ca2+/calmodulin-dependent kinase II (CaMKII) inhibition suppressed CaT alternans. Activation of IP3 signaling by endothelin-1 (ET-1) and angiotensin II (Ang II) resulted in acute, but transient reduction of CaT amplitude and sarcoplasmic reticulum (SR) Ca2+ load, and lowered the alternans risk. However, prolonged exposure to ET-1 and Ang II enhanced SR Ca2+ release and increased the degree of alternans. Inhibition of IP3 receptors prevented the transient ET-1 and Ang II effects and by itself increased the degree of CaT alternans. Our data suggest that activation of CaMKII and IP3 signaling contribute to atrial arrhythmogenesis in HF.


Asunto(s)
Fibrilación Atrial , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Insuficiencia Cardíaca , Inositol 1,4,5-Trifosfato , Hormonas Peptídicas , Animales , Conejos , Angiotensina II/farmacología , Calmodulina , Atrios Cardíacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo
14.
Front Pharmacol ; 13: 951897, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105228

RESUMEN

Atrial arrhythmias, such as atrial fibrillation (AF), are a major mortality risk and a leading cause of stroke. The IP3 signalling pathway has been proposed as an atrial-specific target for AF therapy, and atrial IP3 signalling has been linked to the activation of calcium sensitive adenylyl cyclases AC1 and AC8. We investigated the involvement of AC1 in the response of intact mouse atrial tissue and isolated guinea pig atrial and sino-atrial node (SAN) cells to the α-adrenoceptor agonist phenylephrine (PE) using the selective AC1 inhibitor ST034307. The maximum rate change of spontaneously beating mouse right atrial tissue exposed to PE was reduced from 14.5% to 8.2% (p = 0.005) in the presence of 1 µM ST034307, whereas the increase in tension generated in paced left atrial tissue in the presence of PE was not inhibited by ST034307 (Control = 14.2%, ST034307 = 16.3%; p > 0.05). Experiments were performed using isolated guinea pig atrial and SAN cells loaded with Fluo-5F-AM to record changes in calcium transients (CaT) generated by 10 µM PE in the presence and absence of 1 µM ST034307. ST034307 significantly reduced the beating rate of SAN cells (0.34-fold decrease; p = 0.003) but did not inhibit changes in CaT amplitude in response to PE in atrial cells. The results presented here demonstrate pharmacologically the involvement of AC1 in the downstream response of atrial pacemaker activity to α-adrenoreceptor stimulation and IP3R calcium release.

15.
FEBS Lett ; 596(20): 2706-2716, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35920096

RESUMEN

Previously, we reported that chemokine (C-C motif) receptor 2 (CCR2) heteromerizes with α1B -adrenoceptor (α1B -AR) in leukocytes, through which α1B -AR controls CCR2. Whether such heteromers are expressed in human vascular smooth muscle cells (hVSMCs) is unknown. Bioluminescence resonance energy transfer confirmed formation of recombinant CCR2:α1b -AR heteromers. Proximity ligation assays detected CCR2:α1B -AR heteromers in hVSMCs and human mesenteric arteries. CCR2:α1B -AR heteromerization per se enhanced α1B -AR-mediated Gαq -coupling. Chemokine (C-C motif) ligand 2 (CCL2) binding to CCR2 inhibited Gαq activation via α1B -AR, cross-recruited ß-arrestin to and induced internalization of α1B -AR in recombinant systems and in hVSMCs. Our findings suggest that CCR2 within CCR2:α1B -AR heteromers biases α1B -AR signaling and provide a mechanism for previous observations suggesting a role for CCL2/CCR2 in the regulation of cardiovascular function.


Asunto(s)
Quimiocina CCL2 , Receptores Adrenérgicos alfa 1 , Humanos , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , beta-Arrestinas/metabolismo , Quimiocinas/metabolismo , Sesgo
16.
J Biol Chem ; 298(6): 102026, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35568199

RESUMEN

Long-term activation of inositol 1,4,5-trisphosphate receptors (IP3Rs) leads to their degradation by the ubiquitin-proteasome pathway. The first and rate-limiting step in this process is thought to be the association of conformationally active IP3Rs with the erlin1/2 complex, an endoplasmic reticulum-located oligomer of erlin1 and erlin2 that recruits the E3 ubiquitin ligase RNF170, but the molecular determinants of this interaction remain unknown. Here, through mutation of IP3R1, we show that the erlin1/2 complex interacts with the IP3R1 intralumenal loop 3 (IL3), the loop between transmembrane (TM) helices 5 and 6, and in particular, with a region close to TM5, since mutation of amino acids D-2471 and R-2472 can specifically block erlin1/2 complex association. Surprisingly, we found that additional mutations in IL3 immediately adjacent to TM5 (e.g., D2465N) almost completely abolish IP3R1 Ca2+ channel activity, indicating that the integrity of this region is critical to IP3R1 function. Finally, we demonstrate that inhibition of the ubiquitin-activating enzyme UBE1 by the small-molecule inhibitor TAK-243 completely blocked IP3R1 ubiquitination and degradation without altering erlin1/2 complex association, confirming that association of the erlin1/2 complex is the primary event that initiates IP3R1 processing and that IP3R1 ubiquitination mediates IP3R1 degradation. Overall, these data localize the erlin1/2 complex-binding site on IP3R1 to IL3 and show that the region immediately adjacent to TM5 is key to the events that facilitate channel opening.


Asunto(s)
Retículo Endoplásmico , Receptores de Inositol 1,4,5-Trifosfato , Proteínas de la Membrana , Ubiquitina , Animales , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ubiquitina/metabolismo , Ubiquitinación
17.
Biol Cell ; 114(5): 127-137, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35235701

RESUMEN

BACKGROUND INFORMATION: Endothelial progenitor cells (EPCs) can exert angiogenic effects by a paracrine mechanism, where exosomes work as an important mediator. Recent studies reported functional expression of toll-like receptor (TLR) 4 on human EPCs and dose-dependent effects of lipopolysaccharide (LPS) on EPC angiogenic properties. To study the effects of TLR4/LPS signaling on EPC-derived exosomes (Exo) and clarify the mechanism, we investigated the role of LPS on exosomes secretion from human EPCs and tested their anti-oxidation/senescence functions. We employed the inhibitors of the plasma membrane Ca2+ -ATPase (PMCA), endoplasmic reticulum Ca2+ -ATPase (ERCA), PLC-IP3 pathway and store-operated calcium entry to assess the effects of LPS on EPC intracellular calcium signalings which critical for exosome secretion. RESULTS: LPS induced the release of Exo in a TLR4-dependent manner in vitro, which effect can be partly abrogated by an membrane-permeable IP 3 R antagonist, 2-aminoethyl diphenylborinate (2-APB), but not PLC inhibitor, U-73122. The LPS can significantly delay the fallback of [Ca2+ ]i after isolating the cellular PMCA activity, and disturb PMCA 1/4 expression. The distribution of elevated intracellular calcium seemed coincident with the development of the multivesicular bodies (MVBs). furthermore, the anti-oxidation/senescence properties of LPS-induced Exo were validated by the senescence-associated ß-galactosidase activity assay and reactive oxygen species (ROS) related H2 DCF-DA assay. CONCLUSIONS: The mechanism of PMCA downregulation and IP3 R-dependent ER Ca2+ release may contribute to the pro-exosomal effects of LPS on EPCs. SIGNIFICANCE: This study provides new insights into the potential role of LPS/TLR4 pathway in regulating EPC-derived exosomes, which may help to develop some feasible approach to manipulate the Exo secretion and promote the clinical application of EPCs therapy in future.


Asunto(s)
Células Progenitoras Endoteliales , Exosomas , Adenosina Trifosfatasas/metabolismo , Calcio/metabolismo , Células Progenitoras Endoteliales/metabolismo , Exosomas/metabolismo , Humanos , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Receptor Toll-Like 4/metabolismo
18.
Acta Pharm Sin B ; 11(11): 3433-3446, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34900528

RESUMEN

RAS, a member of the small GTPase family, functions as a binary switch by shifting between inactive GDP-loaded and active GTP-loaded state. RAS gain-of-function mutations are one of the leading causes in human oncogenesis, accounting for ∼19% of the global cancer burden. As a well-recognized target in malignancy, RAS has been intensively studied in the past decades. Despite the sustained efforts, many failures occurred in the earlier exploration and resulted in an 'undruggable' feature of RAS proteins. Phosphorylation at several residues has been recently determined as regulators for wild-type and mutated RAS proteins. Therefore, the development of RAS inhibitors directly targeting the RAS mutants or towards upstream regulatory kinases supplies a novel direction for tackling the anti-RAS difficulties. A better understanding of RAS phosphorylation can contribute to future therapeutic strategies. In this review, we comprehensively summarized the current advances in RAS phosphorylation and provided mechanistic insights into the signaling transduction of associated pathways. Importantly, the preclinical and clinical success in developing anti-RAS drugs targeting the upstream kinases and potential directions of harnessing allostery to target RAS phosphorylation sites were also discussed.

19.
J Physiol ; 599(23): 5281-5300, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34676545

RESUMEN

In various neurons, including neuroendocrine cells, non-selective cation channels elicit plateau potentials and persistent firing. Reproduction in the marine snail Aplysia californica is initiated when the neuroendocrine bag cell neurons undergo an afterdischarge, that is, a prolonged period of enhanced excitability and spiking during which egg-laying hormone is released into the blood. The afterdischarge is associated with both the production of hydrogen peroxide (H2 O2 ) and activation of phospholipase C (PLC), which hydrolyses phosphatidylinositol-4,5-bisphosphate into diacylglycerol (DAG) and inositol trisphosphate (IP3 ). We previously demonstrated that H2 O2 gates a voltage-dependent cation current and evokes spiking in bag cell neurons. The present study tests if DAG and IP3 impact the H2 O2 -induced current and excitability. In whole-cell voltage-clamped cultured bag cell neurons, bath-application of 1-oleoyl-2-acetyl-sn-glycerol (OAG), a DAG analogue, enhanced the H2 O2 -induced current, which was amplified by the inclusion of IP3 in the pipette. A similar outcome was produced by the PLC activator, N-(3-trifluoromethylphenyl)-2,4,6-trimethylbenzenesulfonamide. In current-clamp, OAG or OAG plus IP3 , elevated the frequency of H2 O2 -induced bursting. PKC is also triggered during the afterdischarge; when PKC was stimulated with phorbol 12-myristate 13-acetate, it caused a voltage-dependent inward current with a reversal potential similar to the H2 O2 -induced current. Furthermore, PKC activation followed by H2 O2 reduced the onset latency and increased the duration of action potential firing. Finally, inhibiting nicotinamide adenine dinucleotide phosphate oxidase with 3-benzyl-7-(2-benzoxazolyl)thio-1,2,3-triazolo[4,5-d]pyrimidine diminished evoked bursting in isolated bag cell neuron clusters. These results suggest that reactive oxygen species and phosphoinostide metabolites may synergize and contribute to reproductive behaviour by promoting neuroendocrine cell firing. KEY POINTS: Aplysia bag cell neurons secrete reproductive hormone during a lengthy burst of action potentials, known as the afterdischarge. During the afterdischarge, phospholipase C (PLC) hydrolyses phosphatidylinositol-4,5-bisphosphate into diacylglycerol (DAG) and inositol trisphosphate (IP3 ). Subsequent activation of protein kinase C (PKC) leads to H2 O2 production. H2 O2 evokes a voltage-dependent inward current and action potential firing. Both a DAG analogue, 1-oleoyl-2-acetyl-sn-glycerol (OAG), and IP3 enhance the H2 O2 -induced current, which is mimicked by the PLC activator, N-(3-trifluoromethylphenyl)-2,4,6-trimethylbenzenesulfonamide. The frequency of H2 O2 -evoked afterdischarge-like bursting is augmented by OAG or OAG plus IP3 . Stimulating PKC with phorbol 12-myristate 13-acetate shortens the latency and increases the duration of H2 O2 -induced bursts. The nicotinamide adenine dinucleotide phosphate oxidase inhibitor, 3-benzyl-7-(2-benzoxazolyl)thio-1,2,3-triazolo[4,5-d]pyrimidine, attenuates burst firing in bag cell neuron clusters.


Asunto(s)
Células Neuroendocrinas , Animales , Aplysia , Calcio , Cationes , Peróxido de Hidrógeno , Fosfatidilinositoles
20.
Am J Physiol Lung Cell Mol Physiol ; 321(5): L912-L924, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34549600

RESUMEN

Asthma affects millions of people worldwide and its prevalence is increasing. It is characterized by chronic airway inflammation, airway remodeling, and pathologic bronchoconstriction, and it poses a continuous treatment challenge with very few new therapeutics available. Thus, many asthmatics turn to plant-based complementary products, including ginger, for better symptom control, indicating an unmet need for novel therapies. Previously, we demonstrated that 6-shogaol (6S), the primary bioactive component of ginger, relaxes human airway smooth muscle (hASM) likely by inhibition of phosphodiesterases (PDEs) in the ß-adrenergic (cyclic nucleotide PDEs), and muscarinic (phospholipase C, PLC) receptor pathways. However, oral 6S is extensively metabolized and it is unknown if the resulting metabolites remain bioactive. Here, we screened all the known human metabolites of 6S and several metabolite-based synthetic derivatives to better understand their mechanism of action and structure-function relationships. We demonstrate that several metabolites and metabolite-based synthetic derivatives are able to prevent Gq-coupled stimulation of intracellular calcium [Ca2+]i and inositol trisphosphate (IP3) synthesis by inhibiting PLC, similar to the parent compound 6S. We also show that these compounds prevent recontraction of ASM after ß-agonist relaxation likely by inhibiting PDEs. Furthermore, they potentiate isoproterenol-induced relaxation. Importantly, moving beyond cell-based assays, metabolites also retain the functional ability to relax Gq-coupled-contractions in upper (human) and lower (murine) airways. The current study indicates that, although oral ginger may be metabolized rapidly, it retains physiological activity through its metabolites. Moreover, we are able to use naturally occurring metabolites as inspiration to develop novel therapeutics for brochoconstrictive diseases.


Asunto(s)
Calcio/metabolismo , Relajación Muscular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Zingiber officinale , Animales , Asma/inducido químicamente , Asma/metabolismo , Broncoconstricción/efectos de los fármacos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Zingiber officinale/metabolismo , Humanos , Isoproterenol/farmacología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones Endogámicos C57BL , Relajación Muscular/fisiología , Músculo Liso/metabolismo , Miocitos del Músculo Liso/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA