Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 3(2): pgae042, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38415221

RESUMEN

Storms can have devasting effects on shorelines, causing flooding and the destruction of property and infrastructure. As global warming and the frequency and magnitude of tropical storms increase, barrier islands comprising 10% of the world's coast may undergo significant change caused by beach erosion, loss of dunes, and formation of washovers and tidal inlets. Understanding how storms affect sediment transport at tidal inlets is an understudied subject that directly influences barrier island erosional-depositional processes and long-term sediment budgets. This study models hydrodynamics and sediment transport at a conceptualized mixed-energy, mesotidal inlet system using 10 synthetic storm tracks. We investigate the provenance and the role of various storm characteristics and timing between the peak storm surge and high tide on sediment fluxes for different grain sizes. We find that most storms (38 of 40) cause a net import of sediment into the basin that is sourced primarily from the updrift and downdrift nearshore and secondly from the ebb-delta. Very little sediment comes from inlet channel scour. Cumulative (net) transport correlates well with peak significant wave height because wave height influences bottom shear stresses and sediment suspension on the ebb-tidal delta and in the nearshore. The duration of the storm surge also correlates with net transport because it controls the period of flood-directed currents. Our findings help explain the formation of flood deltas inside tidal inlets and the formation of sand shoals in backbarrier regions. Storm-induced enlargement of these deposits represents a permanent long-term loss of sand from barrier islands that will lead to erosion.

2.
Nanotechnology ; 33(38)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35696945

RESUMEN

We present the fabrication of three-dimensional inlets with gradually decreasing widths and depths and with nanopillars on the slope, all defined in just one lithography step. In addition, as an application, we show how these micro- and nanostructures can be used for micro- and nanofluidics and lab-on-a-chip devices to facilitate the flow and analyze single molecules of DNA. For the fabrication of 3D inlets in a single layer process, dose-modulated electron beam lithography was used, producing depths between 750 nm and 50 nm along a 30 µm long inlet, which is additionally structured with nanometer-scale pillars randomly distributed on top, as a result of incomplete exposure and underdevelopment of the resist. The fabrication conditions affect the slope of the inlet, the nanopillar density and coverage. The key parameters are the dose used for the electron beam exposure and the development conditions, like the developer's dilution, stirring and development time. The 3D inlets with nanostructured pillars were integrated into fluidic devices, acting as a transition between micro and nanofluidic structures for pre-stretching and unfolding DNA molecules, avoiding the intrusion of folded molecules and clogging the analysis channel. After patterning these structures in silicon, they can be replicated in polymer by UV nanoimprinting. We show here how the inlets with pillars slow down the molecules before they enter the nanochannels, resulting in a 3-fold decrease in speed, which would translate to an improvement in the resolution for DNA optical mapping.


Asunto(s)
ADN , Técnicas Analíticas Microfluídicas , Nanotecnología , Impresión Tridimensional , ADN/química , Electrones , Microfluídica , Nanotecnología/métodos
3.
Environ Sci Pollut Res Int ; 29(29): 43966-43983, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35124778

RESUMEN

Agricultural pesticides transported to surface waters pose a major risk for aquatic ecosystems. Modelling studies indicate that the inlets of agricultural storm drainage systems can considerably increase the connectivity of surface runoff and pesticides to surface waters. These model results have however not yet been validated with field measurements. In this study, we measured discharge and concentrations of 51 pesticides in four out of 158 storm drainage inlets of a small Swiss agricultural catchment (2.8 km2) and in the receiving stream. For this, we performed an event-triggered sampling during 19 rain events and collected plot-specific pesticide application data. Our results show that agricultural storm drainage inlets strongly influence surface runoff and pesticide transport in the study catchment. The concentrations of single pesticides in inlets amounted up to 62 µg/L. During some rain events, transport through single inlets caused more than 10% of the stream load of certain pesticides. An extrapolation to the entire catchment suggests that during selected events on average 30 to 70% of the load in the stream was transported through inlets. Pesticide applications on fields with surface runoff or spray drift potential to inlets led to increased concentrations in the corresponding inlets. Overall, this study corroborates the relevance of such inlets for pesticide transport by establishing a connectivity between fields and surface waters, and by their potential to deliver substantial pesticide loads to surface waters.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Agricultura , Bahías , Ecosistema , Plaguicidas/análisis , Suiza , Movimientos del Agua , Contaminantes Químicos del Agua/análisis
4.
Int J Pharm ; 592: 119966, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33161040

RESUMEN

Inhalation drug delivery has seen a swift rise in the use of dry powder inhalers (DPIs) to treat chronic respiratory conditions. However, universal adoption of DPIs has been restrained due to their low efficiencies and significant drug losses in the mouth-throat region. Aerosol efficiency of DPIs is closely related to the fluid-dynamics characteristics of the inhalation flow generated from the devices, which in turn are influenced by the device design. In-vitro and particle image velocimetry (PIV) have been used in this study to assess the aerosol performance of a model carrier formulation delivered by DPI devices and to investigate their flow characteristics. Four DPI device models, with modification to their tangential inlets and addition of a grid, have been explored. Similar aerosol performances were observed for all four device models, with FPF larger than 50%, indicating desirable lung deposition. A high swirling and recirculating jet-flow emerging from the mouthpiece of the DPI models without the grid was observed, which contributed to particle deposition in the throat. DPI models where the grid was present showed a straightened outflow without undesired lateral spreading, that reduced particle deposition in the throat and mass retention in the device. These findings demonstrate that PIV measurements strengthen in-vitro evaluation and can be jointly used to develop high-performance DPIs.


Asunto(s)
Inhaladores de Polvo Seco , Administración por Inhalación , Aerosoles , Diseño de Equipo , Tamaño de la Partícula , Polvos , Reología
5.
J Am Soc Mass Spectrom ; 30(6): 1133-1147, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31062287

RESUMEN

Exceptional ion mobility spectrometry mass spectrometry (IMS-MS) developments by von Helden, Jarrold, and Clemmer provided technology that gives a view of chemical/biological compositions previously not achievable. The ionization method of choice used with IMS-MS has been electrospray ionization (ESI). In this special issue contribution, we focus on fundamentals of heretofore unprecedented means for transferring volatile and nonvolatile compounds into gas-phase ions singly and multiply charged. These newer ionization processes frequently lead to different selectivity relative to ESI and, together with IMS-MS, may provide a more comprehensive view of chemical compositions directly from their original environment such as surfaces, e.g., tissue. Similarities of results using solvent- and matrix-assisted ionization are highlighted, as are differences between ESI and the inlet ionization methods, especially with mixtures such as bacterial extracts. Selectivity using different matrices is discussed, as are results which add to our fundamental knowledge of inlet ionization as well as pose additional avenues for inquiry. IMS-MS provides an opportunity for comparison studies relative to ESI and will prove valuable using the new ionization technologies for direct analyses. Our hypothesis is that some ESI-IMS-MS applications will be replaced by the new ionization processes and by understanding mechanistic aspects to aid enhanced source and method developments this will be hastened.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA