Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39251378

RESUMEN

BACKGROUND: Pancreatitis is a severe inflammatory pathology that occurs from pancreatic duct and exocrine acinar injury, leading to improper secretion of digestive enzymes, auto-digestion of the pancreas, and subsequent inflammation. Clinical reports show that 60%-90% of pancreatitis patients have a history of chronic alcohol use. More recent studies reveal that exocrine pancreas disorders like acute pancreatitis can precede diabetes type II onset, though mechanisms are not yet fully known. This study identified molecules and key signaling pathways underlying alcohol-induced acute pancreatitis and their effects on diabetes type II onset. METHODS: Data on human peripheral blood samples with or without acute pancreatitis were retrieved from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (accession number GSE194331). Acute pancreatitis-mediated differentially expressed genes (DEGs) were generated from GSE194331 using CLC Genomics Workbench 12. Molecules associated with ethanol (EtOH), acute pancreatitis, and diabetes type II were collected from QIAGEN Knowledge Base (QKB). The relationship between the molecules and signaling pathways associated with EtOH, acute pancreatitis, or diabetes type II was examined using various Ingenuity Pathway Analysis (IPA) tools. RESULTS: Our investigation showed that acute pancreatitis-mediated DEGs were closely associated with EtOH by revealing that EtOH-induced acute pancreatitis appears to lead to the onset of diabetes type II. We found that diabetes type II onset was mediated by pro-inflammatory and metabolic mechanisms underlying EtOH-induced acute pancreatitis, involving increased expression of cytokines including macrophage migration inhibitory factor (MIF), and decreased expression of hormones such as insulin. CONCLUSIONS: Exposure to alcohol may promote diabetes type II by affecting the activity of key inflammatory and metabolic mediators involved in acute pancreatitis. These findings call for further investigation into the role of pro-inflammatory and metabolic mediators like resistin, IL-6, and insulin in EtOH-induced diabetes type II associated with acute pancreatitis pathologies.

2.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273233

RESUMEN

To elucidate the possible biological roles of fatty acid-binding protein 5 (FABP5) in the intraocular environment, the cells from which FABP5 originates were determined by using four different intraocular tissue-derived cell types including human non-pigmented ciliary epithelium (HNPCE) cells, retinoblastoma (RB) cells, adult retinal pigment epithelial19 (ARPE19) cells and human ocular choroidal fibroblast (HOCF) cell lines, and the effects of FABP ligand 6, a specific inhibitor for FABP5 and FABP7 were analyzed by RNA sequencing and seahorse cellular metabolic measurements. Among these four different cell types, qPCR analysis showed that FABP5 was most prominently expressed in HNPCE cells, in which no mRNA expression of FABP7 was detected. In RNA sequencing analysis, 166 markedly up-regulated and 198 markedly down-regulated differentially expressed genes (DEGs) were detected between non-treated cells and cells treated with FABP ligand 6. IPA analysis of these DEGs suggested that FABP5 may be involved in essential roles required for cell development, cell survival and cell homeostasis. In support of this possibility, both mitochondrial and glycolytic functions of HNPCE cells, in which mRNA expression of FABP5, but not that of FABP7, was detected, were shown by using a Seahorse XFe96 Bioanalyzer to be dramatically suppressed by FABP ligand 6-induced inhibition of the activity of FABP5. Furthermore, in IPA upstream analysis, various unfolded protein response (UPR)-related factors were identified as upstream and causal network master regulators. Analysis by qPCR analysis showed significant upregulation of the mRNA expression of most of UPR-related factors and aquaporin1 (AQP1). The findings in this study suggest that HNPCE is one of intraocular cells producing FABP5 and may be involved in the maintenance of UPR and AQP1-related functions of HNPCE.


Asunto(s)
Proteínas de Unión a Ácidos Grasos , Humanos , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Línea Celular , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/citología , Células Epiteliales/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Regulación de la Expresión Génica , Cuerpo Ciliar/metabolismo , Cuerpo Ciliar/citología , Glucólisis
3.
Front Pharmacol ; 15: 1440515, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39234102

RESUMEN

Background: Senescence-accelerated mouse prone 8 (SAMP8) and age-matched SAMR1 mice are used to study the pathogenesis and therapeutics of Alzheimer's disease (AD); however, the molecular mechanisms are not completely understood. Objective: This study aimed to examine the effects of the 5-month administration of formononetin in SAMP8 mice and used RNA-seq to explore the molecular targets. Methods: SAMP8 mice were orally administered formononetin (0, 8, and 16 mg/kg) from 4 months of age, and age-matched SAMR1 mice were used as controls. Behavioral tests were performed in 9-month-old mice, followed by histopathologic analysis. Total RNA from the hippocampus was isolated and subjected to RNA-seq, RT-qPCR, and bioinformatics analysis. Results: The 9-month-old SAMP8 mice exhibited cognition deficits, evidenced by novel object recognition, open-field test, elevated plus maze, and passive avoidance. Nissl bodies in the cortex and hippocampus were decreased. Formononetin treatments ameliorated behavioral deficits and improved morphological changes, which were evidenced by Nissl and H&E staining. RNA-seq revealed distinct gene expression patterns between SAMP8 and SAMR1 mice. Differentially expressed genes in SAMP8 mice were attenuated or normalized by formononetin. Ingenuity pathway analysis (IPA) of canonical pathway and upstream regulators revealed increases in proinflammatory factors and immune dysfunction and decreases in NRF2 and SIRT-1 signaling pathways, leading to neuroinflammation. Formononetin treatment attenuated or reversed these molecular changes. The transcriptome of SAMP8 mice was correlated with transcriptomic profiles of other AD mouse models in the GEO database. Conclusion: Neuroinflammation and decreased antioxidant and SIRT-1 signaling contributed to cognitive deficits in aged SAMP8 mice, which are potential therapeutic targets of formononetin in combination with other therapies.

4.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000490

RESUMEN

Ischemic stroke followed by reperfusion (IR) leads to extensive cerebrovascular injury characterized by neuroinflammation and brain cell death. Inhibition of matrix metalloproteinase-3 (MMP-3) emerges as a promising therapeutic approach to mitigate IR-induced stroke injury. We employed middle cerebral artery occlusion with subsequent reperfusion (MCAO/R) to model ischemic stroke in adult mice. Specifically, we investigated the impact of MMP-3 knockout (KO) on stroke pathophysiology using RNA sequencing (RNA-seq) of stroke brains harvested 48 h post-MCAO. MMP-3 KO significantly reduced brain infarct size following stroke. Notably, RNA-seq analysis showed that MMP-3 KO altered expression of 333 genes (252 downregulated) in male stroke brains and 3768 genes (889 downregulated) in female stroke brains. Functional pathway analysis revealed that inflammation, integrin cell surface signaling, endothelial- and epithelial-mesenchymal transition (EndMT/EMT), and apoptosis gene signatures were decreased in MMP-3 KO stroke brains. Intriguingly, MMP-3 KO downregulated gene signatures more profoundly in females than in males, as indicated by greater negative enrichment scores. Our study underscores MMP-3 inhibition as a promising therapeutic strategy, impacting multiple cellular pathways following stroke.


Asunto(s)
Infarto Cerebral , Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico , Metaloproteinasa 3 de la Matriz , Ratones Noqueados , Animales , Metaloproteinasa 3 de la Matriz/genética , Metaloproteinasa 3 de la Matriz/metabolismo , Masculino , Femenino , Ratones , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Infarto Cerebral/genética , Infarto Cerebral/patología , Infarto Cerebral/metabolismo , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Ratones Endogámicos C57BL , Transcriptoma , Regulación de la Expresión Génica , Encéfalo/metabolismo , Encéfalo/patología
5.
Respir Res ; 25(1): 267, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970088

RESUMEN

BACKGROUND: Lung cancer is the second most common cancer with the highest mortality in the world. Calumenin as a molecular chaperone that not only binds various proteins within the endoplasmic reticulum but also plays crucial roles in diverse processes associated with tumor development. However, the regulatory mechanism of calumenin in lung adenocarcinoma remains elusive. Here, we studied the impact of calumenin on lung adenocarcinoma and explored possible mechanisms. METHODS: 5-ethynyl-2'-deoxyuridine assay, colony formation, transwell and wound healing assays were performed to explore the effects of calumenin on the proliferation and migration of lung adenocarcinoma cells. To gain insights into the underlying mechanisms through which calumenin knockdown inhibits the migration and proliferation of lung adenocarcinoma, we performed Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Gene Set Enrichment Analysis and Ingenuity Pathway Analysis based on transcriptomics by comparing calumenin knockdown with normal A549 cells. RESULTS: The mRNA and protein levels of calumenin in lung adenocarcinoma are highly expressed and they are related to an unfavorable prognosis in this disease. Calumenin enhances the proliferation and migration of A549 and H1299 cells. Gene Set Enrichment Analysis revealed that knockdown of calumenin in A549 cells significantly inhibited MYC and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog signaling pathways while activating interferon signals, inflammatory signals, and p53 pathways. Ingenuity pathway analysis provided additional insights, indicating that the interferon and inflammatory pathways were prominently activated upon calumenin knockdown in A549 cells. CONCLUSIONS: The anti-cancer mechanism of calumenin knockdown might be related to the inhibition of MYC and KRAS signals but the activation of interferon signals, inflammatory signals and p53 pathways.


Asunto(s)
Adenocarcinoma del Pulmón , Movimiento Celular , Proliferación Celular , Neoplasias Pulmonares , Invasividad Neoplásica , Humanos , Proliferación Celular/fisiología , Movimiento Celular/fisiología , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Progresión de la Enfermedad , Células A549 , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Regulación Neoplásica de la Expresión Génica
6.
Bioengineering (Basel) ; 11(6)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38927820

RESUMEN

The purpose of the current study was to elucidate the physiological roles of intraocularly present fatty acid-binding protein 4 (FABP4). Using four representative intraocular tissue-derived cell types, including human non-pigmented ciliary epithelium (HNPCE) cells, retinoblastoma (RB) cells, adult retinal pigment epithelial19 (ARPE19) cells and human ocular choroidal fibroblast (HOCF) cells, the intraocular origins of FABP4 were determined by qPCR analysis, and the intracellular functions of FABP4 were investigated by seahorse cellular metabolic measurements and RNA sequencing analysis using a specific inhibitor for FABP4, BMS309403. Among these four different cell types, FABP4 was exclusively expressed in HOCF cells. In HOCF cells, both mitochondrial and glycolytic functions were significantly decreased to trace levels by BMS309403 in a dose-dependent manner. In the RNA sequencing analysis, 67 substantially up-regulated and 94 significantly down-regulated differentially expressed genes (DEGs) were identified in HOCF cells treated with BMS309403 and those not treated with BMS309403. The results of Gene Ontology enrichment analysis and ingenuity pathway analysis (IPA) revealed that the DEGs were most likely involved in G-alpha (i) signaling, cAMP-response element-binding protein (CREB) signaling in neurons, the S100 family signaling pathway, visual phototransduction and adrenergic receptor signaling. Furthermore, upstream analysis using IPA suggested that NKX2-1 (thyroid transcription factor1), HOXA10 (homeobox A10), GATA2 (gata2 protein), and CCAAT enhancer-binding protein A (CEBPA) were upstream regulators and that NKX homeobox-1 (NKX2-1), SFRP1 (Secreted frizzled-related protein 1) and TREM2 (triggering receptor expressed on myeloid cells 2) were causal network master regulators. The findings in this study suggest that intraocularly present FABP4 originates from the ocular choroid and may be a critical regulator for the cellular homeostasis of non-adipocyte HOCF cells.

7.
Acta Neuropathol Commun ; 12(1): 102, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907342

RESUMEN

Neurofibromatosis Type 1 (NF1) is caused by loss of function variants in the NF1 gene. Most patients with NF1 develop skin lesions called cutaneous neurofibromas (cNFs). Currently the only approved therapeutic for NF1 is selumetinib, a mitogen -activated protein kinase (MEK) inhibitor. The purpose of this study was to analyze the transcriptome of cNF tumors before and on selumetinib treatment to understand both tumor composition and response. We obtained biopsy sets of tumors both pre- and on- selumetinib treatment from the same individuals and were able to collect sets from four separate individuals. We sequenced mRNA from 5844 nuclei and identified 30,442 genes in the untreated group and sequenced 5701 nuclei and identified 30,127 genes in the selumetinib treated group. We identified and quantified distinct populations of cells (Schwann cells, fibroblasts, pericytes, myeloid cells, melanocytes, keratinocytes, and two populations of endothelial cells). While we anticipated that cell proportions might change with treatment, we did not identify any one cell population that changed significantly, likely due to an inherent level of variability between tumors. We also evaluated differential gene expression based on drug treatment in each cell type. Ingenuity pathway analysis (IPA) was also used to identify pathways that differ on treatment. As anticipated, we identified a significant decrease in ERK/MAPK signaling in cells including Schwann cells but most specifically in myeloid cells. Interestingly, there is a significant decrease in opioid signaling in myeloid and endothelial cells; this downward trend is also observed in Schwann cells and fibroblasts. Cell communication was assessed by RNA velocity, Scriabin, and CellChat analyses which indicated that Schwann cells and fibroblasts have dramatically altered cell states defined by specific gene expression signatures following treatment (RNA velocity). There are dramatic changes in receptor-ligand pairs following treatment (Scriabin), and robust intercellular signaling between virtually all cell types associated with extracellular matrix (ECM) pathways (Collagen, Laminin, Fibronectin, and Nectin) is downregulated after treatment. These response specific gene signatures and interaction pathways could provide clues for understanding treatment outcomes or inform future therapies.


Asunto(s)
Bencimidazoles , Matriz Extracelular , Células de Schwann , Transducción de Señal , Neoplasias Cutáneas , Humanos , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo , Células de Schwann/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Bencimidazoles/farmacología , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/genética , Transducción de Señal/efectos de los fármacos , Neurofibroma/genética , Neurofibroma/tratamiento farmacológico , Neurofibroma/metabolismo , Neurofibroma/patología , Femenino , Masculino , RNA-Seq , Persona de Mediana Edad , Adulto , Neurofibromatosis 1/genética , Neurofibromatosis 1/tratamiento farmacológico , Neurofibromatosis 1/patología , Inhibidores de Proteínas Quinasas/farmacología , Transcriptoma/efectos de los fármacos
8.
Front Immunol ; 15: 1374437, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711507

RESUMEN

Mycobacterium avium complex (MAC) is a non-tuberculous mycobacterium widely distributed in the environment. Even though MAC infection is increasing in older women and immunocompromised patients, to our knowledge there has been no comprehensive analysis of the MAC-infected host-cell transcriptome-and particularly of long non-coding RNAs (lncRNAs). By using in vitro-cultured primary mouse bone-marrow-derived macrophages (BMDMs) and Cap analysis of gene expression, we analyzed the transcriptional and kinetic landscape of macrophage genes, with a focus on lncRNAs, during MAC infection. MAC infection of macrophages induced the expression of immune/inflammatory response genes and other genes similar to those involved in M1 macrophage activation, consistent with previous reports, although Nos2 (M1 activation) and Arg1 (M2 activation) had distinct expression profiles. We identified 31 upregulated and 30 downregulated lncRNA promoters corresponding respectively to 18 and 26 lncRNAs. Upregulated lncRNAs were clustered into two groups-early and late upregulated-predicted to be associated with immune activation and the immune response to infection, respectively. Furthermore, an Ingenuity Pathway Analysis revealed canonical pathways and upstream transcription regulators associated with differentially expressed lncRNAs. Several differentially expressed lncRNAs reported elsewhere underwent expressional changes upon M1 or M2 preactivation and subsequent MAC infection. Finally, we showed that expressional change of lncRNAs in MAC-infected BMDMs was mediated by toll-like receptor 2, although there may be other mechanisms that sense MAC infection. We identified differentially expressed lncRNAs in MAC-infected BMDMs, revealing diverse features that imply the distinct roles of these lncRNAs in MAC infection and macrophage polarization.


Asunto(s)
Perfilación de la Expresión Génica , Macrófagos , Complejo Mycobacterium avium , Infección por Mycobacterium avium-intracellulare , ARN Largo no Codificante , Transcriptoma , ARN Largo no Codificante/genética , Animales , Macrófagos/inmunología , Macrófagos/microbiología , Macrófagos/metabolismo , Complejo Mycobacterium avium/inmunología , Complejo Mycobacterium avium/genética , Ratones , Infección por Mycobacterium avium-intracellulare/inmunología , Infección por Mycobacterium avium-intracellulare/genética , Infección por Mycobacterium avium-intracellulare/microbiología , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Ratones Endogámicos C57BL , Células Cultivadas , Regulación de la Expresión Génica
9.
Biomedicines ; 12(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38790973

RESUMEN

To elucidate the currently unknown molecular mechanisms responsible for the similarity and difference during the acquirement of resistance against gemcitabine (GEM) and paclitaxel (PTX) in patients with pancreatic carcinoma, we examined two-dimensional (2D) and three-dimensional (3D) cultures of parent MIA PaCa-2 cells (MIA PaCa-2-PA) and their GEM resistance cell line (MIA PaCa-2-GR) and PTX resistance (MIA PaCa-2-PR). Using these cells, we examined 3D spheroid configurations and cellular metabolism, including mitochondrial and glycolytic functions, with a Seahorse bio-analyzer and RNA sequencing analysis. Compared to the MIA PaCa-2-PA, (1) the formation of the 3D spheroids of MIA PaCa-2-GR or -PR was much slower, and (2) their mitochondrial and glycolytic functions were greatly modulated in MIA PaCa-2-GR or -PR, and such metabolic changes were also different between their 2D and 3D culture conditions. RNA sequencing and bioinformatic analyses of the differentially expressed genes (DEGs) using an ingenuity pathway analysis (IPA) suggested that various modulatory factors related to epithelial -mesenchymal transition (EMT) including STAT3, GLI1, ZNF367, NKX3-2, ZIC2, IFIT2, HEY1 and FBLX, may be the possible upstream regulators and/or causal network master regulators responsible for the acquirement of drug resistance in MIA PaCa-2-GR and -PR. In addition, among the prominently altered DEGs (Log2 fold changes more than 6 or less than -6), FABP5, IQSEC3, and GASK1B were identified as unique genes associated with their antisense RNA or pseudogenes, and among these, FABP5 and GASK1B are known to function as modulators of cancerous EMT. Therefore, the observations reported herein suggest that modulations of cancerous EMT may be key molecular mechanisms that are responsible for inducing chemoresistance against GEM or PTX in MIA PaCa-2 cells.

10.
Expert Opin Ther Targets ; 28(5): 419-435, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38686865

RESUMEN

INTRODUCTION: Collagen triple helix repeat containing 1 (CTHRC1) is a protein that has been implicated in pro-migratory pathways, arterial tissue-repair processes, and inhibition of collagen deposition via the regulation of multiple signaling cascades. Studies have also demonstrated an upregulation of CTHRC1 in multiple cancers where it has been linked to enhanced proliferation, invasion, and metastasis. However, the understanding of the exact role and mechanisms of CTHRC1 in cancer is far from complete. AREAS COVERED: This review focuses on analyzing the role of CTHRC1 in cancer as well as its associations with clinicopathologies and cancer-related processes and signaling. We have also summarized the available literature information regarding the role of CTHRC1 in tumor microenvironment and immune signaling. Finally, we have discussed the mechanisms associated with CTHRC1 regulations, and opportunities and challenges regarding the development of CTHRC1 as a potential target for cancer management. EXPERT OPINION: CTHRC1 is a multifaceted protein with critical roles in cancer progression and other pathological conditions. Its association with lower overall survival in various cancers, and impact on the tumor immune microenvironment make it an intriguing target for further research and potential therapeutic interventions in cancer.


Asunto(s)
Progresión de la Enfermedad , Proteínas de la Matriz Extracelular , Terapia Molecular Dirigida , Neoplasias , Transducción de Señal , Microambiente Tumoral , Humanos , Neoplasias/patología , Proteínas de la Matriz Extracelular/metabolismo , Animales , Regulación hacia Arriba , Proliferación Celular
11.
Neuroendocrinology ; 114(7): 670-680, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38643763

RESUMEN

INTRODUCTION: Lactotroph pituitary neuroendocrine tumors (PitNETs) are common pituitary tumors, but their underlying molecular mechanisms remain unclear. This study aimed to investigate the transcriptomic landscape of lactotroph PitNETs and identify potential molecular mechanisms and therapeutic targets through RNA sequencing and ingenuity pathway analysis (IPA). METHODS: Lactotroph PitNET tissues from five surgical cases without dopamine agonist treatment underwent RNA sequencing. Normal pituitary tissues from 3 patients served as controls. Differentially expressed genes (DEGs) were identified, and the functional pathways and gene networks were explored by IPA. RESULTS: Transcriptome analysis revealed that lactotroph PitNETs had gene expression patterns that were distinct from normal pituitary tissues. We identified 1,172 upregulated DEGs, including nine long intergenic noncoding RNAs (lincRNAs) belonging to the top 30 DEGs. IPA of the upregulated DEGs showed that the estrogen receptor signaling, oxidative phosphorylation signaling, and EIF signaling were activated. In gene network analysis, key upstream regulators, such as EGR1, PRKACA, PITX2, CREB1, and JUND, may play critical roles in lactotroph PitNETs. CONCLUSION: This study provides a comprehensive transcriptomic profile of lactotroph PitNETs and highlights the potential involvement of lincRNAs and specific signaling pathways in tumor pathogenesis. The identified upstream regulators may be potential therapeutic targets for future investigations.


Asunto(s)
Perfilación de la Expresión Génica , Lactotrofos , Tumores Neuroendocrinos , Neoplasias Hipofisarias , Análisis de Secuencia de ARN , Humanos , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/metabolismo , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/metabolismo , Lactotrofos/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Transcriptoma , Adulto , Redes Reguladoras de Genes , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación Neoplásica de la Expresión Génica
12.
Placenta ; 150: 8-21, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38537412

RESUMEN

INTRODUCTION: Fetal sex affects fetal and maternal health outcomes in pregnancy, but this connection remains poorly understood. As the placenta is the route of fetomaternal communication and derives from the fetal genome, placental gene expression sex differences may explain these outcomes. OBJECTIVES: We utilized next generation sequencing to study the normal human placenta in both sexes in first and third trimester to generate a normative transcriptome based on sex and gestation. STUDY DESIGN: We analyzed 124 first trimester (T1, 59 female and 65 male) and 43 third trimester (T3, 18 female and 25 male) samples for sex differences within each trimester and sex-specific gestational differences. RESULTS: Placenta shows more significant sexual dimorphism in T1, with 94 T1 and 26 T3 differentially expressed genes (DEGs). The sex chromosomes contributed 60.6% of DEGs in T1 and 80.8% of DEGs in T3, excluding X/Y pseudoautosomal regions. There were 6 DEGs from the pseudoautosomal regions, only significant in T1 and all upregulated in males. The distribution of DEGs on the X chromosome suggests genes on Xp (the short arm) may be particularly important in placental sex differences. Dosage compensation analysis of X/Y homolog genes shows expression is primarily contributed by the X chromosome. In sex-specific analyses of first versus third trimester, there were 2815 DEGs common to both sexes upregulated in T1, and 3263 common DEGs upregulated in T3. There were 7 female-exclusive DEGs upregulated in T1, 15 female-exclusive DEGs upregulated in T3, 10 male-exclusive DEGs upregulated in T1, and 20 male-exclusive DEGs upregulated in T3. DISCUSSION: This is the largest cohort of placentas across gestation from healthy pregnancies defining the normative sex dimorphic gene expression and sex common, sex specific and sex exclusive gene expression across gestation. The first trimester has the most sexually dimorphic transcripts, and the majority were upregulated in females compared to males in both trimesters. The short arm of the X chromosome and the pseudoautosomal region is particularly critical in defining sex differences in the first trimester placenta. As pregnancy is a dynamic state, sex specific DEGs across gestation may contribute to sex dimorphic changes in overall outcomes.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Placenta , Caracteres Sexuales , Humanos , Femenino , Embarazo , Masculino , Placenta/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Adulto , Transcriptoma , Tercer Trimestre del Embarazo/genética , Análisis de Secuencia de ARN , Primer Trimestre del Embarazo/genética , Primer Trimestre del Embarazo/metabolismo
13.
Alcohol Clin Exp Res (Hoboken) ; 48(5): 795-809, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38553251

RESUMEN

BACKGROUND: Thymic atrophy is characterized by loss of thymocytes, destruction of thymic architecture, and a subsequent decrease in naïve T cells with compromised immunity. Thymic atrophy occurs during aging. Environmental factors including alcohol misuse also induce thymic atrophy. Despite the link between alcohol misuse and thymic atrophy, the underlying mechanism is understudied. We aimed to identify molecules and signaling pathways that underly alcohol-induced thymic atrophy during aging. METHODS: F344 rats were given 3-day binge-ethanol (4.8 g/kg/day; 52% w/v; i.g.) and the thymus was collected and weighed. Molecular mechanisms underlying ethanol-induced thymic atrophy were investigated by network meta-analysis using the QIAGEN Ingenuity Pathway Analysis (IPA). The molecules associated with ethanol were identified from the QIAGEN Knowledge Base (QKB) and those associated with thymic atrophy were identified from QKB and Mouse Genome Informatics (MGI). Aging-mediated Differential Expression Genes (DEGs) from mouse thymocytes were obtained from the Gene Expression Omnibus (GEO) database (GSE132136). The relationship between the molecules and associated signaling pathways were studied using IPA. RESULTS: Binge-ethanol decreased thymic weight in F344 rats. Our meta-analysis using IPA identified molecules commonly shared by ethanol and thymic atrophy through which simulation with ethanol increased thymic atrophy. We then obtained aging-mediated DEGs from the atrophied thymocytes. We found that ethanol contributed to thymic atrophy through modulation of the aging-mediated DEGs. Our network meta-analysis suggests that ethanol may augment thymic atrophy through increased expression of cytokines (e.g., IL-6, IL-17A and IL-33) along with their regulators (e.g., STAT1 and STAT3). CONCLUSIONS: Exposure to alcohol may augment thymic atrophy by altering the activity of key inflammatory mediators, such as STAT family members and inflammatory cytokines. These findings provide insights into the signaling pathways and upstream regulators that underly alcohol-induced thymic atrophy during aging, suggesting that alcohol consumption could prepone thymic atrophy.

14.
Gynecol Oncol Rep ; 52: 101360, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38549702

RESUMEN

Objective: Endometrial cancer (EC) incidence and mortality are increasing with striking racial disparities. Race and obesity are known risk factors for EC, however, their relationship and impact on tumor biology in higher grade endometrioid EC are unclear. The objective of this pilot study was to identify gene- and pathway-level changes in tumors from Black patients compared to White, both in general and in the context of dichotomized BMI. Methods: A single institution retrospective convenience sample was obtained for grade 2 or 3 endometrioid EC, equally distributed amongst Black and White patients. Tumor samples were analyzed with the Tempus Laboratories xT NGS-based genome profiling test. DESeq2 was applied to identify differentially expressed genes, and then subjected to ingenuity pathway analysis (IPA). Continuous variables were analyzed using unpaired t-tests, and categorical using Chi-squared and Fisher exact tests. Results: 39 representative cases were identified and analyzed from 2006 to 2021. Baseline clinicopathologic characteristics were similar. 157 genes were differentially expressed in tumors from Black patients compared to White regardless of BMI. IPA identified 81 significantly different pathways between Black and White patients with a BMI < 40 kg/m2, and 117 with a BMI ≥ 40 kg/m2. Of these, eleven pathways were consistently and significantly activated or deactivated regardless of BMI. Conclusion: Differences in gene expression and pathway activation in EC exist between race and BMI, which highlights the need for further research to better understand the implications of these differences on endometrioid EC progression, outcomes, and treatment in this historically underserved patient population.

15.
Food Chem ; 445: 138766, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38402663

RESUMEN

Mare milk has traditionally been attributed a number of health promoting properties. However, knowledge on its composition and functionality remains scarce, with particularly limited studies on mare milk proteomics. This study deeply characterized mare milk proteome accounting for both caseins and proteins in the whey fraction, also addressing the impact of lactation stage and different management systems. Milk samples from Basque Mountain Horse breed mares belonging to three different farms and three lactation stages were analysed after in-gel and in-solution digestion using nLC-MS/MS. Among the 469 proteins identified, the content of alpha-1 antitrypsin was significantly higher in pasture-based compared to other systems. Moreover, lactation stage significantly affected the content of beta-lactoglobulin II, immunoglobulin-like domain-containing protein, interferon alpha-inducible protein 27, lactotransferrin, polypeptide N-acetylgalactosaminyltransferase, and transforming acidic coiled-coil containing protein 2. This study contributes to the deep characterization of mare milk proteome and provides new insights into the effect of different production factors.


Asunto(s)
Proteínas de la Leche , Leche , Caballos , Animales , Femenino , Leche/química , Proteínas de la Leche/análisis , Espectrometría de Masas en Tándem , Proteoma/análisis , Proteómica , Lactancia
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167100, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38412926

RESUMEN

BACKGROUND & AIMS: Cholestatic liver diseases (CLD) are commonly associated with behavioral changes, including social isolation, that negatively affects patient quality of life and remains unaltered by current therapies. It remains unclear whether CLD-associated social dysfunction stems from a direct effect on the brain, or from the psychological impact of CLD. The psychological component of disease is absent in animals, so we investigated the impact of CLD on social behavior and gene expression profiles in key social behavior-regulating brain regions in a mouse model. METHODS: CLD due to bile duct ligation was used with the three-chamber sociability test for behavioral phenotyping. Differentially expressed gene (DEG) signatures were delineated in 3 key brain regions regulating social behavior using RNA-seq. Ingenuity Pathway Analysis (IPA®) was applied to streamline DEG data interpretation and integrate findings with social behavior-regulating pathways to identify important brain molecular networks and regulatory mechanisms disrupted in CLD. RESULTS: CLD mice exhibited enhanced social interactive behavior and significantly altered gene expression in each of the three social behavior-regulating brain regions examined. DEG signatures in BDL mice were associated with key IPA®-identified social behavior-regulating pathways including Oxytocin in Brain Signaling, GABA Receptor Signaling, Dopamine Receptor Signaling, and Glutamate Receptor Signaling. CONCLUSIONS: CLD causes complex alterations in gene expression profiles in key social behavior-regulating brain areas/pathways linked to enhanced social interactive behavior. These findings, if paralleled in CLD patients, suggest that CLD-associated reductions in social interactions predominantly relate to psychological impacts of disease and may inform new approaches to improve management.


Asunto(s)
Colestasis , Hepatopatías , Humanos , Ratones , Animales , Calidad de Vida , Conducta Social
17.
Reprod Sci ; 31(6): 1573-1585, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38177949

RESUMEN

Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disease, which can lead to adverse fetal outcomes, including preterm labor and intrauterine death. The pathogenesis of ICP is still unclear. We hypothesized that pathological index leads to abnormal placenta changes in ICP. Investigation of these differences in protein expression in parallel profiling is essential to understand the comprehensive pathophysiological mechanism underlying ICP. The present study screened differentially expressed proteins (DEPs) as novel diagnostic markers for ICP. Proteomic profiles of placental tissues from 32 ICP patients and 24 healthy volunteers (controls) were analyzed. Our founding was valid by following western blotting and immunohistochemistry staining, respectively. The association of the key protein expression with clinicopathological features of ICP was further analyzed. A total of 178 DEPs were identified between the ICP and control groups. Functional enrichment analysis showed these proteins were significantly enriched in the PPAR singling pathway by KEGG and PPARα/RXRα activation by IPA. Apolipoprotein A2 (APOA2) was the only upregulated protein, which uniquely identified in ICP groups and related to both pathways. Validation of western blotting and immunohistochemical staining analysis showed significantly higher APOA2 expression in the ICP group than in the control group. Furthermore, the expression of APOA2 is associated with clinicopathological features in ICP groups. Receiver operating characteristic (ROC) curve analyses showed that the AUC of APOA2 was 0.8984 (95% confidence interval (CI): 0.772-1.000). This study has identified up-regulated APOA2 associated with PPAR singling pathway and PPARα/RXRα activation in ICP. Thus, APOA2 may be involved in ICP pathogenesis, serving as a novel biomarker for its diagnosis.


Asunto(s)
Biomarcadores , Colestasis Intrahepática , Complicaciones del Embarazo , Proteómica , Humanos , Femenino , Colestasis Intrahepática/metabolismo , Colestasis Intrahepática/diagnóstico , Embarazo , Proteómica/métodos , Biomarcadores/metabolismo , Adulto , Complicaciones del Embarazo/metabolismo , Complicaciones del Embarazo/diagnóstico , Placenta/metabolismo , Apolipoproteína A-II/metabolismo , Estudios de Casos y Controles
18.
Leuk Lymphoma ; 65(2): 242-249, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37933638

RESUMEN

In humans, AMPylation of cellular proteins is carried out by Huntingtin yeast-interacting protein E (HYPE), activated under conditions of endoplasmic reticulum stress, such as in cancer cells. Extracts of the human chronic lymphocytic leukemia cell line, OSU-CLL, were fractionated using immuno-precipitation with antibodies against adenosine-phosphate and then AMP-Tyr. The proteins isolated were modified with AMP, the 'AMPylome.' AMP-labelled peptides isolated from HYPE wild-type (WT) and HYPE knock-out (KO) cells were identified using tandem mass spectrometry. A total of 213 proteins were identified from WT cell extracts, while only 23 of these were pulled down from KO cells, consistent with the presence of another AMPylator, besides HYPE. The KO cells were more sensitive to fludarabine nucleoside (2-FaraA) than WT cells. Ingenuity Pathway Analysis of the AMPylated proteins identified in WT cells clustered actin binding proteins of the cytoskeleton, and proteins of the RHO GTPase pathway that would jointly stimulate cell proliferation.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/metabolismo , Línea Celular , Estrés del Retículo Endoplásmico , Adenosina Monofosfato/metabolismo , Vidarabina
19.
Alcohol Clin Exp Res (Hoboken) ; 48(1): 72-87, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38059389

RESUMEN

BACKGROUND: Organ weight change is widely accepted as a measure of toxicologic pathology. We and other groups have shown that excessive alcohol exposure leads to decreased spleen weight in rodents. This study explores the mechanisms underlying alcohol-induced splenic injury through a network meta-analysis. METHODS: QIAGEN Ingenuity Pathway Analysis (IPA) and Mammalian Phenotype (MP) Ontology were used to identify alcohol-related molecules associated with the small spleen phenotype. Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and IPA bioinformatics tools were then used to analyze the biologic processes and enriched signaling pathways engaging these molecules. In addition, the "downstream effects analysis" algorithm was used to quantify alcohol's effects. RESULTS: IPA identified 623 molecules affected by alcohol and a Venn diagram revealed that 26 of these molecules overlapped with those associated with the MP Ontology of small spleen. The 26 molecules are TGFB1, CASP8, MTOR, ESR1, CXCR4, CAMK4, NFKBIA, DRD2, BCL2, FAS, PEBP1, TRAF2, ATM, IGHM, EDNRB, MDM2, GLRA1, PRF1, TLR7, IFNG, ALOX5, FOXO1, IL15, APOE, IKBKG, and RORA. Some of the 26 molecules were also associated with the MP Ontology of abnormal white pulp and red pulp morphology of the spleen, abnormal splenic cell ratio, decreased splenocyte number, abnormal spleen physiology, increased splenocyte apoptosis, and reduced splenocyte proliferation. STRING and IPA "Core Analysis" showed that these molecules were mainly involved in pathways related to cell apoptosis, proliferation, migration, and immune responses. IPA's "Molecular Activity Predictor" tool showed that concurrent effects of activation and inhibition of these molecules led to decreased spleen size by modulating apoptosis, proliferation, and migration of splenocytes. CONCLUSIONS: Our network meta-analysis revealed that excessive alcohol exposure can damage the spleen through a variety of molecular mechanisms, thereby affecting immune function and human health. We found that alcohol-mediated splenic atrophy is largely mediated by increased apoptosis signaling, migration of cells, and inhibition of splenocyte proliferation.

20.
J Oral Biosci ; 66(1): 26-34, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37949170

RESUMEN

OBJECTIVE: Periodontal disease is a risk factor for preterm delivery, and elevated female hormone levels during pregnancy promote hormone-dependent periodontopathogenic bacterial growth and gingivitis. Although the saliva of pregnant women contains female hormones at elevated levels, their effects on the gingiva are poorly understood. Therefore, in this study, we investigated the effects of estradiol and progesterone stimulation on gingival epithelial cells via ingenuity pathway analysis. METHODS: Human gingival epithelial progenitors were cultured in a CnT-Prime medium; 17ß-estradiol (E2) and progesterone (P4) were used as the reagents. Cells treated with dimethyl sulfoxide alone were used as the control group. Cells in the control and experimental groups were incubated for 12 h. RNA was extracted from the cultured cells, RNA-Seq was performed, and pathway analysis was conducted. RESULTS: Differentially expressed genes were detected for 699 (over 2-fold increase) and 348 (decrease) genes in group E2 and for 1448 (increase) and 924 (decrease) genes in group P4 compared with those in the control group (FDR <0.05, n = 4). The z-scores of the pathways suggest that E2 and P4 increased the activity of the wound healing signaling pathway. The activation of this pathway was higher in the E2 and P4 groups than that in the control group. CONCLUSIONS: The results of this study suggest that estradiol and progesterone may affect gingival homeostasis and wound healing.


Asunto(s)
Estradiol , Progesterona , Recién Nacido , Femenino , Embarazo , Humanos , Progesterona/farmacología , Progesterona/metabolismo , Estradiol/farmacología , Estradiol/metabolismo , Encía/metabolismo , Células Epiteliales/metabolismo , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA