RESUMEN
Background/Objectives: The antinociceptive and anti-inflammatory effects of a patent-pending ointment containing plant extracts from Eucalyptus globulus, Curcuma longa, Hamamelis virginiana, Echinacea purpurea, and Zingiber officinale were evaluated. Methods: Plant extracts were chemically characterized by gas chromatography-mass spectroscopy. The antinociceptive activity of the ointment was assessed using the hot plate, tail flick, and formalin tests, whereas the anti-inflammatory activity was measured using the acute and chronic TPA-induced ear edema tests. Mechanisms of action were evaluated using inhibitors from signaling pathways related to pain response and by using histological analysis and assessing the expression and activity of pro-inflammatory mediators. Results: The ointment showed antinociceptive and anti-inflammatory effects like those observed with diclofenac gel (1.16% v/v) and ketoprofen gel (2.5% v/v). The antinociceptive actions of the ointment are mediated by the possible participation of the opiodergic system and the nitric oxide pathway. The anti-inflammatory response was characterized by a decrease in myeloperoxidase (MPO) activity and by a reduction in ear swelling and monocyte infiltration in the acute inflammation model. In the chronic model, the mechanism of action relied on a decrease in pro-inflammatory mediators such as COX-2, IL-1ß, TNF-α, and MPO. An in-silico study with myristic acid, one of the compounds identified in the ointment's plant mixture, corroborated the in vivo results. Conclusions: The ointment showed antinociceptive activities mediated by the decrease in COX-2 and NO levels, and anti-inflammatory activity due to the reduction in IL-1ß and TNFα levels, a reduction in MPO activity, and a decrease in NF-κB and COX-2 expression.
RESUMEN
Background/Objectives: Cytokine storm in severe COVID-19 is responsible for irreversible tissue damage and death. Soluble mediators from the TNF superfamily, their correlation with clinical outcome, and the use of TNF receptors as a potent predictor for clinical outcome were evaluated. Methods: Severe COVID-19 patients had the levels of soluble mediators from the TNF superfamily quantified and categorized according to the clinical outcome (death versus survival). Statistical modeling was performed to predict clinical outcomes. Results: COVID-19 patients have elevated serum levels from the TNF superfamily. Regardless of sex and age, the sTNFRI levels were observed to be significantly higher in deceased patients from the first weeks following the onset of symptoms. We analyzed hematological parameters and inflammatory markers, and there was a difference between the groups for the following factors: erythrocytes, hemoglobin, hematocrit, leukocytes, neutrophils, band cells, lymphocytes, monocytes, CRP, IL-8, IFN-γ, IL-10, IL-6, IL-4, IL-2, leptin MIF sCD40L, and sTNFRI (p < 0.05). A post hoc analysis showed an inferential capacity over 70% for some hematological markers, CRP, and inflammatory mediators in deceased patients. sTNFRI was strongly associated with death, and the sTNFRI/sTNFRII ratio differed between outcomes (p < 0.001; power above 90%), highlighting the impact of these proteins on clinical results. The final logistic model, including sTNFRI/sTNFRII and CRP, indicated high sensitivity, specificity, accuracy, and an eight-fold higher odds ratio for an unfavorable outcome. Conclusions: The joint use of the sTNFRI/sTNFRII ratio with CRP proves to be a promising tool to assist in the clinical management of patients hospitalized for COVID-19.
RESUMEN
Lipophosphoglycan (LPG) is an important Leishmania virulence factor. It is the most abundant surface glycoconjugate in promastigotes, playing an important role in the interaction with phagocytic cells. While LPG is known to modulate the macrophage immune response during infection, the activation mechanisms triggered by this glycoconjugate have not been fully elucidated. This work investigated the role that LPGs purified from two strains of Leishmania major (FV1 and LV39) play in macrophage activation, considering the differences in their biochemical structures. Bone marrow-derived macrophages from BALB/c mice were stimulated with 10 µg/mL purified LPG from the LV39 and FV1 strains. We then measured the production of nitric oxide (NO) and cytokines, the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and the activation of MAPK pathways. LPG from the LV39 strain, which has longer poly-galactosylated side chains, induced a more pro-inflammatory profile than that from the FV1 strain. This included higher production of NO, TNF-α, and PGE2, and increased expression of COX-2 and iNOS. Additionally, the phosphorylation of ERK-1/2 and JNK was elevated in macrophages exposed to LPG from the LV39 strain. No difference in IL-10 production was observed in cells stimulated by both LPG. Thus, intraspecific structural differences in LPG contribute to distinct innate immune responses in macrophages.
Asunto(s)
Glicoesfingolípidos , Leishmania major , Activación de Macrófagos , Macrófagos , Ratones Endogámicos BALB C , Óxido Nítrico Sintasa de Tipo II , Óxido Nítrico , Animales , Leishmania major/inmunología , Glicoesfingolípidos/química , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Activación de Macrófagos/efectos de los fármacos , Citocinas/metabolismo , Ciclooxigenasa 2/metabolismo , FemeninoRESUMEN
Although Down syndrome (DS) is considered a risk factor for hemodynamic instabilities (mainly pulmonary hypertension-PH) following surgery for congenital cardiac communications, many DS patients do surprising well postoperatively. We prospectively analyzed perioperative factors for a possible correlation with post-cardiopulmonary bypass (CPB) inflammatory reaction and postoperative PH in pediatric subjects. Sixty patients were enrolled (age 3 to 35 months), 39 of them with DS. Clinical and echocardiographic parameters (anatomical and hemodynamic) were computed preoperatively. Pulmonary and systemic mean arterial pressures (PAP and SAP) were assessed invasively intra and postoperatively. Immediate postoperative PAP/SAP ratio (PAP/SAPIPO) and the behavior of pressure curves were selected as primary outcome. Serum levels of 36 inflammatory proteins were measured by chemiluminescence preoperatively and 4 h post CPB. Of all factors analyzed, peripheral oxygen saturation (O2Sat, bedside assessment) was the only preoperative predictor of PAP/SAPIPO at multivariate analysis (p = 0.007). Respective values in non-DS, DS/O2Sat ≥ 95% and DS/O2Sat < 95% subgroups were 0.34 (0.017), 0.40 (0.027) and 0.45 (0.026), mean (SE), p = 0.004. The difference between non-DS and DS groups regarding postoperative PAP curves (upward shift in DS patients, p = 0.015) became nonsignificant (p = 0.114) after adjustment for preoperative O2Sat. Post-CPB levels of at least 5 cytokines were higher in patients with O2Sat < 95% versus those at or above this level, even within the DS group (p < 0.05). Thus, a baseline O2Sat < 95% representing pathophysiological phenomena in the airways and the distal lung, rather than DS in a broad sense, seems to be associated with post-CPB inflammation and postoperative PH in these patients.
Asunto(s)
Síndrome de Down , Cardiopatías Congénitas , Hemodinámica , Humanos , Femenino , Masculino , Lactante , Síndrome de Down/fisiopatología , Preescolar , Cardiopatías Congénitas/cirugía , Cardiopatías Congénitas/fisiopatología , Periodo Posoperatorio , Estudios Prospectivos , Puente Cardiopulmonar/efectos adversos , Complicaciones Posoperatorias/etiología , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/fisiopatología , Factores de RiesgoRESUMEN
Background: Uncaria tomentosa (Willd. ex Schult.) DC. (Rubiaceae) is traditionally used by Amazonian indigenous groups to treat inflammatory diseases. To date, there are no systematic reviews and meta-analyses on the use of U. tomentosa for inflammation control in animals supporting the traditional knowledge about this species. This study was conducted to evaluate the effect of U. tomentosa extracts in modulating inflammatory mediators and to determine which types of inflammatory diseases can be treated by this species. Methods: We conducted a systematic review and meta-analysis of preclinical studies published before 26 July 2023, identified in PubMed, Embase, and Scopus. Four independent reviewers extracted the data and assessed the risks of bias. The effects of U. tomentosa on inflammatory diseases and the inflammatory mediators involved were extracted from the studies. Standardized mean differences (SMD) and 95% confidence intervals (95%CI) of the outcomes were estimated. The meta-analyses were conducted using RevMan 5.4 (Cochrane Collaboration). This protocol was registered in PROSPERO (CRD42023450869). Results: Twenty-four of 523 studies were included. U. tomentosa extracts decreased the cytokines interleukin (IL)-6 (SMD: -0.72, 95%CI: -1.15, -0.29, p = 0.001) and transcription factor nuclear factor kappa-B (NF-κB) (SMD: -1.19, 95%CI: -1.89, -0.48, p = 0.001). However, the extracts did not significantly alter IL-1 (SMD: -0.16, 95%CI: -0.87, +0.56, p = 0.67), IL-10 (SMD: -0.05, 95%CI:-0.35, 0.45, p = 0.80), or tumor necrosis factor-alpha (TNF-α) levels (SMD: 0.18, 95%CI: -0.25, 0.62, p = 0.41). Conclusion: Many extracts of stem bark, roots, and leaves of U. tomentosa, mostly aqueous and hydroethanolic, exhibited anti-inflammatory and/or immunomodulatory activities and low toxicity. The extracts decreased NF-κB and IL-6. These findings suggest that this species has the potential to treat inflammatory diseases in which these markers are increased, according to the ethnopharmacological use. These activities are not related to a specific class of compounds.Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=450869, Identifier CRD42023450869.
RESUMEN
OBJECTIVES: The aim of the present study was to assess the cytocompatibility of epoxy resin-based AH Plus Jet (Dentsply De Trey, Konstanz, Germany), Sealer Plus (MK Life, Porto Alegre, Brazil), calcium silicate-based Bio-C Sealer (Angelus, Londrina, PR, Brazil), Sealer Plus BC (MK Life) and AH Plus BC (Dentsply) through a tridimensional (3D) culture model of human osteoblast-like cells. METHODS: Spheroids of MG-63 cells were produced and exposed to fresh root canal sealers extracts by 24 h, and the cytotoxicity was assessed by the Lactate Dehydrogenase assay (LDH). The distribution of dead cells within the microtissue was assessed by fluorescence microscopy, and morphological effects were investigated by histological analysis. The secreted inflammatory mediators were detected in cell supernatants through flow luminometry (XMap Luminex). RESULTS: Cells incubated with AH Plus Jet, AH Plus BC, Sealer Plus BC and Bio-C Sealer extracts showed high rates of cell viability, while the Sealer Plus induced a significant reduction of cell viability, causing reduction on the spheroid structure. Sealer Plus and Seaker Plus BC caused alterations on 3D microtissue morphology. The AH Plus BC extract was associated with the downregulation of secretion of pro-inflammatory cytokines IL-5, IL-7, IP-10 and RANTES. CONCLUSIONS: The new AH Plus BC calcium silicate-based endodontic sealer did not reduce cell viability in vitro, while led to the downregulation of pro-inflammatory cytokines. CLINICAL SIGNIFICANCE: Choosing the appropriate endodontic sealer is a crucial step. AH Plus BC demonstrated high cell viability and downregulation of pro-inflammatory cytokines, appearing reliable for clinical use, while Sealer Plus presented lower cytocompatibility.
Asunto(s)
Compuestos de Calcio , Supervivencia Celular , Resinas Epoxi , Ensayo de Materiales , Materiales de Obturación del Conducto Radicular , Silicatos , Materiales de Obturación del Conducto Radicular/farmacología , Humanos , Compuestos de Calcio/farmacología , Silicatos/farmacología , Supervivencia Celular/efectos de los fármacos , Técnicas de Cultivo Tridimensional de Células/métodos , Mediadores de Inflamación/metabolismo , Microscopía Fluorescente , Osteoblastos/efectos de los fármacosRESUMEN
Complex inflammatory crosstalk between muscular and adipose organs during ageing is controlled by adipokines and myokines. The Adiponectin/Leptin ratio (A/L ratio) has proven to be a promising biomarker for identifying insulin sensitivity, cardiovascular risk and adipose tissue inflammation. Although the A/L ratio has been related to inflammatory conditions, its ability to associate with or indicate the behavior of other inflammatory mediators remains unknown. The present study aimed to verify the association between the A/L ratio and a panel of inflammatory biomarkers in community-dwelling older women. The plasmatic concentrations of adiponectin, leptin, resistin, brain-derived neurotrophic factor (BDNF), interferon-gamma (IFN-γ), interleukins 2, 4, 5, 6, 8 and 10, tumour necrosis factor (TNF) and its soluble receptors (sTNF-r) 1 and 2 were evaluated in 71 community-dwelling older women with 75 (±7) years. The A/L ratio was negative and inverse correlated with BNDF (r = -0.29; p = 0.01), IL-8 (r = -0.37; p = 0.001) and sTNFr- 1 (r = -0.98; p < 0.001) levels. A strong and inverse association, with proportional effect, between A/L ratio and sTNFr-1 concentrations was found (Adjusted R2 = 0.22; ß = -0.48; p > 0.001). It suggests that the presence of sTNFr-1 causes an inflammatory effect that affect cross-talk between muscle and adipose tissue, contributing to pro-inflammatory imbalance, which may have molecular and functional consequences. In addition, we provide insights into diagnostic biomarkers for inflammation, especially related to muscle wasting and intrinsic capacity in older people.
Asunto(s)
Adiponectina , Leptina , Humanos , Femenino , Anciano , Resistina , Biomarcadores , Inflamación , Factor de Necrosis Tumoral alfaRESUMEN
BACKGROUND: Previous studies have experimentally validated and reported that chemical constituents of marine sponges are a source of natural anti-inflammatory substances with the biotechnological potential to develop novel drugs. AIMS: Therefore, the aim of this study was to perform a systematic review to provide an overview of the anti-inflammatory substances isolated from marine sponges with therapeutic potential. METHODS: This systematic review was performed on the Embase, PubMed, Scopus and Web of Science electronic databases. In total, 613 were found, but 340 duplicate studies were excluded, only 100 manuscripts were eligible, and 83 were included. RESULTS: The results were based on in vivo and in vitro assays, and the anti-inflammatory effects of 251 bioactive compounds extracted from marine sponges were investigated. Their anti-inflammatory activities include inhibition of pro-inflammatory mediators, such as tumor necrosis factor- α (TNF-α), interleukin-6 (IL-6), nitrite or nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin 1ß (IL-1ß), prostaglandin E2 (PGE2), phospholipase A2 (PLA2), nuclear transcription factor-kappa B (NF-κB), leukotriene B4 (LTB4), cyclooxygenase- 1 (COX-1), and superoxide radicals. CONCLUSION: In conclusion, data suggest (approximately 98% of articles) that substances obtained from marine sponges may be promising for the development of novel anti-inflammatory drugs for the treatment of different pathological conditions.
Asunto(s)
FN-kappa B , Poríferos , Animales , FN-kappa B/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Poríferos/metabolismo , Lipopolisacáridos/farmacología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ciclooxigenasa 2/metabolismo , Óxido Nítrico/metabolismoRESUMEN
Resumen Las estatinas son ampliamente utilizadas para el control de los niveles de colesterol en pacientes con hipercolesterolemia, lo cual permite prevenir enfermedades cardiovasculares. Además de controlar la síntesis endógena de colesterol, las estatinas tienen efectos pleiotrópicos diversos, como son las propiedades antiinflamatoria, antioxidante y de inmunomodulación. La enfermedad causada por el virus SARS-CoV-2 (COVID-19) provoca una tormenta de citocinas que contribuye a la generación del síndrome respiratorio agudo, que puede llevar a cuadros graves de esta enfermedad e incluso a la muerte del paciente. Diversos estudios realizados en enfermos con COVID-19 que recibieron estatinas, antes o durante el curso de la enfermedad, registraron cuadros menos graves, estancias hospitalarias más cortas y menor mortalidad. El beneficio de las estatinas en la COVID-19 debe ser explorado más ampliamente, ya que potencialmente pueden contribuir al control de esta pandemia que ha postrado a la humanidad.
Abstract Statins are widely used to control cholesterol levels in patients with hypercholesterolemia, which helps prevent cardiovascular diseases. In addition to controlling endogenous cholesterol synthesis, statins have diverse pleiotropic effects, such as anti-inflammatory, antioxidant, and immunomodulatory properties. The disease caused by the SARS-CoV-2 virus (COVID-19) causes a cytokine storm that contributes to the generation of acute respiratory syndrome, which can lead to severe symptoms of this disease and even the death of the patient. Various studies carried out on patients with COVID-19 who received statins, before or during the disease, registered less severe symptoms, shorter hospital stays and lower mortality. The benefit of statins in COVID-19 should be explored more widely, as they can potentially contribute to the control of this pandemic that has devastated humanity.
RESUMEN
Inflammation is a protective response of the body potentially caused by microbial, viral, or fungal infections, tissue damage, or even autoimmune reactions. The cardinal signs of inflammation are consequences of immunological, biochemical, and physiological changes that trigger the release of pro-inflammatory chemical mediators at the local of the injured site thus, increasing blood flow, vascular permeability, and leukocyte recruitment. The aim of this study is to give an overview of the inflammatory process, focusing on chemical mediators. The literature review was based on a search of journals published between the years 2009 and 2023, regarding the role of major chemical mediators in the inflammatory process and current studies in pathogenesis, diagnosis, and therapy. Some of the recent contributions in the study of inflammatory pathologies and their mediators, including cytokines and chemokines, the kinin system, free radicals, nitric oxide, histamine, cell adhesion molecules, leukotrienes, prostaglandins and the complement system and their role in human health and chronic diseases.
Asunto(s)
Inflamación , Leucocitos , Humanos , Inflamación/patología , Citocinas , Prostaglandinas , Histamina , Mediadores de Inflamación/metabolismoRESUMEN
AIMS: The consumption of highly refined carbohydrates increases systemic inflammatory markers, but its potential to exert direct myocardial inflammation is uncertain. Herein, we addressed the impact of a high-refined carbohydrate (HC) diet on mice heart and local inflammation over time. MAIN METHODS: BALB/c mice were fed with a standard chow (control) or an isocaloric HC diet for 2, 4, or 8 weeks (HC groups), in which the morphometry of heart sections and contractile analyses by invasive catheterization and Langendorff-perfused hearts were assessed. Cytokines levels by ELISA, matrix metalloproteinase (MMP) activity by zymography, in situ reactive oxygen species (ROS) staining and lipid peroxidation-induced TBARS levels, were also determined. KEY FINDINGS: HC diet fed mice displayed left ventricular hypertrophy and interstitial fibrosis in all times analyzed, which was confirmed by echocardiographic analyses of 8HC group. Impaired contractility indices of HC groups were observed by left ventricular catheterization, whereas ex vivo and in vitro indices of contraction under isoprenaline-stimulation were higher in HC-fed mice compared with controls. Peak levels of TNF-α, TGF-ß, ROS, TBARS, and MMP-2 occur independently of HC diet time. However, a long-lasting local reduction of the anti-inflammatory cytokine IL-10 was found, which was linearly correlated to the decline of systolic function in vivo. SIGNIFICANCE: Altogether, the results indicate that short-term consumption of HC diet negatively impacts the balance of anti-inflammatory defenses and proinflammatory/profibrotic mediators in the heart, which can contribute to HC diet-induced morphofunctional cardiac alterations.
Asunto(s)
Tejido Adiposo , Citocinas , Animales , Ratones , Carbohidratos de la Dieta , Especies Reactivas de Oxígeno , Sustancias Reactivas al Ácido Tiobarbitúrico , Dieta , InflamaciónRESUMEN
Atrial fibrillation (AF), the most common arrhythmia in clinical practice, is associated with an increase in mortality and morbidity due to its high potential to cause stroke and systemic thromboembolism. Inflammatory mechanisms may play a role in the pathogenesis of AF and its maintenance. We aimed to evaluate a range of inflammatory markers as potentially involved in the pathophysiology of individuals with nonvalvular AF (NVAF). A total of 105 subjects were enrolled and divided into two groups: patients with NVAF (n = 55, mean age 72 ± 8 years) and a control group of individuals in sinus rhythm (n = 50, mean age 71 ± 8 years). Inflammatory-related mediators were quantified in plasma samples by using Cytometric Bead Array and Multiplex immunoassay. Subjects with NVAF presented significantly elevated values of interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor (TNF), interferon-gamma, growth differentiation factor-15, myeloperoxidase, as well as IL-4, interferon-gamma-induced protein (IP-10), monokine induced by interferon-gamma, neutrophil gelatinase-associated lipocalin, and serum amyloid A in comparison with controls. However, after multivariate regression analysis adjusting for confounding factors, only IL-6, IL-10, TNF, and IP-10 remained significantly associated with AF. We provided a basis for the study of inflammatory markers whose association with AF has not been addressed before, such as IP-10, in addition to supporting evidence about molecules that had previously been associated with the disease. We expect to contribute to the discovery of markers that can be implemented in clinical practice hereafter.
Asunto(s)
Fibrilación Atrial , Humanos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Interleucina-10 , Interleucina-6 , Interferón gamma , Quimiocina CXCL10 , Interleucina-4 , Factor de Necrosis Tumoral alfaRESUMEN
The establishment of a state of immunotolerance in the female reproductive tract is important for embryo development, implantation and placentation. Llamas are induced ovulators and more than 98% of pregnancies occur in the left uterine horn. The objective of this study was to determine the uterine immune response of llamas in different stages of the reproductive cycle. Adult llamas (n = 20) were examined daily by transrectal ultrasonography to determine follicular growth and then randomly assigned to four groups: Follicular phase (n = 5); Luteal phase induced by an intramuscular administration of 50 ug of GnRH analogue (n = 5); Luteal phase induced by intrauterine infusion of seminal plasma (n = 5); and Luteal phase induced by mating (n = 5). Uterine fluid was collected separately from both uterine horns by non-surgical flushing to determine the presence of cells, total proteins and concentration of IL-1ß, IL-6, IL-8, IFN γ, TNF-α and PGE2. Inflammatory cells were not observed in the uterine fluid and total protein pattern and inflammatory mediators did not differ between the left and the right horn amongst groups. Llamas treated with an intrauterine infusion of seminal plasma showed the highest concentration of total proteins, inflammatory cytokines PGE2, IL-8 and IL-1ß in the uterine fluid. In conclusion, seminal plasma is made up of significant numbers of signaling molecules that are able to modify the uterine immune response in llamas.
RESUMEN
BACKGROUND: The present study investigated the effects of pulsed and continuous ultrasound (USP and USC) in edema and hyperalgesia after chronic inflammatory process induced by Complete Freund's Adjuvant-CFA and analyzing the relationship of the application frequency of ultrasound, in pro- and anti-inflammatory cytokine production. METHODS: Forty-five animals were divided into 9 groups; all animals from groups 2 to 9 were subjected to a persistent inflammation model induced by CFA in mice. We report the effects and the underlying action mechanisms of USP and USC in the animals which were irradiated two, three or five times a week on the left hind paw. The analyses performed in this study were: evaluation of hind paw edema through the plethysmometer, evaluation of thermal hyperalgesia through withdrawal test using a water container at 44.5°C (± 0.5°C), and the plantar region of the left paw which was removed for analysis of cytokines. RESULTS: Our results showed that USP and USC consistently reduced paw edema, and pulsed ultrasound showed a higher significant effect than the continuous mode. Moreover, groups with irradiation frequency of five times a week presented an inhibition of the edema, and groups with frequency of three or two times a week reduced mainly hyperalgesia, in comparison with the control group. The beneficial effects of the US then seem to be associated with upregulation of anti- and pro-inflammatory mediators, such as IL-10 and IL-6, respectively. CONCLUSION: This study provided evidence that ultrasound constitutes an important non-pharmacological intervention for the management of inflammatory and pain states.
RESUMEN
BACKGROUND: Tumor plasticity processes impact the treatment of different types of cancer; as an effect of this, the bioprospecting of therapies from natural and/or synthetic compounds that can regulate or modulate the immune system has increased considerably. Oxadiazole derivatives are structures that exhibit diverse biological activities. Therefore, this review aimed to evaluate the activity of oxadiazole compounds against tumor cell lines and their possible immune-mediated mechanisms. METHODS: A search in PubMed, Web of Science, and Science Direct databases was carried out on studies published from January 1, 2004, to January 31, 2022, using "oxadiazole" in combination with the other descriptors "cancer" and "macrophage". Only experimental in vitro and in vivo articles were included. A similar search strategy was used in the Derwent Innovation Index database for technology mapping. The search was performed on Drugbank using the descriptor oxadiazole for commercial mapping. RESULTS: 23 oxadiazole studies were included in this review, and some biological activities linked to antitumoral and immunomodulation were listed. Oxadiazole derivatives inhibited tumor cell growth and proliferation, blocked cell cycle, modulated mitochondrial membrane potential, presented immunoregulatory activity by different mechanisms reducing proinflammatory cytokines levels and acted directly as selective inhibitors of the COX enzyme. There was an increase in oxadiazole patent publications in the last 11 years, with emphasis on chemistry, pharmacy and biotechnology applied to microbiology areas. Compounds with 1,2,4-oxadiazole isomer are predominant in patent publications and approved drugs as observed in the technological and commercial mapping. CONCLUSION: Therefore, oxadiazole derivatives are therapeutic molecules that can be considered promising for the development of cancer therapies.
Asunto(s)
Antineoplásicos , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Agentes Inmunomoduladores , Oxadiazoles/farmacología , Oxadiazoles/uso terapéutico , Oxadiazoles/química , Línea Celular Tumoral , Proliferación Celular , Relación Estructura-Actividad , Estructura MolecularRESUMEN
Dengue virus (DENV) infection represents a worldwide public health concern and can cause damage to multiple organs, including the kidney. In this work, we investigated the histopathological changes caused by dengue virus infection along with the detection of inflammatory mediators, cytokines, and cell expression patterns in the renal tissue of three fatal cases in children. Hematoxylin and Eosin staining was performed to analyze these histopathological changes. Immunohistochemistry allowed for the detection of immunological inflammatory markers in renal tissues that were quantified and further analyzed. Vascular congestion, edema and glomerular infiltrate were observed in the three cases, in addition to the thickening of the matrix area around the glomerular capillaries and mononuclear infiltrate associated with vascular congestion in the medullary region. The renal tissues exhibited collagen deposition and high expression of CD68+ Mø, CD8+ T, CD56+ cells and MMP-9, and the cytokine profile was mainly characterized by the expression of IFN-γ and TNF-α. Additionally, the expression of RANTES, VEGFR-2 and VCAM-1 were observed. The replication of DENV was evidenced by the detection of the NS3 protein. These results contributed to clarifying the main factors that may be involved in changes in the renal tissue of fatal cases of dengue in children.
RESUMEN
Cardiomyopathy is the most serious complication of chronic Chagas disease, caused by infection with the protozoan Trypanosoma cruzi. Exacerbated inflammation of the myocardium constitutes a major pathologic component of the disease. In the myocardial microenvironment, parasite antigens and host inflammatory mediators may aggravate tissue damage. The glycoinositolphospholipid (GIPL) from T. cruzi is an inflammation-eliciting antigen recognized by Toll-like receptor 4 (TLR4), whereas the proinflammatory cytokine macrophage migration inhibitory factor (MIF) promotes progression of chronic Chagas cardiomyopathy. We herein aimed to examine the involvement of GIPL and MIF in molecular mechanisms leading to a pathogenic inflammatory response in HL-1 cardiomyocytes and HMEC microvascular endothelial cells. Immunofluorescence analysis revealed that GIPL enhanced TLR4 expression in both cell types. We found that TLR4/GIPL interaction and MIF activity modulated the arachidonic acid pathway implicated in persistent inflammation. The combination of GIPL at 50 µg/ml and MIF at 50 ng/ml upregulated type 2 cyclooxygenase (COX-2) levels in HL-1 and HMEC cells, in a stronger way than each molecule acting independently. Moreover, increased expression of prostanoid synthases and release of prostaglandin E2 (PGE2) and thromboxane B2 (TxB2) were detected in stimulated cells. Transfection experiments in HL-1 and HMEC cells showed that COX-2 induction was transcriptionally regulated through GIPL-TLR4 engagement and NFκB signaling cascade. (GIPL + MIF)-triggered NFκB activation was markedly attenuated by treatment with 100 µM Fenofibrate, a PPAR-α ligand. Fenofibrate reduced COX-2-dependent generation of bioactive lipids in HL-1 and HMEC cells. In addition, Fenofibrate abolished (GIPL + MIF)-fostered release of NO, IL-1ß, IL-6, TNF-α, and CCL2. The combined actions of GIPL and MIF display potential for amplifying the inflammatory response in myocardium of parasite-infected hosts. Our current findings might help develop more effective measures to ameliorate cardiovascular abnormalities associated with Chagas heart disease.
Asunto(s)
Enfermedad de Chagas , Fenofibrato , Factores Inhibidores de la Migración de Macrófagos , Trypanosoma cruzi , Humanos , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Receptor Toll-Like 4 , Miocitos Cardíacos/metabolismo , Ciclooxigenasa 2 , Células Endoteliales/metabolismo , InflamaciónRESUMEN
Eugenia brejoensis Mazine (Myrtaceae) is source of an essential oil (EbEO) with anti-infective activities against Staphylococcus aureus. This study evaluated the antimicrobial and anti-inflammatory potentials of EbEO in S. aureus-infected skin wounds. The excisional lesions (64 mm2) were induced on Swiss mice back (6 to 8-week-old) that were allocated into 3 groups (n = 12): 1) non-infected wounds (CON); 2) wounds infected with S. aureus ATCC 6538 (Sa); 3) S. aureus-infected wounds and treated with EbEO (Sa + EbEO). The infected groups received approximately 104 CFU/wound. The animals were treated with EbEO (10 µg/wound/day) or vehicle from the 1-day post-infection (dpi) until the 10th dpi. The clinical parameters (wound area, presence of exudate, edema intensity, etc.) were daily analyzed. The levels of inflammatory mediators (cytokines, nitric oxide, VEGF) and bacterial load were measured at the cutaneous tissue at 4th dpi and 10th dpi. Topical application of EbEO accelerated wound contraction with an average contraction of 83.48 ± 11.27 % of the lesion area until 6th dpi. In this period, the rates of lesion contraction were 54.28 ± 5.57% and 34.5 ± 2.67% for CON and Sa groups, respectively. The positive effects of EbEO on wound contraction were associated with significantly (p < 0.05) reduction on bacterial load and the release of inflammatory mediators (IL-6, IL-17A, TNF-α, NO and VEGF). Taken together, these data confirm the antimicrobial potential of EbEO and provide insights into its anti-inflammatory effects, making this essential oil an interesting candidate for the development of new therapeutic alternatives for infected cutaneous wounds.
RESUMEN
Abstract Introduction: Halting ventilation during cardiopulmonary bypass (CPB) is implemented to operate in a less bleeding setting. It sustains a better visualization of the operation area and helps to perform the operation much more comfortably. On the other hand, it may lead to a series of postoperative lung complications such as atelectasis and pleural effusion. In this study, we investigated the effects of low tidal volume ventilation on inflammatory cytokines during CPB. Methods: Twenty-eight patients undergoing cardiovascular surgery were included in the study. Operation standards and ventilation protocols were determined and patients were divided into two groups: patients ventilated with low tidal volume and non-ventilated patients. Plasma samples were taken from patients preoperatively, perioperatively from the coronary sinus and postoperatively after CPB. IL-6, IL-8, TNF-α and C5a levels in serum samples were studied with enzyme-linked immunosorbent assay (ELISA) kits. Results: C5a, IL-6, IL-8 and TNF-α were similar when compared to the low tidal volume ventilated and non-ventilated groups (P>0.05) Comparing the groups by variables, IL-6 levels were increased during CPB in both groups (P=0.021 and P=0.001), and IL-8 levels decreased in the ventilation group during CPB (P=0.018). Conclusion: Our findings suggest that low tidal volume ventilation may reduce the inflammatory response during CPB. Although the benefit of low tidal volume ventilation in CPB has been shown to decrease postoperative lung complications such as pleural effusion, atelectasis and pneumonia, we still lack more definitive and clear proofs of inflammatory cytokines encountered during CPB.
RESUMEN
The tumor microenvironment is a dynamic, complex, and redundant network of interactions between tumor, immune, and stromal cells. In this intricate environment, cells communicate through membrane-membrane, ligand-receptor, exosome, soluble factors, and transporter interactions that govern cell fate. These interactions activate the diverse and superfluous signaling pathways involved in tumor promotion and progression and induce subtle changes in the functional activity of infiltrating immune cells. The immune response participates as a selective pressure in tumor development. In the early stages of tumor development, the immune response exerts anti-tumor activity, whereas during the advanced stages, the tumor establishes mechanisms to evade the immune response, eliciting a chronic inflammation process that shows a pro-tumor effect. The deregulated inflammatory state, in addition to acting locally, also triggers systemic inflammation that has repercussions in various organs and tissues that are distant from the tumor site, causing the emergence of various symptoms designated as paraneoplastic syndromes, which compromise the response to treatment, quality of life, and survival of cancer patients. Considering the tumor-host relationship as an integral and dynamic biological system, the chronic inflammation generated by the tumor is a communication mechanism among tissues and organs that is primarily orchestrated through different signals, such as cytokines, chemokines, growth factors, and exosomes, to provide the tumor with energetic components that allow it to continue proliferating. In this review, we aim to provide a succinct overview of the involvement of cancer-related inflammation at the local and systemic level throughout tumor development and the emergence of some paraneoplastic syndromes and their main clinical manifestations. In addition, the involvement of these signals throughout tumor development will be discussed based on the physiological/biological activities of innate and adaptive immune cells. These cellular interactions require a metabolic reprogramming program for the full activation of the various cells; thus, these requirements and the by-products released into the microenvironment will be considered. In addition, the systemic impact of cancer-related proinflammatory cytokines on the liver-as a critical organ that produces the leading inflammatory markers described to date-will be summarized. Finally, the contribution of cancer-related inflammation to the development of two paraneoplastic syndromes, myelopoiesis and cachexia, will be discussed.